苏州大学在职研究生机械振动试题
机械振动考试题和答案
![机械振动考试题和答案](https://img.taocdn.com/s3/m/72cdc867b42acfc789eb172ded630b1c59ee9b23.png)
机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。
A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。
A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。
A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。
B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。
A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。
机械振动期末考试题及答案
![机械振动期末考试题及答案](https://img.taocdn.com/s3/m/4fd0121fe55c3b3567ec102de2bd960591c6d944.png)
机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。
答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。
答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。
机械振动学试题库
![机械振动学试题库](https://img.taocdn.com/s3/m/45f0532282c4bb4cf7ec4afe04a1b0717fd5b321.png)
机械振动学试题库《机械振动学》课程习题库第一章1.1何谓机械振动?表示物体运动特征的物理量有哪些?1.2按产生振动的原因分为几类?按振动的规律分为几类?1.3何谓线性系统、机械系统和等效系统?1.4如何理解瞬态振动、稳态振动、自由振动、强迫振动和纵向振动。
横向振动和扭转振动动、参数振动和非线性振动?1.5写出频率、角频率、相位、振幅和阻尼固有频率,解释其含义并注明单位值。
1.6如何理解粘性阻尼系数、等效阻尼、临界阻尼系数、欠阻尼和过阻尼?1.7振动对机械产品有什么影响?1.8利用振动原理而工作的机电设备有哪些?试举例说明。
傅里叶级数的周期是非谐的,它的周期表达式是T.9,重复函数是T?f(t)?a0??(ancons?t?bnsinn?t)N1t哪里:A10?Tf(t)dt0ta2n?t?f(t)cosn?tdt02tbn?Tf(t)sinn?TDT注:手动P901.10将下图所示的f(t)展成傅立叶级数。
f(t)p0π/ω2π/ω3π/ω4π/ωt-p当n为偶数时,b4pn?0,当n为奇数时,bn?n参考答案:?傅氏级数f?t??4p?1?1?sin?t.2.5n一π1.11今有一简谐位移x(t)(mm),其表达式为:x(t)=8sin(24t??-),求:31.振动的频率和周期;2.最大位移、最大速度和最大加速度;3.t=0时的位移、速度和加速度;4.t=1.5s时的位移、速度和加速度。
参考答案:24rad/s,3.82hz,0.2618s;192mm/s,4608mm/s2;-6.9282mm/s,96mm/s,3990.65mm/s2;-3.253mm/s,175.4mm/s,1874mm/s21.12一振动体作频率为50hz的简谐振动,测得其加速度为80m/s2,求它的位移幅值和速度振幅。
参考答案:0.8/mm,254.34mm/s。
1.13简谐振动的频率为10Hz,最大速度为4.57m/s。
大学机械振动考试题目及答案
![大学机械振动考试题目及答案](https://img.taocdn.com/s3/m/d4946308bf23482fb4daa58da0116c175f0e1ecf.png)
大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
机械振动现象练习题(含答案)
![机械振动现象练习题(含答案)](https://img.taocdn.com/s3/m/fb1acf3603768e9951e79b89680203d8ce2f6a0d.png)
机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。
求物体的振动方程。
根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。
根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。
2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。
求质点的角频率和振动周期。
根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。
