六年级数学-鸽巢问题
鸽巢问题的三个公式
鸽巢问题的三个公式
1、费马小定理:如果一个正整数a和正整数b及正整数n满足gcd (a,n)=1并且a^b =1 (mod n ),那么称满足该关系的三元组(a,b,n)为一个费马小定理。
2、鸽巢定理:假设n个相同的鸽子被丢入n个相同的鸽巢,那么存在必然存在某个鸽巢容纳至少两只鸽子。
3、贝祖定理:在满足费马小定理的情况下,若a^(b/2)=1(mod n),那么该关系称为贝祖定理,并且有a^b=1 (mod n)^2 成立。
费马小定理是一种数论中最古老、最重要的定理,由18世纪意大利数学家费马发现,属于完全平方定理中的一种。
它做出了结论:如果p 是大于零的奇素数,且a是整数,且两者的积不能被p整除,那么a的p次方与a的模p相等。
鸽巢定理又称鸽笼定理,也叫鸽笼原理或卡塔尔定理,是一种数学定理,它主要用于推论系统的存在性,它的陈述是:假设n个相同的鸽子被丢入n个相同的鸽巢,那么有必然会有某个鸽巢容纳至少两只鸽子,也就是,鸽子至少有一个巢里有两只或以上。
贝祖定理指出,如果a是一个整数,b是一个正整数,n是一个正奇数,满足费马小定理的关系,当且仅当a的b的二分之一的模n的等式为余数1时,该定理用于计算指数为奇数的费马定理,此时,a^b
=1(mod n2)成立。
如果指数为偶数,则不具有贝祖定理。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
小学六年级数学下册第五单元《鸽巢问题》知识重点、配套练习及答案
01鸽巢问题(1)鸽巣原理先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。
这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。
类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式。
②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)02第五单元练习及答案一.填空题(每空4分,共56分)。
1.一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出()个球才能保证有2个球的颜色相同。
2.抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿()枝才能才能保证至少有1枝蓝色铅笔。
3.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。
4.从()个抽屉中拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。
5.一个联欢会有100人参加,每个人在这个会上至少有一个朋友。
那么这100人中至少有()个人的朋友数目相同。
6.一个口袋里有四种大小相同颜色不同的小球。
每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸()次。
7.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取()颗。
小学数学鸽巢问题及参考答案
小学数学鸽巢问题及参考答案
1、六年级5月份出生的32名同学中,至少有2人是同一天出生的,为什么?
2、有25个小朋友乘4只小船游玩,至少有几个小朋友坐在同一只船里,为什么?
3、把若干练习本分给一个小组的8名同学,不管怎么分,至少有一名同学分的练习本不少于4本,那么至少有多少本练习本?
4、袋中有60粒大小相同的弹珠,每15粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出多少粒才行?
5、一个鱼缸里有四种花色的鱼,每种花色5条,从中任意捉鱼,至少要捉多少条鱼,才能保证有4条相同花色的鱼?
参考答案
1.点拨:5月份有31天,把这31天看做31个鸽巢,把32名学生看做32个物体,利用鸽巢原理,考虑不利情况即可解答.
【解答】5月份31天
32÷31=1(人)……1(人)
1+1=2(人)
答:至少有2人同一天出生。
2.点拨:因为25÷4=6……1,也就是说平均每只小船里至少坐6人,还剩1人,所以至少有7个小朋友坐在同一只船里。
【解答】25÷4=6(人)……1(人)
6+1=7(人)
答:至少有7个小朋友坐在同一只船里。
3.点拨:利用抽屉原理最差情况:要使练习本最少,只要先使每个同学分4-1=3本,再拿出1本就能满足至少有一名同学分得的练习本不少于4本
【解答】(4-1)×8+1=25(本)
答:至少有25本练习本。
4.解答】60÷15=4(种)所以一共有4种不同的颜色,
4+1=5(粒)
答:至少要取出5粒才行.
