过程控制及仪表实验指导书
过程控制实验指导书
过程控制实验指导书实验一:对象动态特性实验目的:1、学习被控对象动态特性的工程测试方法。
2、掌握被控对象动态特性特征参数的求取方法。
实验要求:1、预习被控对象有关章节;安排好实验计划;作好前期准备。
2、依据实验曲线求取被控对象动态特性的特征参数。
实验内容:1、对象的动态特性:下图为单位阶跃时输入系统输出测试曲线:曲线1.1实验报告:⑴依据曲线1.1、1.2和1.3 求取对象动态特性的特征参数(K 、T 、τ)。
由此确定闭环系统模型。
⑵ 分别确定系统开环传递函数,并分别画出单位负反馈时系统动态结构图。
⑶用SIMULINK 构建系统,比较仿真曲线与输出测试曲线。
⑷比较曲线1.1、1.2和1.3,说明不同系统的动态特性在运动形态、特征参数等方面的异同。
实验二:调节器控制规律实验目的:1、熟悉SIMULINK 调节器模块的使用方法。
2、掌握调节器控制规律特征参数的整定方法。
实验要求:1、预习调节器有关章节;安排好实验计划;作好前期准备。
2、用工程测试法绘制调节器的输出特性,求取PID 参数。
实验内容:被控对象分别为)11.0)(1(2)(1++=s s s G p 和)11.0(2)(2+=s s s G p分别对以上系统,构建下述调节器,研究调节器对输出特性的影响:1、比例调节器的输出特性:⑴ 用SIMULINK 构建比例控制系统。
⑵ 设定值为单位阶跃信号,改变比例调节器的大小,观察对系统的影响。
2、比例积分调节器的输出特性:⑴用SIMULINK 构建比例积分控制系统。
⑵设定值为单位阶跃信号,改变比例积分调节器的大小,观察对系统的影响。
注意调节器的整定顺序。
3、比例微分调节器的输出特性:⑴用SIMULINK 构建比例微分控制系统。
⑵改变比例微分调节器的大小,观察对系统的影响。
注意调节器的整定顺序。
4、比例积分微分调节器的输出特性:⑴用SIMULINK构建比例积分微分控制系统。
⑵改变比例积分微分调节器的大小,观察对系统的影响。
过程控制实验指导书
过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力变送器的使用方法。
3、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。
3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。
4)、关闭各个挂件的电源进行连线。
2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。
2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。
3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。
对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。
自动化仪表与过程控制实验指导书教材
自动化仪表与过程控制实验指导书实验一位式控制一、实验目的1、了解简单控制系统的构成及仪表的应用(熟悉仪表的操作)2、掌握简单过程控制的原理及仪表使用二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:位式电磁阀、AI818智能调节仪一台、上水箱液位传感器、水泵1系统等)。
2、AI-818仪表的操作说明书和液位变送器的调试(一般出厂之前已调试好)方法。
三、实验系统流程图:四、实验原理本实验采用位式控制原理进行液位的范围控制,即,将液位控制在一定的上下限范围内。
水箱液位变送器输出信号,经AI-818仪表进行处理后与设定上下限水位值进行比较。
控制仪表内继电器触点状态,对位式电磁阀进行控制,以达到控制目的。
图1-1五、实验步骤1、按附图位式控制实验接线图接好实验导线。
2、将手动阀门1V2、1V10、V4、V5打开,其余阀门全部关闭。
3、先打开实验对象的系统电源,然后打开控制台上的总电源,再打开仪表电源。
4、设置智能调节器参数,其需要设置的参数如下:(未列出者用出厂默认值)HIAL=30 (参考值)LOAL=20 (参考值)dHAL=9999dlAL=9999dF=0.5 (参考值)Ctrl=0Sn=33Dip=1 (参考值)dIL=0dIH=50Alp=2OP1=0具体请详细阅读调节器使用手册5、在控制板上打开水泵1、位控干扰。
6、在信号板上打开上水箱输出信号。
六、思考建议在什么样的情况下适合采用位式控制。
实验二电动阀支路单容液位控制一、实验目的1、了解简单过程控制系统的构成及仪表的应用(熟悉仪表的操作)2、掌握简单过程控制的原理及仪表使用二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:电动调节阀、AI818智能调节仪一台、上水箱及液位变送器、水泵1系统等)2、AI-818仪表的操作说明书,智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。
三、实验系统流程图:四、实验原理本实验采用仪表控制,将液位控制在设定高度。