在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。
如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。
根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。
3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。
当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。
根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。
机械行业振动力学期末考试试题
![机械行业振动力学期末考试试题](https://img.taocdn.com/s3/m/cc2dc7836037ee06eff9aef8941ea76e58fa4a36.png)
机械行业振动力学期末考试试题第一大题:单自由度振动1.无阻尼自由振动系统,在初始时刻位移为A,速度为0,求解该振动系统的解析解。
2.阻尼比为0.2的单自由度振动系统受到正弦激励力,激励力的频率为系统固有频率的两倍,求解该振动系统的响应。
3.阻尼比为0.5的单自由度振动系统受到冲击激励力,激励力的持续时间为0.1秒,求解该振动系统的响应。
第二大题:多自由度振动1.有两个自由度的系统,求解其固有频率和模态振型。
2.有三个自由度的系统,求解其固有频率和模态振型。
3.给定一个多自由度振动系统的质量矩阵和刚度矩阵,求解其特征值和特征向量,进而得到固有频率和模态振型。
第三大题:振动测量与分析1.请列举常用的振动测量仪器,并对其原理进行简要说明。
2.振动信号的采样频率应该如何选择?请解释原因。
3.请说明振动信号的功率谱密度函数,并给出其计算公式。
4.请解释振动传感器的灵敏度是什么意思,并给出其计算公式。
第四大题:振动控制1.请说明主动振动控制和被动振动控制的区别。
2.请解释模态分析在振动控制中的作用。
3.请列举常用的振动控制方法,并对其原理进行简要说明。
第五大题:振动摆1.请列举用振动摆进行的实验,并对其原理进行简要说明。
2.请解释摇摆周期与摆长的关系,并给出相关公式。
3.一个摆长为1m的振动摆,其重力加速度为9.8m/s^2,求解其摇摆周期。
本文档由Markdown格式输出。
Markdown是一种轻量级的标记语言,常用于编写文档和博客。
可通过Markdown编辑器进行编辑和输出。
以上是机械行业振动力学期末考试试题的内容。
希望对您的学习有所帮助!。
机械振动题库(含答案)
![机械振动题库(含答案)](https://img.taocdn.com/s3/m/8aeeab8ca45177232e60a2ae.png)
…………2分 …………2分 …………2分 …………2分
16.有两个同方向、同频率的简谐振动,它们的振动表式为:
x1
0.05cos 10t
3 4
x2
0.06 cos 10t
1
4
(SI)
(1)求它们合成振动的振幅和初相位。
,
(2)若另有一振动 x3 0.07cos(10t 3), 问 3 为何值
7、在两个相同的弹簧下各悬一物体,两物体的质量
比为4∶1,则二者作简谐振动的周期之比为___2_:_1____ 。
8. 一简谐振动的振动曲线如图所示,则由图可得其振幅为
10 cm
_________
2
,其初相为___3______
,
xcm
10
其周期为__2_54___s___
O
2
x 0.1cos( 5 t 2 )
(A) 6T (B) T / 6 (C) 6T
(D) T
6
4.一个质点作简谐运动,振幅为A,在起始时质点的位移为
A / 2 ,且向x轴正方向运动,代表此简谐运动的旋转矢量
为( B )
A
OA x 2
A
2O
A
x
A
2
O
A
x
A
A O
x
2
(A)
(B)
(C)
(D)
5.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动
竖直放置 放在光滑斜面上
2. 如图所示,以向右为正方向,用向左的力压缩一弹簧,然后
松手任其振动,若从松手时开始计时,则该弹簧振子的初相位
为( D )
(A) 0
(B)
2
机械振动试题及答案
![机械振动试题及答案](https://img.taocdn.com/s3/m/a4141df96394dd88d0d233d4b14e852458fb398b.png)
机械振动试题及答案⼀、填空题1、机械振动按不同情况进⾏分类⼤致可分成(线性振动)和⾮线性振动;确定性振动和(随机振动);(⾃由振动)和强迫振动,连续振动和离散系统。
2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。
3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。
4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励⽆关。
