Aspen物料衡算与能量衡算
化工原理物料衡算和热量衡算
化工原理物料衡算和热量衡算引言化工工程涉及许多物料的处理和转化过程,同时也需要考虑热量的平衡。
物料衡算和热量衡算是化工原理的重要内容,对于工程实践和过程优化具有重要的意义。
本文将介绍化工原理中的物料衡算和热量衡算的基本原理和计算方法。
物料衡算物料衡算是指对于化工工程中物料流动和转化过程的计算和分析。
在化工工程中,物料的流动和转化是实现各种反应和分离操作的基础,因此正确的物料衡算是保证工程设计和操作的关键。
在物料衡算中,我们通常需要考虑以下几个方面: 1. 物料的质量衡算:即对物料的质量输入和输出进行计算和分析。
对于物料的质量衡算,我们需要注意物料流动的平衡原则,即质量的输入必须等于输出。
2. 物料的能量衡算:即对物料的能量输入和输出进行计算和分析。
能量的输入和输出会影响物料的温度和相变过程,因此在能量衡算中需要考虑物料的热力学性质。
3. 物料的流动速度衡算:即对物料流动速度进行计算和分析。
物料的流动速度决定了反应和分离操作的效率,因此在物料衡算中需要合理地确定流量和速度的关系。
4. 物料的浓度衡算:即对物料中组分浓度的计算和分析。
物料的浓度会影响其反应和分离的速率和效果,因此在物料衡算中需要考虑不同组分浓度的变化规律。
物料衡算通常使用质量守恒和能量守恒等基本原理进行计算。
同时,还可以利用化学反应平衡的原理和质量流动的平衡原则进行衡算过程中的参数确定。
热量衡算热量衡算是化工工程中热力学过程的计算和分析。
在化工工程中,热量的平衡是保证反应和分离操作能够正常进行的基础。
热量衡算需要考虑以下几个方面: 1. 热量的输入和输出:即对于热量的输入和输出进行计算和分析。
在化工工程中,我们通常需要对热量的输入和输出进行平衡,以保证工程操作的稳定性。
2. 热量的传递和转化:即对于热量的传递和转化过程进行计算和分析。
热量的传递可以通过传导、对流和辐射等方式进行,因此在热量衡算中需要考虑传热方式的影响。
3. 热平衡的计算:即对于反应和分离过程中热量平衡的计算和分析。
化工生产过程物料衡算能量衡算介绍课件
化工生产过程的特点
01 连续性:化工生产过程通常为连续生产,以保证生产效 率和产品质量。
02 复杂性:化工生产过程涉及多种化学反应和物理变化, 过程复杂,需要精确控制。
03 安全性:化工生产过程涉及易燃、易爆、有毒等危险物质, 需要严格控制生产条件和操作流程,确保生产安全。
04 环保性:化工生产过程会产生废气、废水、废渣等污染物, 需要采取有效措施进行环保处理,降低对环境的影响。
物料衡算能量衡算在化工生产过程中的作用
物料衡算:计算物料的投入和产出,确保生产过程的物料平衡,提高生产效 率。
能量衡算:计算生产过程中的能量消耗和产出,优化生产工艺,降低能耗, 提高能源利用率。
物料衡算能量衡算相结合:综合考虑物料和能量的平衡,优化生产工艺,降 低生产成本,提高生产效益。
物料衡算能量衡算在化工生产过程中的应用:广泛应用于化工生产过程的设 计、优化和改进,提高生产过程的安全性、环保性和经济性。
物料衡算在质量管理中的应用:物料衡算可以帮助分析产品 质量情况,从而制定质量控制措施和优化质量管理。
能量衡算的概念
能量衡算是化工生产过程中对能量 进行计算和分析的方法
能量衡算的目的是为了优化生产过 程,提高能源利用效率
能量衡算主要包括热能、机械能、 电能等能量的计算和分析
能量衡算可以帮助企业降低生产成 本,减少能源消耗,提高生产效率
视觉效果:运用色彩、图片、动画等元素,提高课 件的视觉效果和吸引力
互动设计:设置提问、讨论、练习等互动环节,提 高学员的参与度和学习效果
课件制作工具:选择合适的课件制作工具,如 PowerPoint、Keynote等,提高制作效率和质量
能量衡算的应用
优化生产工艺:通过能量衡 算,可以优化生产工艺,提 高生产效率
化工设计第3章物料衡算与能量衡算
化工设计第3章物料衡算与能量衡算在化工设计中,物料衡算与能量衡算是非常重要的步骤。
物料衡算主要是指对化工过程中所使用的各种原材料的进出量进行计算,能够帮助工程师了解原料的使用情况,为后续的工艺设计提供依据。
而能量衡算则是对化工过程中的能量转化进行计算,可以获得能量消耗和产生的数据,有助于优化能源利用,提高生产效益。
物料衡算的主要步骤包括:确定物料流程图、编制原料清单、计算物料进出量和考虑损失。
首先,需要根据工艺流程确定物料的流向,画出物料流程图,明确物料的进出口。
然后,根据物料流程图编制原料清单,列出每种原料及其使用量。
接下来,根据反应方程式和化学平衡计算物料的进出量。
最后,要考虑到物料的损失情况,例如挥发、流失和反应损失等,并对损失量进行合理估计。
能量衡算的主要步骤包括:确定能量流程图、计算能量损失和能量转化。
首先,需要根据工艺流程确定能量的流向,画出能量流程图,明确能量的进出口。
然后,根据各个过程单元的热平衡计算能量的损失,例如由于传热而损失的热量。
接着,需要计算能量的转化,例如燃料的燃烧、蒸汽的产生等。
最后,通过能量衡算可以得到能量的消耗和产生数据,为能源优化提供依据。
物料衡算和能量衡算的结果可以互相影响。
例如,在物料衡算中,如果其中一种原料的进出量大幅增加,会导致能量的消耗也增加。
而在能量衡算中,如果能源的利用率提高,能够减少原料的消耗。
因此,在进行物料衡算和能量衡算时,需要综合考虑两者的关系,以达到优化生产效益的目的。
总之,物料衡算和能量衡算是化工设计过程中非常重要的环节。