过程控制实验指导书
过程控制实验指导书THKGK-1过程控制实验装置的组成和各部分使用说明THKGK-1型过程控制实验装置是根据自动化专业及相关专业教学的特点,吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证,向广大师生推出一套全新的实验设备。
该设备可以满足《过程控制》、《自动化仪表》、《工程检测》、《计算机控制系统》等课程的教学实验、课程设计等。
整个系统结构紧凑、功能多样、使用方便,既能进行验证性、研究性实验,又能提供综合性实验。
本实验装置可满足本科、大专及中专等不同层次的教学实验要求,还可为科学研究的开发提供实验手段。
本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。
实验系统供电要求为单相交流220V±10%,10A;外型尺寸为:182×160×70,重量:380Kg。
装置特点本实验装置具有以下特点:1、多种被控参数:液位、压力、流量、温度。
2、多种控制方式:位式控制、PID控制、智能仪表控制、单片机控制、PLC控制、计算机控制等。
3、多种计算机控制软件:西门子PROTOOL-CS组态软件、北京昆仑公司的MCGS组态软件以及本公司开发的上位机监控软件,另外还可以用台湾HITECH公司的ADP6.0软件与PLC 相连进行控制。
4、丰富的计算机控制算法:P、PI、PID、死区PID、积分分离、不完全积分、模糊控制、神精元控制、基于SIMULINK的动态参数自适应补偿控制等。
5、开放的软件平台:在我们提供的软件平台上,学生既可以利用我们所提供的算法程序进行实验,又可以用自己编写的PLC程序、MATLAB`程序等进行实验,还可以利用人机界面(触摸屏)的组态再结合PLC的编程来进行控制实验。
6、灵活多样的实验组合:可以很方便地对控制方式与被控参数进行不同组合,得到自己需要的单回路、多回路等多种控制系统。
系统组成被控对象包括上水箱、下水箱、复合加热水箱以及管道。
过程控制实训指导书
过程控制工程实训报告学号:班别:姓名:实验一上水箱特性测试实验一、实验目的:了解调节器的功能和操作方法,学会使用调节器。
通过实验,了解对象特性曲线的测量的思路和方法,掌握对象模型参数的求取方法。
二、实验设备:水泵Ⅰ、变频器、压力变送器、调节器、主回路调节阀、上水箱、上水箱液位变送器、调节器、电流表。
图1.1实验接线图三、实验步骤:1、认识实验系统,了解本实验系统中的各个对象。
了解本实验系统中各仪表的名称、基本原理以及功能,掌握其正确的接线与使用方法,以便于在实验中正确、熟练地操作仪表读取数据。
熟悉实验装置面板图,做到根据面板上仪表的图形、文字符号找到该仪表。
熟悉系统构成和管道的结构,认清电磁阀和手动阀的位置及其作用。
本实验采用调节器手动输出控制调节阀,计算机采集并记录数据。
图1.2 上水箱特性测试(调节器控制)系统框图图1.3 恒压供水(调节器控制)系统框图2、将上水箱特性测试(调节器控制)实验所用的设备,参照流程图和系统框图接线。
3、确认接线无误后,接通总电源、各仪表的电源,打开上水箱进水阀和下水箱排水阀。
4、设置调节器参数,使用手动输出功能。
(注意:更改调节器参数时,严禁用指甲按调节器面板,为防止损坏面板上的按钮,应用手指均匀用力)按调节器的增/减键改变输出值,使上水箱的液位处于某一平衡位置,记下此时手动输出值。
5、按调节器的增/减键增加调节器手动输出,给系统输入幅值适宜的阶跃信号(阶跃信号不要太大),使系统的输出产生变化,在液位较高处达到新的平衡状态。
6、观察计算机采集的上水箱液位的阶跃响应和历史曲线。
7、调节器的手动输出回到原来的输出值,记录液位下降的曲线。
8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格1。
四、试验报告:根据试验结果编写实验报告,并计算出K、T、τ的平均值,写出系统的广义传递函数(等效成惯性环节,K为静态增益,T为时间常数,τ为延迟时间)。
实验二压力单闭环实验一、实验目的:通过实验掌握单回路控制系统的构成。
AE2000型仪表实验指导书
AE2000型过程控制实验系统使用手册智能仪表实验指导书目录第一章系统熟悉实验 (3)实验一、实验装置的基本操作(一) (3)实验二、实验装置的基本操作(二) (5)实验三、AE2000-YB软件熟悉实验 (7)第二章系统主题实验 (9)实验一、一阶单容水箱对象特性测试实验 (9)实验二、二阶双容中水箱对象特性测试实验 (15)实验三、锅炉内胆温度二位式控制实验 (21)实验四、单容水箱液位PID整定实验 (27)实验五、串接双容中水箱液位PID整定实验 (34)实验六、锅炉内胆水温PID整定实验(动态) (38)实验七、锅炉夹套水温PID整定实验(动态) (45)实验八、流量计流量PID整定实验 (52)实验九、上水箱液位和涡轮流量串级控制实验 (58)实验十、锅炉内胆和夹套温度串级控制系统 (62)实验十一、电磁和涡轮流量计流量比值控制系统实验 (67)实验十二、上水箱中水箱液位串级控制实验 (71)实验十三、换热器热水出口温度控制实验 (74)实验十四、下水箱对象特性测试实验 (80)实验十五、三容下水箱液位PID整定实验 (84)第一章系统熟悉实验实验一、实验装置的基本操作(一)系统结构的熟悉和液位传感器的校准一、实验目的1.了解实验装置的结构和组成。