5.【解答】(4-1)×4+1=13(条)
答:至少要捉13条鱼才能保证有4条相同花色的鱼。
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)
第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
人教版六年级下数学数学广角——鸽巢问题
人教版六年级下数学数学广角——鸽巢问题第十二周数学广角——鸽巢问题鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用。
鸽巣原理的最简单表达形式是:物体个数÷鸽巣个数=商……余数,至少个数=商+1.举例来说,如果有3个苹果放在2个盒子里,共有四种不同的放法,但无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。
摸2个同色球的计算方法是:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1.另外,可以使用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
在填空题中,可以通过运用鸽巣原理来解决问题。
例如,鱼岳三小六年级有30名学生是二月份出生的,那么六年级至少有3名学生的生日是在二月份的同一天。
又如,有3个同学一起练投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了6个球。
把6只鸡放进5个鸡笼,至少有2只鸡要放进同1个鸡笼里。
某班有个小书架,40个同学可以任意借阅,小书架上至少要有14本书,才可以保证至少有1个同学能借到2本或2本以上的书。
在解决问题时,我们可以运用鸽巣原理来求解。
例如,六(1)班有50名同学,至少有6名同学是同一个月出生的。
书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书,一次至少要拿出4本书。
把16支铅笔最多放入3个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支。
在拓展应用中,我们可以通过鸽巣原理来解决更加复杂的问题。
例如,把27个球最多放在4个盒子里,可以保证至少有1个盒子里有7个球。
教师引导学生规范解答:2、假设先取5只,全是红的,不符合题意,要继续取;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。
人教版六年级下册数学第五单元《数学广角》鸽巢问题
人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
2024年人教版数学六年级下册第27课鸽巢问题说课稿3篇
人教版数学六年级下册第27课鸽巢问题说课稿3篇〖人教版数学六年级下册第27课鸽巢问题说课稿第【1】篇〗教学内容审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握说教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
六年级下册数学广角鸽巢问题
六年级下册数学广角鸽巢问题
# 一、鸽巢原理(抽屉原理)的基本概念
1. 定义
把多于公式个的物体放到公式个抽屉里,则至少有一个抽屉里的东西不少于两件。
例如:把公式个苹果放到公式个抽屉里,那么至少有一个抽屉里有公式个苹果。
2. 公式表示
如果物体数除以抽屉数有余数,那么至少有一个抽屉里的物体数等于商加上公式。
用字母表示为:物体数公式抽屉数公式(公式),至少数公式。
# 二、典型题目及解析
(一)简单的鸽巢问题
1. 题目
把公式本书放进公式个抽屉,不管怎么放,总有一个抽屉至少放进几本书?
2. 解析
首先计算公式,这里商是公式,余数是公式。
根据鸽巢原理,至少数公式。
也就是说,总有一个抽屉至少放进公式本书。
(二)求物体数的鸽巢问题
1. 题目
一个抽屉里放着若干个玻璃球,要保证有一个抽屉里至少有公式个玻璃球,那么玻璃球的总数至少有多少个?(这里假设抽屉数为公式个)
2. 解析
已知至少数是公式,抽屉数是公式。
根据公式至少数公式,可以推出公式。
那么物体数(玻璃球总数)至少为公式个。
(三)生活中的鸽巢问题
1. 题目
六(1)班有公式名学生,至少有几名学生的生日在同一个月?