通过对物料和能量的计算和衡算,可以获得关键数据,为后续的工艺设计和能源优化提供依据,提高生产效益,降低成本。
因此,对于化工工程师来说,掌握物料衡算和能量衡算的方法和技巧非常重要。
Aspen 物料衡算与能量衡算
南 京 工 业 大 学 包 宗 宏
6/40
(5)画出工艺流程示意图。着重考虑物流热流的流向,对设 备的外形、尺寸、比例等并不严格要求,与物料、能量衡算有 关内容必须无一遗漏,所有物流热流管线均须画出。
2.1.3 衡算的基本步骤 (6) 根据工艺流程图抽象出模拟流程。要充分理解基本工艺 路线,明ห้องสมุดไป่ตู้本流程的主干与枝干,选择软件中合适的模块、或 模块组合构成软件模拟流程,以反映流程的模拟需求。 (7)校核计算结果。当计算全部完成后,对计算结果进行整 理,编制物料热量平衡表或绘制物料流程图。通过物料热量平 衡表可以直接检查计算是否准确,分析结果组成是否合理,并 易于发现存在问题,从而判断其合理性,提出改进方案。
工 业 大 学
对于含电解质的过程,要考虑可能存在的离子反应,借助于软 件中的电解质向导,确认体系中的真实组分、表观组分、结晶 包 宗 化合物。
宏
16/40
2.1.4 用软件进行物料衡算与能量衡算的要点 (4)熟悉模块功能及其计算方法。软件中的模块本质上是计算 方法的图形显示,有的一个模块仅对应一种算法,有的一个模 块可包含几种算法,可根据运算操作者意愿选择运行。熟悉软 件的模块功能,可快速正确地建立起物料衡算的模拟流程。
化工设计物料衡算与能量衡算
化工设计物料衡算与能量衡算1. 引言在化工工程领域,进行物料衡算和能量衡算是设计过程中必不可少的一部分。
物料衡算和能量衡算的准确性对于化工工程的安全运行和高效生产至关重要。
本文将介绍化工设计中的物料衡算和能量衡算的基本原理和方法。
2. 物料衡算2.1 物料平衡原理物料平衡是化工设计中的一项基本工作,它基于质量守恒定律和能量守恒定律。
物料平衡的目的是确定进料、出料和中间流程中物料的流量和组成。
物料平衡的计算可以用以下公式表示:$$ \\text{进料量} = \\text{出料量} + \\sum\\text{反应物料量} + \\sum \\text{中间流程物料量} $$2.2 物料平衡计算步骤进行物料平衡计算时,需要按照以下步骤进行:1.确定系统边界:将化工系统划分为进料、出料和中间流程三个部分,并确定它们之间的物料流动关系。
2.收集物料数据:收集进料和出料的物料流量和组成数据,以及反应物料和中间流程物料的数据。
3.建立物料平衡方程:根据物料平衡原理,建立物料平衡方程。
4.解方程:根据已知数据和已建立的物料平衡方程,解方程求解未知量。
5.检查计算结果:检查计算结果是否符合物料平衡原理,如有差异则进一步分析和调整。
2.3 物料平衡实例分析下面以酯化反应过程为例,进行物料平衡计算。
2.3.1 系统边界划分将酯化反应系统划分为进料、出料和中间流程三部分。
进料包括酸和醇,出料为酯。
中间流程包括未反应的酸和醇。
2.3.2 物料数据收集收集进料和出料的物料流量和组成数据,以及反应物料和中间流程物料的数据。
假设进料中的酸的流量为100 kg/h,醇的流量为50 kg/h,反应物料中未反应的酸的流量为10 kg/h,未反应的醇的流量为5 kg/h。
2.3.3 建立物料平衡方程根据物料平衡原理,建立物料平衡方程。
酸的平衡方程:100 kg/h = 10 kg/h + 出料量醇的平衡方程:50 kg/h = 5 kg/h + 出料量2.3.4 解方程根据已知数据和已建立的物料平衡方程,解方程求解未知量。
化工中的物料衡算和能量衡算
化工中的物料衡算和能量衡算化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反”即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡算。
正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程学科的特点。
为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。
物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的基础。
一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。
绘制流程图时应注意:1.用简洁的长方形来表达一个单元,不必画蛇添足;2.每一条物质流线代表一个真实的流质流动情况;3.区别开放与封闭的物质流4.区别连续操作与分批操作(间歇生产)5.不必将太复杂的资料写在物质流线上确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。
合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种:1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。
2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb等。
3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。