5、研究随机振动的⽅法是(数理统计),⼯程上常见的随机过程的数字特征有:(均值)(⽅差)(⾃相关函数)和(互相关函数)。
6、周期运动的最简单形式是(简谐运动),它是时间的单⼀(正弦)或(余弦)函数。
7、单⾃由度系统⽆阻尼⾃由振动的频率只与(质量)和(刚度)有关,与系统受到的激励⽆关。
8、简谐激励下单⾃由度系统的响应由(瞬态响应)和(稳态响应)组成。
9、⼯程上分析随机振动⽤(数学统计)⽅法,描述随机过程的最基本的数字特征包括均值、⽅差、(⾃相关函数)和(互相关函数)。
10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。
11、单位脉冲⼒激励下,系统的脉冲响应函数和系统的(频响函数)函数是⼀对傅⾥叶变换对,和系统的(传递函数)函数是⼀对拉普拉斯变换对。
12、叠加原理是分析(线性振动系统)和(振动性质)的基础。
⼆、简答题1、什么是机械振动?振动发⽣的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。
振动发⽣的内在原因是机械或结构具有在振动时储存动能和势能,⽽且释放动能和势能并能使动能和势能相互转换的能⼒。
外在原因是由于外界对系统的激励或者作⽤。
2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。
质量越⼤,固有频率越低;刚度越⼤,固有频率越⾼;阻尼越⼤,固有频率越低。
3、从能量、运动、共振等⾓度简述阻尼对单⾃由度系统振动的影响。
机械振动测试题及答案
![机械振动测试题及答案](https://img.taocdn.com/s3/m/81b0960e80eb6294dc886c85.png)
第九章机械振动单元测试班级姓名学号一'选择题:(每题3分,共36分)1.关于振幅,以下说法中正确的是()①物体振动的振幅越人,振动越强烈②•个确定的振动系统,振幅越人振动系统的能量越人③ 振幅越大,物体振动的位移越大④振幅越大,物体振动的加速度越人D C•②③.③④A.①② B.①③2.振动的单摆小球通过平衡位置时,关于小球受到的回复力及合外力的说法正确的是()A.回复力为零:合外力不为零,方向指向悬点B.回复力不为零,方向沿轨迹的切线C.合外力不为零,方向沿轨迹的切线D.回复力为零,合外力也为零()3.下列说法中不正确的是A.某物体做自由振动时,其振动频率与振幅无关B.某物体做受迫振动时,其振动频率与固有频率无关C.某物体发生共振时的频率就是其自由振动的频率D .某物体发生共振时的振动就是无阻尼振动4.发生下述哪•种情况时,单摆周期会增大()B.缩短摆长A.增大摆球质量.将单摆由山下移至山顶DC.减小单摆振幅5.摆长和等的两单摆悬挂在同•个固定点,将它们从最低点分别向两边拉开,偏角各为3°和5° . 同时将它们释放后,它们相遇在()A.最低点左侧B.最低点右侧C.最低点D.无法确定()6.关于共振的防止和利用,应做到①利用共振时,应使驱动力的频率接近或等于振动物体的固有频率②利用共振时,应使驱动力的频率大于或小于振动物体的固有频率③防上共振危害时,应尽量使驱动力频率接近或等于振动物体的固有频率④防止共振危害时,应使驱动力频率远离振动物体的固有频率A B. <D<3) C.②③ D. (§Xg)图1点,这时弹簧恰所示,物体静止于水平面上的07.如图1,与水平而间的动摩擦W mL为原长,物体的质量为。
现将物体向右拉•段距离后自由释放,使之沿•数为U )水平而振动,下列结论正确的是(O点时所受的合外力为零.物体通过A・物体将做阻尼振动BO点C.物体最终只能停止在mg UD.物体停止运动后所受的摩擦力为开.8.如图2所示,曲轴上悬挂•弹簧振转动摇把,曲轴可以带动弹费振子上下振动,然后匀速转动摇把,转2 Hz 始时不转动摇把,让振了上下自由振动测得振动频率为)速为240 r/rnin,当振子振动稳定后,它的振动周期为(114s2sDsB. sC.. A. ____________ 42、的驱,B的固有频率为4f,若它们均在频率为39. AfB两个弹簧振JS A的固有频率为f动力作用下做受迫振动,则()的振幅较人,振动频率为f・振/B的振幅较人,振动频率为3B f.振了A的振幅较大,振动频率为3Cf・振了B 的振幅较人,振动频率为D所示装置中,先后用两个不同9-1910.在课本插图匀N,以速度v 次用纸板的砂摆做实验,第Im,以速度v匀速拉动速拉动;第2次用纸板Nx符合关系、T结果形成如图3所示的砂了分布的曲线.已知\=2v,则两个摆的周期T2211 )(Ti =T4TD・ TT・ AT=TB・=2TC・=21 2221_ 41. •物体在某行星农Ifti受到的万有引力是它在地球衣[fri受到的万有引力的。
物理机械振动考试题及答案
![物理机械振动考试题及答案](https://img.taocdn.com/s3/m/d4d4f92fc950ad02de80d4d8d15abe23482f038a.png)