2. 解析
一年有公式个月,相当于公式个抽屉,公式名学生相当于物体数。
公式,商是公式,余数是公式。
至少数公式。
所以至少有公式名学生的生日在同一个月。
第五单元数学广角--鸽巢问题(易错梳理)-六年级下册数学单元复习讲义人教版
数学广角—鸽巢问题知识盘点知识点1:鸽巢原理1、原理1:(n+1)只鸽子飞进n(n为整数,n≥2)个鸽巢,则必定有一个鸽巢里至少飞进2只鸽子。
2、原理2:把多于kn个物体任意分放进n个鸽巢中(k和n是非0自然数),那么一定有一个鸽巢里至少放进了(k+1)个物体知识点2:用鸽巢原理解决问题要保证摸出两个同色的球,至少摸出的球的数量要比颜色数多1。
易错集合易错点:运用鸽巢问题解决实际问题典例把16个苹果放进7个抽屉,总有一个抽屉里至少放了()个苹果;10只鸽子飞进4个巢,总有一个鸽巢至少飞进()只鸽子。
(个),即平均每个抽屉放2个苹果后,还余2个,余下的2个无论放到哪个抽屉,总有一个抽屉里至少会有2+1=3(个)苹果;10只鸽子飞进4个巢,10÷4=2(只)……2(只),即平均每个鸽巢飞进2只鸽子后,还有2只鸽子没有飞进,余下的2只无论飞进哪个鸽巢里,总有一个鸽巢至少飞进2+1=3(只)。
解答16÷7=2(个)……2(个),2+1=3(个);10÷4=2(只)……2(只),2+1=3(只)。
✨针对练习学校有数学、英语、美术、书法四个兴趣小组,每名学生最多参加两个兴趣小组(可以不参加),至少选多少名学生,才能保证有零名学生参加兴趣小组的情况完全相同?跟踪训练一、选择题1、某小学六年级有38名学生是四月份出生的,那么他们至少有()人生日在同一天。
A、8B、7C、3D、22、10个同学分到4个班,至少有一个班分到的学生人数不少于()人。
A、1B、2C、3D、43、一个盒子里装有黄、白乒乓球各5个,要想取出的乒乓球中一定有两个黄色的,则至少取()个。
A、3B、5C、6D、74、某班有男生25人,女生18人,下面说法正确的是()。
A、至少有2名男生是在用一个月出生的B、至少有2名女生是在同一个月出生的C、至少有5个人是在同一个月出生的D、以上选项都错误5、在学校科技比赛中,有31名同学报名参加了航模、海模和创意制作三个项目的比赛,总有一个项目至少有()名同学参加。
2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇
人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。
小学数学人教六年级下册数学广角鸽巢问题鸽
整数的性质在数学中有着广泛的 应用,尤其在解决一些涉及整除
和取余的问题时非常有用。
03 鸽巢问题解题方法
列举法
通过一一列举的方式,将每种可能的 情况都列出来,然后判断哪种情况符 合题目的要求。这种方法适用于问题 规模较小,可以穷举所有情况的问题 。
例如,有3只鸽子飞进2个鸽巢,列举 出所有可能的情况:第一个鸽巢1只 ,第二个鸽巢2只;第一个鸽巢2只, 第二个鸽巢1只;第一个鸽巢3只,第 二个鸽巢0只。由此可以得出至少有 一个鸽巢有2只或以上的鸽子。
04 鸽巢问题经典案例
物品分配问题
将多于n个物品放入n个容器,至少有一个容器包含两个或 以上的物品。
例如,将5个苹果放入4个盘子中,至少有一个盘子中会有 两个苹果。
鸽巢与信鸽问题
如果n个鸽子飞进n-1个鸽巢,那么至少有一个鸽巢中有两只鸽子。
类似地,如果有n封信要放入n-1个信箱,则至少有一个信箱中会有两封信。
05 鸽巢问题拓展与应用
拓展到多个抽屉情况
当有n个抽屉和m个鸽子(m>n)时 ,至少有一个抽屉里至少有⌈m/n⌉只 鸽子。
VS
如果每个抽屉里放k-1个鸽子,那么 最多可以放(k-1)n个鸽子,当第(k1)n+1个鸽子放入时,必然有一个抽 屉里至少有k个鸽子。
应用到实际生活中问题
生日悖论
在一个班级中,如果有23个或更 多的学生,那么至少有两个学生 同月同日出生的概率大于50%。