4.干湿基准:水分算在内和不算在内是有区别的,惯例如下:烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基;奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。
化肥、农药常指湿基,而硝酸、盐酸等则指干基。
选取基准后,就要确定着眼物料了。
通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。
物料衡算和能量衡算概述
物料衡算和能量衡算概述物料衡算和能量衡算是工程和科学领域中常用的方法,用于描述和研究物质和能量的流动。
物料衡算关注物质的进出和转化过程,而能量衡算关注能量的转化和利用情况。
本文将对物料衡算和能量衡算进行概述,并介绍其在不同领域中的应用。
1. 物料衡算物料衡算是对物质的进出和转化过程进行量化和分析的方法。
它主要基于质量守恒定律,即不可创造或破坏物质。
物料衡算通常涉及以下几个方面的内容:1.1 进料和出料物料衡算中的进料和出料是指物质从系统的外部进入或离开系统的过程。
进料和出料可以是固体、液体或气体,可以通过不同的方式进行,如输送带、管道或容器。
衡算这些进料和出料的数量和质量可以帮助我们了解物质的流动情况和系统的整体效率。
1.2 转化和反应物料衡算还涉及物质的转化和反应过程。
在这些过程中,我们可以追踪和量化物质的变化,以及转化或生成的产物。
这对于研究化学反应、工艺过程和生态系统中的物质转化至关重要。
物料衡算可以帮助我们优化转化过程,提高反应效率,并监测环境中的物质循环。
1.3 混合和分离物料衡算还涉及物质的混合和分离过程。
在这些过程中,不同组分的物质可以混合在一起,或者通过特定的方法进行分离。
衡算混合物和分离物的组分和比例可以帮助我们优化混合和分离过程,并控制产品的质量和纯度。
1.4 废物和排放物料衡算还关注废物和排放物的产生和处理。
在生产和工艺过程中,废物和排放物可能对环境造成负面影响。
通过衡算废物和排放物的产生量和组分,我们可以找到减少和处理这些废物的方法,以减少对环境的影响。
2. 能量衡算能量衡算是对能量的转化和利用过程进行量化和分析的方法。
它基于能量守恒定律,即能量既不能创造也不能破坏,只能从一种形式转化为另一种形式。
能量衡算通常涉及以下几个方面的内容:2.1 能量流动能量衡算关注能量的流动。
能量可以通过传导、传热、传质和传动等方式在系统中传递和转移。
衡算能量流动的路径、速度和效率可以帮助我们了解能量转化的过程和系统的能量利用效率。
化工生产过程物料衡算和能量衡算
化工生产过程物料衡算和能量衡算一、物料衡算物料衡算主要是对物料在生产过程中的流动进行定量分析和计算。
它包括物料的进出口流量、过程中的转化和损失等方面。
物料衡算的目的是确定物料的流动情况,以控制和优化生产过程。
物料衡算通常涉及以下几个方面:1.原料的输入和产物的输出:从化工生产过程的角度来看,物料衡算的第一步是确定原料的输入和产物的输出。
这可以通过物料的质量或体积以及流量来衡量。
2.过程中的转化:化工生产过程中,原料经过一系列的化学反应、物理过程和分离步骤,转化成所需的产物。
物料衡算需要确定过程中每个反应、过程或分离步骤涉及的物料流量和转化率,以及产物的纯度和收率。
3.丢失与损耗:化工生产过程中常常存在物料的丢失和损耗,如挥发、固体颗粒的落地损失等。
物料衡算需要考虑这些损耗,并尽量减少它们的发生。
物料衡算的重要性在于通过对物料流动的定量分析,可以帮助工程师了解和控制生产过程中的物料转化、损耗和产物生成情况,从而优化生产过程。
二、能量衡算能量衡算是对化工生产过程中能量转换的定量分析和计算。
它涉及到能源的输入与输出以及能量的转化。
能量衡算可用于改善能源效率,减少能源消耗和废弃物的排放。
能量衡算主要包括以下几个方面:1.能源输入:能源是化工生产过程中的重要驱动力之一,常见的能源包括电能、燃料、蒸汽等。
能量衡算需要确定能源的类型、质量或热值、消耗量和运用效率。
2.能量转化:化工生产过程中会发生能量的转化,如化学反应产生的热能、电能转化为机械能等。
能量衡算需要考虑这些能量转化过程,并计算能量的转化率和损耗。
3.能源的输出:化工生产过程中也会有能源的输出,如废热、废气、废水等。
能量衡算需要确定这些能源输出的类型、质量或热值、排放量以及处理方式。
能量衡算的目的是优化能源的利用,提高能源效率,减少能源消耗和环境污染。
通过定量分析和计算能量流动,能量衡算可以帮助工程师了解和控制能源输入与输出,寻找能源转化和能耗的瓶颈,提出改进方案,提高生产过程的能量利用率。
化工中物料衡算和热量衡算公式
物料衡算和热量衡算物料衡算根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。
通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。
物料衡算的基础物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑G1=∑G2+∑G3+∑G4∑G2:——输人物料量总和;∑G3:——输出物料量总和;∑G4:——物料损失量总和;∑G5:——物料积累量总和。
当系统内物料积累量为零时,上式可以写成:∑G1=∑G2+∑G3物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准(1)对于间歇式操作的过程,常采用一批原料为基准进行计算。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。