物理机械振动考试题及答案一、单项选择题(每题3分,共30分)1. 简谐运动的振动周期与振幅无关,与以下哪个因素有关?A. 质量B. 弹簧常数C. 初始位移D. 初始速度答案:B2. 阻尼振动中,振幅逐渐减小的原因是:A. 摩擦力B. 重力C. 弹力D. 空气阻力答案:A3. 以下哪个量描述了简谐运动的振动快慢?A. 振幅B. 周期C. 频率D. 相位答案:C4. 两个简谐运动的合成,以下哪个条件可以产生拍现象?A. 频率相同B. 频率不同C. 振幅相同D. 相位相反答案:B5. 以下哪个量是矢量?A. 位移B. 速度C. 加速度D. 以上都是答案:D6. 单摆的周期与以下哪个因素无关?A. 摆长B. 摆球质量C. 重力加速度D. 摆角答案:B7. 以下哪个量描述了简谐运动的能量?A. 振幅C. 频率D. 相位答案:A8. 以下哪个因素会影响单摆的周期?A. 摆长B. 摆球质量C. 摆角D. 重力加速度答案:A9. 阻尼振动中,振幅减小到原来的1/e时,经过的时间为:A. 1/2TB. TC. 2T答案:C10. 以下哪个现象不是简谐运动?A. 弹簧振子B. 单摆C. 弹簧振子的振幅逐渐减小D. 单摆的振幅逐渐减小答案:C二、填空题(每题4分,共20分)11. 简谐运动的周期公式为:T = 2π√(____/k),其中m为质量,k为弹簧常数。
答案:m12. 单摆的周期公式为:T = 2π√(L/g),其中L为摆长,g为重力加速度。
答案:L13. 阻尼振动的振幅公式为:A(t) = A0 * e^(-γt),其中A0为初始振幅,γ为阻尼系数,t为时间。
答案:A014. 简谐运动的频率公式为:f = 1/T,其中T为周期。
答案:1/T15. 简谐运动的相位公式为:φ = ωt + φ0,其中ω为角频率,t 为时间,φ0为初始相位。
答案:ωt + φ0三、计算题(每题10分,共50分)16. 一个质量为2kg的物体,通过弹簧连接在墙上,弹簧的弹簧常数为100N/m。
机械振动试题
![机械振动试题](https://img.taocdn.com/s3/m/231dacbc760bf78a6529647d27284b73f24236d0.png)
机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。
它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。
2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。
周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。
3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。
受迫振动是指机械振动系统受到外力周期性激励后产生的振动。
4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。
在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。
5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。
机械振动考题(完整版)
![机械振动考题(完整版)](https://img.taocdn.com/s3/m/8c9106f176a20029bd642d36.png)
五邑大学(期末试题)院系:机电工程学院专业:机械工程年级: 12级研究生学号: 2111206011姓名:崔卫国机械振动考题1、如图所示两自由度系统。
(1)求系统固有频率和模态矩阵,并画出各阶主振型图形;(2)当系统存在初始条件⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡03.00)0()0(21x x 和⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡00)0()0(21x x 时,试采用模态叠加法求系统响应,并绘出相应曲线;(3)试合理确定k2和m2,使之构成无阻尼动力减振器。
(4)用任何一种语言编制计算程序,完成上述计算工作。
参数:m1=500kg, m2=200kg, k1=8000N/m, k2=3000N/m, F0=350N, ω=0.8解:(1)由题意及图所示可知:这是一个动力减震器问题。
1m 1k 组成的系统为主系统;2m 2k 组成的附加系统为减振器。