小学数学人教六年级下册数学广角 鸽巢问题鸽
目录
• 鸽巢问题简介 • 鸽巢问题基本原理 • 鸽巢问题解题方法 • 鸽巢问题经典案例 • 鸽巢问题拓展与应用 • 学生自主思考与探究
01 鸽巢问题简介
六年级下第五单元鸽巢问题
六年级下第五单元鸽巢问题在六年级下册的数学学习中,第五单元的鸽巢问题是一个有趣但又颇具挑战性的部分。
它看似简单,却蕴含着深刻的数学原理和逻辑思维。
什么是鸽巢问题呢?简单来说,就是把若干个物体放进有限个“抽屉”里,不管怎么放,总有一个抽屉里至少放进了几个物体。
比如,把4 支铅笔放进 3 个笔筒,不管怎么放,总有一个笔筒里至少有 2 支铅笔。
我们先来理解一下鸽巢原理的基本概念。
假设现在有 n 个物品要放进 m 个抽屉,如果 n÷m =a……b(其中 b 不为 0),那么至少有一个抽屉里面放了 a + 1 个物品。
这听起来可能有点抽象,让我们通过一些具体的例子来感受一下。
比如,有 5 只鸽子要飞进 3 个鸽巢。
我们先平均分配,每个鸽巢飞进 1 只鸽子,还剩下 2 只鸽子。
这 2 只鸽子无论飞进哪个鸽巢,都会使得其中至少有一个鸽巢里有 2 只鸽子。
再比如,把 7 本书放进 3 个抽屉。
先每个抽屉放 2 本,还剩下 1 本,这剩下的 1 本无论放进哪个抽屉,都会有一个抽屉至少有 3 本书。
那么,我们在解决鸽巢问题时,关键是要找出“物品”和“抽屉”分别是什么。
有时候,这并不是一目了然的,需要我们仔细分析题目条件。
比如说,在一个班级里,有30 名学生,老师至少要准备多少本书,才能保证至少有一个学生能拿到 2 本书?这里的“物品”就是书,“抽屉”就是学生。
我们先假设每个学生都拿到了 1 本书,那么 30 名学生就需要 30 本书。
再多准备 1 本书,就一定能保证至少有一个学生能拿到 2本书,所以老师至少要准备 31 本书。
又比如,从一副扑克牌(54 张)中至少抽出多少张牌,才能保证至少有 2 张牌是同一花色的?这里的“物品”就是抽出来的牌,“抽屉”就是4 种花色。
因为每种花色有 13 张牌,再加上大小王 2 张牌,一共 54 张牌。
如果我们先抽5 张牌,可能每种花色各 1 张,再抽 1 张,就一定能保证至少有 2 张牌是同一花色的,所以至少要抽出 5 + 1 = 6 张牌。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。
但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。
设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
教学准备:多媒体课件、微视频、合作探究作业纸。
教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。
你们信吗?2、验证:学生报出生月份。
根据所报的月份,统计13人中生日在同一个月的学生人数。
新人教版小学数学六年级下册第五单元《鸽巢问题》课件
那你能用这个 原理解释课前
的游戏吗?
解:
扑克牌有4种花色,看做4个“鸽巢”,5个人每 人抽一张,抽了5张,看做5只“鸽子”;问题就转 化为“5只鸽子飞入4个鸽巢,总有1个鸽巢飞入了2 只鸽子”。4只鸽子分别飞入4个鸽巢中,剩下的1只 飞入其中1个鸽巢,那么总有1个鸽巢飞入了2只鸽子。
闯关练习
1、5只鸽子飞进了3个笼子,总有1个 鸽笼至少飞进了( 2 )只鸽子。
2、1、小刚在玩投镖游戏,投了5镖,成绩 是41环,总有一镖至少中( 9 )环。
4、13名学生中,至少( 2 )人属相 一样。
闯关练习
5、任意给出3个不同的自然数,其中一定 有( 2 )个数的和是偶数。
先在每只笔筒里 放一支铅笔,剩 下的1支铅笔放进 其中一只笔筒, 所以至少有一只 笔筒中有2支铅笔。
把6支铅笔放进5个笔筒中,不管怎么放, 总有1个笔筒里至少有2支铅笔。对吗?