又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。
生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。
通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。
热量衡算的基础热量衡算按能量守恒定律“在无轴功条件下,进入系统的热量与离开热量应该平衡”,在实际中对传热设备的衡算可由下式表示Q1+Q2+Q3=Q4+Q5+Q6(1—1)式中: Q1—所处理的物料带入设备总的热量,KJ;Q2—加热剂或冷却剂与设备和物料传递的热量(符号规定加热剂加入热量为“+”,冷却剂吸收热量为“-”),KJ;Q3—过程的热效率,(符号规定过程放热为“+”;过程吸热为“-”)Q4—反应终了时物料的焓(输出反应器的物料的焓)Q5—设备部件所消耗的热量,KJ;Q6—设备向四周散失的热量,又称热损失,KJ;热量衡算的基准可与物料衡算相同,即对间歇生产可以以每日或每批处理物料基准。
化工设计——第三章物料衡算和能量衡算
化工设计——第三章物料衡算和能量衡算在化工设计中,物料衡算和能量衡算是非常重要的步骤,能够帮助工程师确定所需的原料量和能量消耗,从而确保工艺的正常运行和产出的质量。
本章将介绍物料衡算和能量衡算的基本概念、方法和步骤,并结合实例进行说明。
物料衡算是指根据化工反应方程式和反应条件,计算出反应过程中所需的原料量和生成物的产量。
在进行物料衡算时,首先需要了解反应方程式和反应条件,然后确定产物的理论产量和选择适当的反应条件。
根据反应方程式可以计算出反应物的摩尔比例,从而推算出所需的原料量。
此外,还需要考虑反应物的纯度和反应的完全度,从而计算出实际需求的原料量。
在进行能量衡算时,需要考虑到反应过程中的热平衡问题。
热平衡是指在反应过程中吸热和放热的平衡状况。
反应过程中发生的放热或吸热会对反应速率和反应的完全度产生影响。
因此,在进行能量衡算时,需要计算出反应过程中的放热或吸热量,以及确定采取何种措施来保持反应的温度稳定。
物料衡算和能量衡算的步骤如下:1.确定反应方程式和反应条件。
根据反应方程式可以了解到反应物与产物之间的摩尔比例关系,从而推算出所需的原料量。
同时,还需要确定反应的温度、压力和反应时间等条件。
2.计算理论产量。
根据反应方程式和摩尔比例关系,可以计算出理论产量。
理论产量是指在完全反应情况下,根据所需原料的量计算得出的产物的量。
3.考虑反应的完全度和反应物的纯度。
反应过程中可能会有一些副反应或未完全反应的情况发生,从而影响到实际产量。
同时,还需要考虑到原料的纯度,因为原料的纯度不同也会影响到实际需求的原料量。
4.计算出实际需求的原料量和实际产物的产量。
根据前面的步骤计算出实际需求的原料量和实际产物的产量,并与理论值进行比较。
5.进行能量衡算。
根据反应过程中的吸热或放热情况,计算出反应过程中的热量变化。
根据所需的反应温度和反应热量,选择适当的降温或加热措施,以保持反应的温度稳定。
在进行物料衡算和能量衡算时,需要注意以下几点:1.实验数据的准确性和可靠性。
物料衡算和能量衡算全解
组成 %(mol) kmol/h
CO2 28.56 285.1
CO H2 1.2 52.61 12.02 525.2
N2 17.05 170.2
CH4 0.575 5.74
合计 100 998.3
无化学反应的物料衡算
➢在化工过程中,一些只有物理变化,不发生化学反应的单元 操作,如混合、蒸馏、蒸发、干燥、吸收、结晶、萃取等。 这些过程都可以根据物料衡算式,列出总物料和各组分的衡 算式,再用代数法求解。
率,催化剂状态、用量、回收方法、安全性能等; ➢ 原料及产品的分离方式,分离剂的用量,各步的回收率; ➢ 特殊化学品的物性:沸点、熔点、饱和蒸汽压、闪点等。 (3) 工艺流程示意图。
二、物料衡算基准 物料衡算时须选择计算基准,并在计算过程中保持一致。 一般计算过程的基准有以下几种:
(1) 时间基准——对连续生产过程,常以单位时间(如d、h、s)的投料 量或产品量为计算基准。
例:甲醇氧化制甲醛,其反应过程为 CH3OH + 1/2O2 →HCHO + H2O
反应物及生成物均为气态。甲醇的转化率为75%,若使 用50%的过量空气,试计算反应后气体混合物的摩尔组 成。
解:画出流程示意图,如下图:
CH3 O空H气
催化反应器
(过量50%)
基准:1mol CH3OH
CH3OH + 1/2O2 →HCHO + H2O
物料衡算和能量衡算全解
4.1 物料衡算 4.2 能量衡算 4.3 化工模拟软件在化工设计中的应用
4.1 物料衡算 物料衡算—运用质量守恒定律,对化工过程或设备进行定量计算。
通过物料衡算解决以下问题: ➢ 计算原料消耗量、副产品量; ➢ 输出过程物料的损耗量及三废的生成量; ➢ 在物料衡算基础上做能量衡算,计算蒸汽、水、电、煤或其他燃料
第四章物料衡算和能量衡算
能量输入速率-能量输出速率=能量积累速率
连续稳定流动过程的总能量衡算方程为: U g z1 u2 (p)v Q W 2
Hgz1 2u2QW s
3. 热量衡算式及说明
⑴ 热量衡算式
在反应器、蒸馏塔、蒸发器、换热器等化工设备中,W、Ek、