故可知这个组合系统的振动微分方程为:()11121221222122sin 0m x k k x k x F wt m x k x k x ⎧++-=⎪⎨-+=⎪⎩ ① 设其解为:11sin x X wt = 22sin x X wt = ② 又因为由②可得:211sin x X w wt =- 222sin x X w wt =- 把②代入方程①中可得:()()212112212112220k k w m X k X F k X k w m X ⎧+--=⎪⎨-+-=⎪⎩ 故系统的特征值问题为:2111212222220X F k k w m k X k k w m ⎡⎤+--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ ③ 特征方程为:2121222220k k w m k k k w m +--=-- ④由④可得:()()2222212120kw m k k w m k -+--=⇒222412*********k k k w m k w m k w m w m m ---+= ⑤ 把1k 2k 1m 2m 的值代入⑤式可得:42372400w w -+= ⑥21223720.22378.388223720.223728.61192w w -⎧==⎪⎪⎨+⎪==⎪⎩⇒ 12 2.89625.3490w w =⎧⎨=⎩计算对应二个固有频率的固有振型。
机械振动学(参考答案).docx
![机械振动学(参考答案).docx](https://img.taocdn.com/s3/m/00ab73b169eae009591bec9b.png)
机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。
(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。
(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。
(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。
(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
(X )9、隔振系统的阻尼愈大,则隔振效果愈好。
(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。
(J)二、计算题:1、一台面以f频率做垂直正弦运动。
如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。
所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。
的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。
试验装置如图1所示,记录其振动周期。
机械振动试题与答案.docx
![机械振动试题与答案.docx](https://img.taocdn.com/s3/m/61df7c80011ca300a7c390d0.png)
1.一个机器内某零件的振动规律为x=0.5sinwt+0.3coswt, x的单位是cm, w=10pei 1/s.这个振动是否简谐振动,求出它的振幅,最大速度,最大加速度,并用旋转矢量表示三者之间的关系(10分)2.如图所示不计质量的杠杆系统,求坐标x的等效质量和等效刚度(10分)解(I)按能就法系统的幼能及势■能分别为T~ \ S ;z + 十叭(j x ) Z 乙> » I z=;3 + #血)>匕、、I i 'U=捉,/+ 捉(:J=2 S * 5因此简化后的弹黄质反系统的等效质用及等效刚度为M上A.虬二 + / ; m? .K,-加+ 'E设使系统在X坐标上产生单位位移需要施加力P,则在弹簧加及奴处将有图2 W)所示的弹性恢复力,对支点取矩有3.质量弹簧系统,W=150N,而=lcm,*l=0.8cm,A21=0.16cm 。
求阻尼系数 c 。
(10 分)解:_A_=. ..h^=(e nT d yo 1 A R 1 0.8 _(〃皿)20 麻一 * )i T _ 2。
奂“2 勿 1115=20奂“写= --- ,由于,很小,ln5«40^ =0.122(N-s/cm)4. 电机转速1760 W 分,由于未很好平衡,产生不平衡力70公斤使支座振动,支座弹簧常 数11000公斤/厘米,配有阻尼装置,其c=35公斤/厘米,电机重300公斤。
求:振幅,无 阻尼时的振幅,固有频率fn 。
(15分)解:激振力频率co = ------ x 1760 = 184 弧度/秒60于是 P 70 B=°, , = =0.0108 cm+(E T J(11000-|^X 1 842 )2 +352 xl 842 当c=o 时, 70 B ' = --------------- — ---------------- = 0.109 cm11000 ---------- x 184 2 981可见,由于阻尼的存在使振幅下降为原来的l/10o它与激振力频率1760转/分很接近。
机械振动试题(含答案)
![机械振动试题(含答案)](https://img.taocdn.com/s3/m/0936ec17b0717fd5370cdc7a.png)
机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
机械振动试题(含答案)
![机械振动试题(含答案)](https://img.taocdn.com/s3/m/91196a5d172ded630a1cb690.png)
机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。