你发现了 什么?
M支铅笔放入M-1个 笔筒里,总有1个笔筒 至少放2支。
100支铅笔放入30个笔筒,总有一个笔筒 放几只?如果你认为铅笔的支数太多的话 那就从简单的入手。
数学广角 ——鸽巢问题
例一
把4支铅笔放进3个笔筒中,不管怎么放, 总有1个笔筒里至少有2支铅笔。
这两个词 是什么意
思呢?
“总有”指“一定有”的意思;“至少有2支” 指的是最少2支,也可能比2支多
方法一:试着摆一摆
0
0
0
0
把4分解成3个数
4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1
本课小结
1、把具体问题转化成“鸽巢问题”。 2、运用“鸽巢问题”解决实际问题。
完整)六年级数学鸽巢问题
完整)六年级数学鸽巢问题六年级数学下第十讲鸽巢问题一、知识点:鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式物体个数÷鸽巣个数=商……余数至少个数=商+1摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比色彩数多1.物体数=颜色数×(相同颜色数-1)+1②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
4卓着教诲六年级数学下二、例题讲解:1、课堂里有5逻辑学生正在造作业,本日只有数学、英语、语文、地理四科作业求证:这5逻辑学生中,至少有两个人在做统一科作业。
2、班上有50逻辑学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的色彩相同,则最少要取出多少个球?4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。
鸽巢问题经典例题10道
鸽巢问题经典例题10道鸽巢问题是一种组合数学中的经典问题,也被称为鸽笼原理。
它源于一个直观的问题:如果在一个有限的鸽巢中放入超过鸽巢数量的鸽子,必定会有至少一个鸽巢中放入了多只鸽子。
在具体的问题中,鸽子可以表示为对象,而鸽巢可以表示为容器。
鸽巢问题的核心思想是,如果将多个对象放入少量的容器中,那么必然会有其中某一个容器中放入了多个对象。
以下是鸽巢问题的经典例题及其解析:1. 有五个鸽巢,但有六只鸽子,证明至少有一个鸽巢有两只鸽子。
假设每个鸽巢最多只能放一只鸽子,那么最多只能放五只鸽子。
然而,我们有六只鸽子,所以至少有一个鸽巢有两只鸽子。
2. 在一群人中,证明至少有两个人生日相同。
假设有365天的一年中有365个鸽巢(代表每天),而有超过365人。
根据鸽巢原理,至少有一个鸽巢中有两个人,也就是至少有两个人生日相同。
3. 在一副标准的扑克牌中,证明至少有五张牌的花色相同。
一副标准扑克牌共有52张牌,而有四种花色(鸽巢)。
根据鸽巢原理,如果我们从这副牌中选择了五张牌,那么至少有两张牌的花色相同。
4. 在一群人中,证明至少有两人的朋友数量相同。
假设一群人中的每个人代表一个鸽子,而每个人的朋友数量代表一个鸽巢。
如果我们有超过鸽巢数量的人(鸽子),那么根据鸽巢原理,至少有两个人的朋友数量相同。
5. 在一个装有11个苹果和5个橙子的框中,证明至少有一个水果箱中有两种水果。
假设我们有两种鸽子,分别代表苹果和橙子,而水果箱代表鸽巢。
如果我们将这16个水果放入11个水果箱(鸽巢)中,根据鸽巢原理,至少有一个水果箱中有两种水果。
6. 在一个装有50个球的袋子中,有10个红球、20个蓝球和20个绿球。
证明至少要从袋子中取出几个球,才能确保至少有两个颜色相同的球。
假设我们将红球、蓝球和绿球分别看作三种鸽子,而袋子中的球看作鸽巢。
根据鸽巢原理,如果我们从袋子中取出多于三种鸽巢数量的球,那么至少有两个颜色相同的球。
因此,取出四个球即可确保至少有两个颜色相同的球。
部编版小学六年级数学下册-第五单元-第二课时-鸽巢问题的一般形式
5×(10-1)+1=46(枝) 答:花的总数至少应该有46枝。
人教版 数学 六年级 下册
这节课你们都学会了哪些知识?