设计化工单元操作:闪蒸罐,间歇精馏器,蒸馏器,液-液抽提精馏 器,侧线塔,压缩机,结晶器,旋流器,减压设备,溶解器,膨胀机, 闪蒸,带有固体的闪蒸,LNG多股流换热器,精确核算型换热器, 简单换热器,严格空冷器模型,加热/冷却曲线,混合器,相包络, 管道,聚合物反应器,泵,回流泵,阀,刮膜式蒸发器,平衡反应器, 转换反应器,吉布斯反应器,塞流反应器,平推流反应器,全混流反 应器, 间歇式反应器,固态颗粒分离器,分裂器,单变量控制器, 多变量的控制器,物流计算器,流程优化器,过程数据,用户自定义 操作单元,(电解质模块,SIMSCI外接的模块)等。 用户扩展功能:用户自定义物流属性包;增加用户组份数据;增加热 力学计算方法;增加自定义操作单元模块120个;增加自定义计算模 型7个;增加自定义电解质模型20个等。 分析工具:工况研究、优化器、单相变量控制器、多相变量控制器、 加热/冷却曲线等。
目前用的较多的化工流程模拟计算软件有PRO/II、HYSYS、 ASPEN PLUS等。
PRO/II 流程模拟软件 PRO/II 由美国模拟科学(SIMSCI)公司研发提供的。是目前石
油化工行业最全面的流程模拟软件,已被广泛地应用于化学过程的严 格的质量和能量平衡。
西安石油大学2006年也购买了该软件,20个用户终端。 PRO/II流程模拟软件功能特点
化工设计
第四章 物料衡算与能量衡算 Chart4 materiel balance and energy balance
Aspen 物料衡算与能量衡算(教学材料)
2.1.4 用软件进行物料衡算与能量衡算的要点
(2) 选择合适的物性计算方法。ASPEN PLUS软件把模拟计 算一个流程所需要的热力学性质与传递性质的计算方法与计算 模型都组合在一起,称之为性质方法,每种性质方法以其中主 要的热力学模型冠名,软件中共有80多种性质方法供操作者选 择使用。针对不同的模拟体系,选择合适的性质方法用于模拟 过程是获得正确计算结果的前提。
Case Study - Acetone Recovery
Correct choice of physical property models and accurate physical property parameters are essential for obtaining accurate simulation results.
包
Approach State Approach Model Approach
宗 宏
Predicted number of stages
11
7
42
required
专业课件
Approximate cost in dollars 520,000
2.1 衡算方法
2.1.1基本概念 物料平衡的理论依据是质量守恒定律,即在一个孤立体系中
不论物质发生任何变化(不包括核反应)它的质量始终保持不变。
在化工过程中,能量衡算是根据能量守恒定律,利用能量传
递和转化的规则,以确定能量比例和能量转变定量关系的过程。
能量衡算的理论依据是热力学第一定律,即体系的能量总变化
南 (ΔE)等于体系所吸收的热减去环境对体系所做的功。
京
工
业 大
简单化工操作单元的能量衡算可以手工进行,复杂化工流程的
年产25万吨苯乙烯项目.物料衡算及能量衡算表
年产25万吨苯乙烯项目物料衡算及能量衡算目录1.物料衡算 (1)1.1总述 (1)2.分工段物料衡算 (1)2.1轻烃裂解与吸收工段物料衡算 (1)2.2烷基化制乙苯工段物料衡算 (3)2.3乙苯脱氢与精制工段物料衡算 (4)3.主要设备的物料衡算 (5)3.1裂解炉系统物料衡算 (5)3.2催化精馏塔T-401物料衡算 (6)3.3三段绝热式固定床反应器物料衡算 (7)3.4苯乙烯粗馏塔物料衡算 (8)4.能量衡算 (9)4.1.总述 (9)4.2.能量衡算表 (9)4.2.1轻烃裂解与吸收工段能量衡算 (9)4.2.1.1裂解炉能量衡算 (9)4.2.2烷基化制乙苯工段能量衡算 (12)4.2.3乙苯脱氢与精制工段能量衡算 (17)4.2.4典型换热器(急冷换热器)能量衡算 (21)4.2.5典型泵(P-602)能量衡算 (21)4.2.6总结 (22)1.物料衡算1.1总述从原料入厂到产品输出,苯乙烯生产工艺流程分为三大工段:轻烃裂解与吸收工段,烷基化制乙苯工段和乙苯脱氢与精制工段。
物料衡算以Aspen Plus模拟的结果为依据进行计算。
项目的全流程模拟图如图5-1所示:图1-1项目全流程模拟图2.分工段物料衡算2.1轻烃裂解与吸收工段物料衡算轻烃裂解与吸收工段可以分为裂解炉、预分馏和气体精制三大部分,属于原料的处理与精制工段,该工段的流程模拟如图2-1所示:轻烃裂解与吸收工段烷基化制乙苯工段乙苯脱氢与精制工段图2-1轻烃裂解与吸收工段模拟流程图轻烃裂解与吸收工段的物料平衡表如表5-2所示:2.2烷基化制乙苯工段物料衡算烷基化制乙苯工段流程模拟如图5-3所示:图2-2烷基化制乙苯工段模拟流程图烷基化制乙苯工段流程模拟如表5-3所示:2.3乙苯脱氢与精制工段物料衡算乙苯脱氢与精制工段流程模拟如图5-4所示:图2-3乙苯脱氢与精制工段模拟流程图乙苯脱氢与精制工段流程模拟如表5-3所示:3.主要设备的物料衡算3.1裂解炉系统物料衡算图3-1裂解炉系统流程模拟图裂解炉系统物料衡算表如下:3.2催化精馏塔T-401物料衡算图3-2催化精馏塔模拟图催化精馏塔物料衡算表如下:。
化工生产过程物料衡算和能量衡算
其中:对硝基乙苯 1999.9×0.5=1000kg
邻硝基乙苯
1999.9×0.44=880kg
间硝基乙苯
1999.9×0.06=120kg