已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gL π-B .212()2x x gL π-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。
机械振动试题(含答案)
![机械振动试题(含答案)](https://img.taocdn.com/s3/m/362fb2942f60ddccdb38a033.png)
机械振动试题(含答案)一、机械振动 选择题1.如图所示,一根不计质量的弹簧竖直悬吊铁块M ,在其下方吸引了一磁铁m ,已知弹簧的劲度系数为k ,磁铁对铁块的最大吸引力等于3m g ,不计磁铁对其它物体的作用并忽略阻力,为了使M 和m 能够共同沿竖直方向作简谐运动,那么 ( )A .它处于平衡位置时弹簧的伸长量等于()2M m gk + B .振幅的最大值是()2M m gk +C .弹簧弹性势能最大时,弹力的大小等于()2M m g +D .弹簧运动到最高点时,弹簧的弹力等于02.如图为某简谐运动图象,若t =0时,质点正经过O 点向b 运动,则下列说法正确的是( )A .质点在0.7 s 时的位移方向向左,且正在远离平衡位置运动B .质点在1.5 s 时的位移最大,方向向左,在1.75 s 时,位移为1 cmC .质点在1.2 s 到1.4 s 过程中,质点的位移在增加,方向向左D .质点从1.6 s 到1.8 s 时间内,质点的位移正在增大,方向向右3.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 4.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
机械振动试题(参考答案)
![机械振动试题(参考答案)](https://img.taocdn.com/s3/m/ff2e341455270722192ef72a.png)
一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。
2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析( )系统的基础。
5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。
6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。
7、机械振动是指机械或结构在平衡位置附近的( )运动。
二、简答题(本题40分,每小题10分)1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
(10分)2、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程? (10分)3、 简述刚度矩阵[K]中元素k ij 的意义。
(10分)4、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。
(10分)三、计算题(45分) 3.1、(14分)如图所示中,两个摩擦轮可分别绕水平轴O 1,转动,无相对滑动;摩擦轮的半径、质量、转动惯量分别为r 1、m I 1和r 2、m 2、I 2。
轮2的轮缘上连接一刚度为k 的弹簧,轮1上有软绳悬挂质量为m 的物体,求: 1)系统微振的固有频率;(10分)2)系统微振的周期;(4分)。
3.2、(16分)如图所示扭转系统。
设转动惯量I 1=I 2,扭转刚度K r1=K r2。
1)写出系统的动能函数和势能函数; (4分) 2)求出系统的刚度矩阵和质量矩阵; (4分)3)求出系统的固有频率; (4分)4)求出系统振型矩阵,画出振型图。
(4分)3.3、(15分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; (5分)2)求出固有频率; (5分)3)求系统的振型,并做图。
(5分)参考答案及评分细则:填空题(本题15分,每空1分)1、线性振动;随机振动;自由振动;2、势能;动能;阻尼3、简谐运动;正弦;余弦4、线性图2图35、刚度;质量6、频响函数;传递函数7、往复弹性简答题(本题40分,每小题10分)5、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
江苏省苏州市机械振动测试题
![江苏省苏州市机械振动测试题](https://img.taocdn.com/s3/m/251661e6f01dc281e43af082.png)