鸽巢问题的一般形式:
把m个物体放入n个抽 屉里(m>n),如果 m÷n=k……b,那么 总有一个抽屉里放入 (k+1)个物体。
人教版 数学 六年级 下册
与同伴实践操作一下 验证你的想法吧!
人教版 数学 六年级 下册
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3
本书。为什么?
7
6
列举法 7
0
7
1
0
0
5
7
2
0
5
7
1
1
4
4
7
3
7
2
0
1
3
7
3
1
3
7
2
2
把7分解成3个数,共有8种情况,在任何一种情况中, 总有一个数不小于3。
人教版 数学 六年级 下册
“抽屉”,9个人每人抽1张牌,一共是9张牌。从最不利的情
况考虑,每个“抽屉”里放两张牌,一共是4×2=8张牌,那
么剩余的一张牌,无论放在四个“抽屉”中的哪个“抽屉”
里,都至少有3张牌是相同的花色。
人教版 数学 六年级 下册
六年级三班,有50人,每人至少订一份学习刊物,现有A、 B、C三种刊物,每人有几种选择方式?这个班订相同刊物 的至少有多少人?
10 ÷ 3 = 3(本) …… 1(本)
总本数 物体数
抽屉数 平均每个 抽屉放进 的本数
剩下的本数
剩下2本,任选 其中1个或2个 抽屉放进去。
人教版 数学 六年级 下册
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学-鸽巢问题(总5
页)
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
第十讲鸽巢问题
一、知识点:
狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。
类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式
物体个数÷鸽巣个数=商……余数至少个数=商+1
摸同色球计算方法:
①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(相同颜色数-1)+1
②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
二、例题讲解:
1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业
求证:这5名学生中,至少有两个人在做同一科作业。
2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。
5、证明:某班有52名学生,至少有5个人在同一个月出生
6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色?
7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理。
8、学校图书馆里科普读物、故事书、连环画三种图书。
每个学生从中任意借阅两本,那么至少要几个学生借阅才能保证其中一定有2人借阅的读书相同?
9、某班有学生49名,在这一次的英语期中考试中,除3人以外,分数都在85分以上,是否可以推断,至少有几人的分数会一样?
三、课堂练习
1、6只鸡放进5个鸡笼,至少有几只鸡要放进同一个鸡笼里。
2、400人中至少有两个人的生日相同,请证明。
3、红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出多少个,才能保证有6个小球是同色的。
4、有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。
你有三双分别为红、白、蓝颜色的袜子,可是你在黑暗中不能知道哪一双是颜色相同的。
你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。
这最少数目应该是多少?
5、某班有42人开展读书活动,他们从学校图书馆借了212本图书,那么其中至少有一人借多少本书
6、学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有几名学生是同年同月出生的。
四、家庭作业
1、今天参加数学竞赛的210名同学中至少有几名同学是同一个月出生的?
2、有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出个,才能保证有2个小球是同色的.
3、五年级某班有学员13人,请说明在这13名同学中一定有两个同学是同一星座。
4、盒子里放有三种不同颜色的筷子各若干根,最少摸几根,才能保证至少有3根筷子同色的。
5、在一间能容纳1500个座位的戏院里,证明如果戏院坐满人时,一定最少有五个观众是同月同日生。
6、在38个小朋友中,至少有几个小朋友同一个月出生的?。