废酸量
其中: 已反应硝酸
1404.6 63 833.5kg 106.17
生成水
1404.6 18 238.1kg 106.17
剩余硝酸 891.9-833.5=58.4kg
CH4,0.25kmol/h H2O(g),1.50 kmol/h CO,0.50 kmol/h
CO2,0.25 kmol/h H2,2.5 kmol/h
2.确定基准 以25℃为基准温度。
3.列出能量衡算方程 假设系统保温良好,Q损=0,根据题意,转化过程中需
向转化器提供的热量为: Q=△H
其中△H=∑Hi出-∑Hi入 Hi=ni△HFiθ+ niCP25-500△t= ni (△HFiθ+ CP25-500△t)
4.查取手册得到有关热力学数据
各组分的标准生成焓△HFiθ和25~500℃间的平均 摩尔定压热容CP,m见下表:
组分 △HFθ/(kJ·kmol) CP,m/(kJ·kmol·℃-1) △t/℃ △HFiθ+ CP25-500△t/(kJ·kmol)
CH4
-74.85×103
48.76
475
-51689
3.物料衡算
(1)碳元素平衡 nCH4入= nCO + nCO2 +nCH4出
即
1= nCO + nCO2 +0.25
nCO + nCO2=0.75
(1)
(2)氧元素平衡 nH2O入= nCO + 2nCO2 +nH2O出
Aspen 第六讲
第六讲RadFrac模型(精馏与吸收)RadFrac模块可以同时进行物料衡算、能量衡算和相平衡的关系计算,采用逐板计算方法求解定塔设备,用于精确计算精馏塔和吸收塔的分离能力和设备参数。
一般先在DSTWU模型计算的基础上再用此模型进行计算。
即:DWTWU 模型主要用于设计,而RadFrac模型主要用于校核。
(一)RadFrac精馏分离模型RadFrac物流连接图如下:注意:当RadFrac用于精馏时:只需连接”Feeds”、”Liquid Distillate”、“Bottoms”这三股物流。
RadFrac模型(Block)具有以下设定表:1、配置(Configuration)(1)塔板数(Number of stages)一般由题目指定或先通过DSTWU计算得到。
(2)冷凝器类型(Condenser)(3)再沸器类型(Reboiler)(4) 操作设定(Operating specification)塔板数冷凝器类型再沸器类型有效相态收敛方法操作设定2、流股(Streams)3、压力(Pressure)4、冷凝器(Condenser)按照默认值设置即可。
进料塔板位置产物物流名称每股产物所在的塔板冷凝器压力塔压降例题:解:首先采用DSTWU模型进行回流比R,塔板数N T,以及进料塔板N F的确定,具体过程可参照“第五讲”讲义,运行结果如下:DSTWU Example 1Stream ID D FEED WTemperature C 81.9 20.0 92.9Pressure bar 0.180 1.200 0.200Vapor Frac 0.000 0.000 0.000Mole Flow kmol/hr 2.827 9.547 6.720Mass Flow kg/hr 300.100 1000.000 699.900Volume Flow cum/hr 0.368 1.140 0.856Enthalpy MMkcal/hr -0.001 0.155 0.186Mass Flow kg/hrE-BEN 299.400 300.000 0.600STYRENE 0.700 700.000 699.300Mass FracE-BEN 0.998 0.300 857 PPMSTYRENE 0.002 0.700 0.999Mole Flow kmol/hrE-BEN 2.820 2.826 0.006STYRENE 0.007 6.721 6.714Mole FracE-BEN 0.998 0.296 841 PPMSTYRENE 0.002 0.704 0.999然后再用RadFrac 精馏分离模型进行校核。
Aspen物料衡算与能量衡算
南 京 工 业 大 学 包 宗 宏
7/40
2.1.4 用软件进行物料衡算与能量衡算的要点 <1> 选择合适的因次模板.因次模板是ASPEN PLUS软件为不 同工艺过程编制的因次集,分为普通模拟过程与石油加工过程两 大类,每大类又含有若干套,每套都包含英制与公制两种因次集, 如表2-1.
几乎所有的单元操作模型都需要热力学性质与传递性质的计算,
南 京
其中主要有逸度系数、相平衡常数、焓、熵、Gibbs自由能、
工 业
密度、粘度、导热系数、扩散系数、表面张力等.
大
学
包 没有任何一个热力学模型与传递模型能适用于所有的物系和所
宗 宏
有的过程.因此,性质方法的恰当选择和正确使用决定着计算结
果的准确性、可靠性和模拟成功与否.
均用缩略语表示,很难记忆.在编制物料平衡表时,需要同时列出
南 京
各物流的物性,这就要向软件提出输出特定物性数据的要求,若
工 业
能熟悉软件常用物性术语的缩写方式,则可方便地输出物流的物
大 学
性.
包 宗 宏
17/40
2.1.4 用每软个数件据进包文行件物对模料拟衡体系算的与组分能、量工艺衡条算件、的要点 <6>尽量使用软物 热性 力件方 学自法 基已础带经数的确据定,部过,分尤程还其包是数含包据了含动了包力针.在学对数该软据体件系. 的安装目录中,有一 个"GUI"文件夹,包含了多个软件模拟计算例题的子文件夹.