江苏省苏州市机械振动测试题 一、机械振动 选择题1.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是( )A .在1~2T t 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来4T 内,两物块通过的路程为A C .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大B .B 和C 的振幅相等 C .B 的周期为2π2L gD .C 的周期为2π1L g3.如图为某简谐运动图象,若t =0时,质点正经过O 点向b 运动,则下列说法正确的是( )A .质点在0.7 s 时的位移方向向左,且正在远离平衡位置运动B .质点在1.5 s 时的位移最大,方向向左,在1.75 s 时,位移为1 cmC .质点在1.2 s 到1.4 s 过程中,质点的位移在增加,方向向左D .质点从1.6 s 到1.8 s 时间内,质点的位移正在增大,方向向右4.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 5.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( )A .丙球最先到达D 点,乙球最后到达D 点B .甲球最先到达D 点,乙球最后到达D 点C .甲球最先到达D 点,丙球最后到达D 点D .甲球最先到达D 点,无法判断哪个球最后到达D 点6.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T 形支架在竖直方向振动, T 形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是( )A .小球振动的固有频率是4HzB .小球做受迫振动时周期一定是4sC .圆盘转动周期在4s 附近时,小球振幅显著增大D .圆盘转动周期在4s 附近时,小球振幅显著减小7.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零8.如图所示是在同一地点甲乙两个单摆的振动图像,下列说法正确的是A .甲乙两个单摆的振幅之比是1:3B .甲乙两个单摆的周期之比是1:2C .甲乙两个单摆的摆长之比是4:1D .甲乙两个单摆的振动的最大加速度之比是1 :49.如图所示,质量为A m 的物块A 用不可伸长的细绳吊着,在A 的下方用弹簧连着质量为B m 的物块B ,开始时静止不动。
苏州大学在职研究生机械振动试题
![苏州大学在职研究生机械振动试题](https://img.taocdn.com/s3/m/e1adab8f1eb91a37f0115cd7.png)
习题课及考前复习(24题)一、考试知识点二、考题分布情况三、作业题四、课堂练习题五、经典例题一、考试知识点第一章1、单自由度系统振动方程。
2、无阻尼单自由度系统的自由振动。
3、等效单自由度系统。
4、有阻尼单自由度系统的自由振动。
5、简谐力激励下的受迫振动。
6、基础简谐激励下的受迫振动。
第二章1、多自由度系统的振动方程。
2、建立系统微分方程的方法。
3、无阻尼系统的自由振动。
4、无阻尼系统的受迫振动。
二、考题分布情况1、主要围绕作业题、课堂练习题、经典例题题型展开。
2、复习时把握每章知识要点,理解基础题型解题方法。
3、考卷共6道大题。
三、作业题讲解1-1一物体在水平台面上,当台面沿竖直方向作频率为5Hz的简谐振动时,要使物体不跳离台面,试问对台面的振幅有何限制?1-3写出图所示系统的等效刚度表达式。
2.5kg,k1=k2=2×105 N/m ,k3=3×105 N/m时,求系统的固有频率。
1-4图中简支梁长l=4m,抗弯刚度EI=1.96×106N·m2,且k=4.9×105N/m,m=400kg。
分别求图示两种系统的固有频率。
1-6 如图示,重物挂在弹簧上,静变形为δs。
现将其重新挂在未变形弹簧的下端,并给予向上的初速度 u,求重物的位移响应和从开始运动到首次通过平衡位置的时间。
1-7证明对于临界阻尼或过阻尼,系统从任意初始条件开始运动至多越过平衡位置一次。
P45.1-8:一单自由度阻尼系统,m =10kg时,弹簧静伸长δs=0.01m。
自由振动20个循环后,振幅从6.4×10−3m降至1.6×103m求阻尼系数c及20个循环内阻尼力所消耗的能量.1-9已知单自由度无阻尼系统的质量和刚度分别为m=17.5kg,k=7000N/m,求该系统在零初始条件下被简谐力f(t)=52.5sin(10t-30°)N激发的响应。
,在简1-11一质量为m的单自由度系统,经试验测出其阻尼自由振动频率为ωd谐激振力作用下位移共振的激振频率为ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
一、考试知识点
第一章
1、单自由度系统振动方程。
2、无阻尼单自由度系统的自由振动。
3、等效单自由度系统。
4、有阻尼单自由度系统的自由振动。
5、简谐力激励下的受迫振动。
6、基础简谐激励下的受迫振动。
第二章
1、多自由度系统的振动方程。
2、建立系统微分方程的方法。
3、无阻尼系统的自由振动。
4、无阻尼系统的受迫振动。
二、考题分布情况
1、主要围绕作业题、课堂练习题、经典例题题型展开。
2、复习时把握每章知识要点,理解基础题型解题方法。
3、考卷共6道大题。
三、作业题讲解
1-1一物体在水平台面上,当台面沿竖直方向作频率为5Hz的简谐振动时,要使物体不跳离台面,试问对台面的振幅有何限制?