物料衡算与能量衡算
第四十三页,共135页。
第四十四页,共135页。
4.6 利用联系物料作物料衡算
“联系组分”是指随物料输入体系,但完全不参加 反应,又随物料从体系输出的组分,在整个反应过
程中,它的数量不变(惰性组分)。 如果体系中存在联系组分,那么输入物料和输
出物料之间就可以根据联系组分的含量进行关 联。 用联系组分作衡算,尤其是对含未知量较多的 物料衡算,可以使计算简化。
原料气(干基)与水蒸汽之比为1:2 F3=2(F1 + F2)
将H2和CO平衡式相加,消去r,得: F2=234 - 20=214mol/h
将F2值代入CO平衡式中,得: r=20 + 107=127mol/h F3=2×(100 + 214)=628mol/h
最后,由CO2和H2O平衡得: F5,CO2=129mol/h;F5,H2O=628-127=501mol/h
第七十一页,共135页。
➢ (2)计算反应器1的反应速率,然后计算物流4的组成
由反应速率的定义式得:
r=
=
式中 为IF物i,质输出的转F化i,输率入。/ 此得反应器1的反应速率:
r=
=0.8[0.2×100 + 0.5×214] =101.6mol/h
诸如流体输送、粉碎、换热、混合、分离(吸收、
精馏、萃取、结晶、过滤、干燥)等。
第二十一页,共135页。
这种过程的物料衡算比较简单,在物料流程简
图中,设备边界就是衡算体系边界。
对有多个设备的过程,进行物料衡算时,可以
划分多个衡算体系。此时,必须选择恰当的衡算体系,
这是很重要的步骤。不然会使计算繁琐,甚至无法求
第八页,共135页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)确定计算任务。根据工艺流程示意图和化学反应方程式, 分析物流热流经过每一过程、每一设备在数量、组成、及物流 热流走向所发生的变化。
南
京 工
(5)画出工艺流程示意图。着重考虑物流热流的流向,对设
业 大
备的外形、尺寸、比例等并不严格要求,与物料、能量衡算有
学 关内容必须无一遗漏,所有物流热流管线均须画出。
学 件中的电解质向导,确认体系中的真实组分、表观组分、结晶
包 宗
化合物。
宏
16/40
2.1.4 用软件进行物料衡算与能量衡算的要点
(4)熟悉模块功能及其计算方法。软件中的模块本质上是计算 方法的图形显示,有的一个模块仅对应一种算法,有的一个模 块可包含几种算法,可根据运算操作者意愿选择运行。熟悉软 件的模块功能,可快速正确地建立起物料衡算的模拟流程。
醛醛醛醛
酮酮 酮酮
酯酯酯
酮酮酮酮
酯酯酯
醇醇醇醇
二二醇二醇二醇醇
水水水水
11
含极性物质
PR, LK-PLOCK,
PR-BM, PKS, RKSBM及其衍生方程
模拟 体系
南
京
不含极性物质
工
业
大
学
包 宗 宏
全是真实组分
CHAO-SEA, GRAYSON, BK10
P>0.1MPa
含虚拟组分 真空
BK10, IDEAL
(5)了解软件对物性术语的缩写。ASPEN PLUS是全英文软
件,操作界面上的指令都用英文全名表示,易于理解。但物流
的物性均用缩略语表示,很难记忆。在编制物料平衡表时,需
南 京
要同时列出各物流的物性,这就要向软件提出输出特定物性数
工 业
据的要求,若能熟悉软件常用物性术语的缩写方式,则可方便
大 学
地输出物流的物性。
大 学
算比较方便。当系统介质为固体或液体时,一般以质量为计算
包 基准,对气体物料进行计算时,一般选体积作为计算基准。
宗
宏
5/40
2.1.3 衡算的基本步骤
(3)确定化学反应方程式。列出各个过程的主、副化学反应 方程式,明确反应和变化前后的物料组成及各个组分之间的定 量关系,若计算反应器大小,还需要掌握反应动力学数据。
结果是否正确,不能指望模拟软件提供结论, 而应依靠自己的 判断。判断的基础是运算操作者对模拟过程的细致了解、化工 专业知识的深刻领会、模拟过程工业背景的熟悉程度、工业装 置的现场操作数据等综合评价。
南 京 工 业 大 学 包 宗 宏
19/40
2.2 简单物理过程
2.2.1 混合过程 多股物料的混合与一股物料分流成多股物料是化工生产中 常见的操作,其物料衡算可以用ASPEN PLUS 中的混合器与 分流器进行模拟。
含-HOC的衍生 活度系数方程
WILS, NRTL, UNIQUAC
及其衍生方程 P<1MPa
有二元 交互作 用参数
液液 平衡
汽液 平衡
WILS-HF
六聚 有汽相
缔合
二聚 无汽相 缔合
南
京
工
业 大
含极性
学 物质
包 宗 宏
不含 电解质
含电 解质
UNIF-NTH, UNIF-HOC
无二元 交互作 用参数
对于电解质过程,数据包文件中包含了体系中的全部分子组分与离
子组分,各级电离过程的反应方程式、化学反应平衡常数与各离子
“App”文件夹:对对的二各元种交互化作工用参过数程。以完软整件自模带拟的“的.b文kp”件数;据包文件作为 模拟计算的起点,可以免除物性方法选择、反应方程式输入等步骤,
直接进行流程绘制与物流输入,模拟计算结果正确的可能性要大得
9/40
Case Study - Acetone Recovery
Correct choice of physical property models and accurate physical property parameters are essential for obtaining accurate simulation results.