1-3写出图所示系统的等效刚度表达式。
2.5kg,k1=k2=2×105 N/m ,k3=3×105 N/m时,求系统的固有频率。
1-4图中简支梁长l=4m,抗弯刚度EI=1.96×106N·m2,且k=4.9×105N/m,m=400kg。
分别求图示两种系统的固有频率。
1-6 如图示,重物挂在弹簧上,静变形为δs。
现将其重新挂在未变形弹簧的下端,并给予向上的初速度 u
,求重物的位移响应和从开始运动到首次通过平衡
位置的时间。
1-7证明对于临界阻尼或过阻尼,系统从任意初始条件开始运动至多越过平衡位置一次。
P45.1-8:一单自由度阻尼系统,m =10kg时,弹簧静伸长δs=0.01m。
自由振动20个循环后,振幅从6.4×10−3m降至1.6×103m求阻尼系数c及20个循环内阻尼力所消耗的能量.
1-9已知单自由度无阻尼系统的质量和刚度分别为m=17.5kg,k=7000N/m,求该系统在零初始条件下被简谐力f(t)=52.5sin(10t-30°)N激发的响应。
,在简1-11一质量为m的单自由度系统,经试验测出其阻尼自由振动频率为ω
d
谐激振力作用下位移共振的激振频率为ω。
求系统的固有频率、阻尼系数和振幅对数衰减率。
1-13一电机质量为22kg,转速3000r/min,通过4个同样的弹簧对称地支称地支承在基础上。
欲使传到基础上的力为偏心质量惯性力的10%,求每个弹簧的刚度系数。
2-3求图示系统的固有频率和固有振型。
2-5求图示扭转振动系统的固有频率和固有振型。
2-8图示刚杆质量不计,m1=4kg,m1= 4kg,k1= 2×103求系统的固有频率和固有振型。
3N/m,k2=5×103N/m。
四.课堂练习题
[例1]弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
运动微分方程
[例2]弹簧不受力时长度为65cm,下端挂上1kg物体后弹簧长85cm。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
【例3】:有一阻尼单自由度系统,测得质量m=5kg,刚度系数k=500N/m。
试
验测得在6个阻尼自然周期内振幅由0.02m衰减到0.012m,试求系统的阻尼比和阻尼器的阻尼系数。
对数衰减率δ
根据δ≈ 2πζ得到系统的阻尼比
根据ζ = c / c
c
得到阻尼器的阻尼系数
c
c = 2mω
n
= 2mk
【关键】:正确求出对数衰减率
有阻尼单自由度系统的自由振动
例4如图所示,质量为m
2
的匀质圆盘在水平面上可作无滑动滚动,鼓轮绕轴的转动惯量为 I,忽略绳子的弹性、质量及各轴间的摩擦力,求此系统的固有频率。
例五在图所示的弹簧——质量系统中,两个弹簧的连接处有一激振力f
sinωt
,求质量块的稳态振幅。
例6如图所示,在质量块上作用有简谐力F= F
sinωt,同时在弹簧的固定端有
=acosωt。
试写出系统的振动微分方程和稳态振动解。
支承运动 x
s
例7如图所示,试写出系统的振动微分方程和稳态振动解。
经典例题
例1.4.1图示为一摆振系统,不计刚性摆杆质量,a/l =α。
求系统绕o点小幅摆动的阻尼振动频率和临界阻尼系数。
【思路】要想求阻尼振动频率
例1.5.1考察一欠阻尼系统,激励频率ω与固有频率ωn 相等,初瞬时时系统静止在平衡 位置上。
试求在激振力f 0cos ωt 作用下系统运动的全过程。
解:系统的运动微分方程为
例2.2.6建立图示系统的运动方程
例2.3.1设图中二自由度系统的物理参为 m 1= m 2= m ,k 1=k 3=k,k 2=μk,, 0 < μ ≤ 1 ,确定系统的固有振动。
每一阶固有振动都是同步自由振动,在振动中两质量块总是同时达到峰值或同时过平衡位置。
二自由系统的任一自由振动总是固有振动的线性组合。
二自由系统的自由振动不一定是简谐振动,甚至为非周期振动。