OVHD
FEED
COLUMN
5000 lbmol/hr
10 mole % acetone
90 mole % water
BTMS
南
京 工
Specification: 99.5 mole % acetone recovery
业
大 学
Ideal
Equation of
Activity Coefficient
化工计算与软件应用
第二章 物料衡算与能量衡算
1
物料衡算是化工生产过程中,用以确定物料比例和物料转 变定量关系的计算过程,这是化工工艺计算中最基本、最重 要的内容之一。
物料衡算的结果也是能量衡算的依据,掌握物料带入或带 出体系的能量多少,以计算化工过程需要提供或移除的热量, 控制能量的供给速率和放热速率,进—步算出物质之间交换 的热量以及整个过程的热量分布情况。
8/40
2.1.4 用软件进行物料衡算与能量衡算的要点
(2) 选择合适的物性计算方法。ASPEN PLUS软件把模拟计 算一个流程所需要的热力学性质与传递性质的计算方法与计算 模型都组合在一起,称之为性质方法,每种性质方法以其中主 要的热力学模型冠名,软件中共有80多种性质方法供操作者选 择使用。针对不同的模拟体系,选择合适的性质方法用于模拟 过程是获得正确计算结果的前提。
P<1MPa
SR-POLAR,
PRWS, RKSWS 及其衍生方程
南
京
工 业
模拟
大 学
体系
包 宗 宏
不含电解质 含极性物质
含电解质
P>1MPa
有二元交互 作用参数
无二元交互 作用参数
不含极性物质
ELECNRTL, PITZER 及其衍生方程
PSRK, PR, RKS 及其衍生方程
NRTL, UNIQUAC 及其衍生方程
包 宗 宏
17/40
2.1.4 用每软个数件据进包文行件物对模料拟衡体系算的与组分能、量工艺衡条算件、的要点 (6)尽量使用软物 的件热性力方自学法带已基经础的确数过定据,,程尤部数其分是还据包包包含含了了。针动在对力该学软体数件系据。安装目录中,有 一个“GUI”文件夹,包含了多个软件模拟计算例题的子文件 夹。
(2)选定计算基准。温度的因次可采用“℃”或“K”,压力 的因次可采用“kPa”、“atm” 或其它,压力基准可选用绝 对压力或表压。
物流量的计算基准可选质量基准、摩尔基准、体积基准。对
南 京
于连续生产,以“s、h、d”作为投料量或产品量的时间基准。
工 业
用模拟软件进行衡算时,以单位时间的投料量为起点进行计
包
Approach State Approach Model Approach
宗
宏 Predicted number of stages 11
7
42
required
Approximate cost in dollars 520,000
390,000
880,000
常见有机化合物极性增加顺序:
烃烃烃
醚 醚醚醚
南 (ΔE)等于体系所吸收的热减去环境对体系所做的功。
京
工
业 大
简单化工操作单元的能量衡算可以手工进行,复杂化工流程的
学 能量衡算手工计算非常困难,而任何情况下使用模拟软件进行
包 宗
化工过程的能量衡算都是很方便的。
宏
3/40
2.1.2 衡算方程式
化工工艺计算中的物料平衡是指“在单位时间内进入衡算系 统的全部物料质量,必定等于离开该系统的全部物料质量、加 上损失掉与积累起来的物料质量。”
在模拟计算起始向软件输入组分时,一定要把化学反应中可能 新生成的组分添加进去。
对于非数据库组分,可按照1.3节介绍的方法,将运行模式改成
“Property Estimation”,对非数据库组分的物性进行估算后,
南 京
再将软件运行模式改成
“Flowsheet”进行物料衡算。
工
业 大
对于含电解质的过程,要考虑可能存在的离子反应,借助于软
南 京 工 业 大 学 包 宗 宏
7/40
2.1.4 用软件进行物料衡算与能量衡算的要点 (1) 选择合适的因次模板。因次模板是ASPEN PLUS软件为 不同工艺过程编制的因次集,分为普通模拟过程与石油加工过 程两大类,每大类又含有若干套,每套都包含英制与公制两种 因次集,如表2-1。
南 京 工 业 大 学 包 宗 宏
因此,物料衡算与能量衡算是进行化工工艺设计、过
南 程经济评价、节能分析以及过程最优化的基础。
京
工
在用化工模拟软件进行流程的物料衡算与能量衡算时,
业
大 虽然可以大大提高计算的速率,但仍然需要遵守物料衡算与
学 包
能量衡算的基本规则,把规则应用于软件的操作之中,软件
宗 计算结果才可能合理与可行。
宏
2/40
“Asy”文件夹:多 的提。 组供如分果有原“少始.量bk的实p差”验异数,据数也包据可文以件,对中包数的据组含包分了文与件操全中作球的者组欲各分模地进拟行计原调算油整过。的程
南 实 沸点数据;
京
工
业 大
“Elecins”文件夹:综合过程数据包与电解质过程数据包,包
学 包
含93个电解质过程的“.bkp” 数据包文件;
P>1MPa
UNIFAC 及其衍生方程
液液 平衡
汽液 平衡
UNIFAC-LL
有汽相 缔合
无汽相 缔合