2.了解信号的传输方式和路径。
3.掌握实验装置的基本操作。
4.掌握液位传感器的校准方法。
二、实验设备AE2000型过程控制实验装置,万用表。
三、实验内容1、设备的连接与检查1).关闭阀门,往AE2000型过程控制对象的储水箱灌水,水位达到总高度的90%以上时停止灌水。
2).打开以齿轮泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的切换阀门。
3).关闭上水箱泄水阀。
4).检查电源开关是否关闭。
2、系统连线1).将I/O信号面板上水箱液位的切换开关设置在1~5V位置上。
2).不需连线。
3、启动实验装置1).将实验装置电源插头接到单相220V交流电源上。
自动化仪表与过程控制实验指导书
扰动 设定值 上水箱 电动阀 e
调节器 反馈值 上水箱 液位变送器 图1-2 五、实验步骤 1、按附图单容液位控制实验接线图接好实验导线和通讯线。
2、将控制台背面右侧的通讯口(在电源插座旁)与上位机连 接。 3、将手动阀门1V1、1V10、V4、V5打开,其余阀门全部关闭。 4、先打开实验对象的系统电源,然后打开控制台上的总电源, 再打开仪表电源。 5、整定参数值的计算 设定适当的控制参数使过渡过程的衰减比为4:1,整定参数 值可按下列“阶跃反应曲线整定参数表”。 表1 阶跃反应曲线整定参数表
再打开仪表电源。 5、设置智能调节器参数(可在仪表上直接设置,也可在计算机 上设置),其需要设置的参数如下:(未列出者用出厂默认值) (1)主调节器 SV=20 (参考值) dF=0.3 (参考值) CtrL=1 P=30 (参考值) I=60 (参考值) d=0 (参考值) Sn=33 Dip=2 (参考值) dIL=0 dIH=50 OP1=4 OPL=0 OPH=100 CF=0 Addr=2 run=1 (2)副调节器 dF=0.3 (参考值) CtrL=1 P=36 (参考值) I=15 (参考值) d=0 (参考值) Sn=32 Dip=1 (参考值) dIL=0 dIH=800 OP1=4 OPL=0 OPH=100 CF=8 Addr=1 run=1 具体请详细阅读调节器使用手册
dHAL=9999 dlAL=9999 dF=0.5 (参考值) Ctrl=0 Sn=33 Dip=1 (参考值) dIL=0 dIH=50 Alp=2 OP1=0 具体请详细阅读调节器使用手册 5、在控制板上打开水泵1、位控干扰。 6、在信号板上打开上水箱输出信号。 六、 思考建议 在什么样的情况下适合采用位式控制。
过程控制与仪表实验指导书
过程控制与仪表实验指导书电子信息工程学院2012年9月目录目录........................................................................ 第一章安全注意事项 .. (1)1.1防止触电 (1)1.2防止烫伤 (1)1.3防止损坏 (1)1.4其他注意事项 (2)第二章 A3000过程控制实验系统说明 (3)2.1现场系统 (3)实验一对象飞升特性曲线实验 (6)1.1实验目的 (6)1.2实验要求 (6)1.3实验设备及系统组成 (6)1.4操作步骤和调试 (8)1.5实验结果 (9)1.6实验思考 (9)实验二单容水箱液位变频器控制实验 (10)2.1实验目的 (10)2.2实验要求 (10)2.3实验设备及系统组成 (10)2.4操作步骤和调试 (10)2.5实验结果 (11)2.6实验思考 (11)实验三单容水箱液位调节阀控制实验 (12)3.1实验目的 (12)3.2实验要求 (12)3.3实验设备及系统组成 (12)3.4操作步骤和调试 (13)3.5实验结果 (14)3.6实验思考 (14)实验四流量调节阀控制实验 (15)4.1实验目的 (15)4.2实验要求 (15)4.3实验设备及系统组成 (15)4.4操作步骤和调试 (16)4.5实验结果 (17)4.6实验思考 (17)第一章安全注意事项安全注意事项:在安装、操作、维护或检查本系统之前.一定仔细阅读以下安全注意事项。
在熟悉设备的知识、安全信息及全部有关注意事项以后使用。
在本使用说明书中,将安全注意事项等级分为“危险”和“注意”。
!危险:不正确的操作造成的危险情况,将导致死亡或重伤的发生。
!注意:不正确的操作造成的危险情况,将导致一般或轻微的伤害或造成物体的硬件损坏。
注意:根据情况的不同,“注意”等级的事项也可能造成严重后果。
请遵循两个等级的注意事项,因为它们对于个人安全都是重要的。
自动化过程控制实验指导书
一、过程控制仪表认识实验一、实验目的1、熟悉装置的具体结构、明确各部件的作用。
2、掌握常用传感器的工作原理及使用方法。
二、实验内容1、水箱本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。
实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。
整个装置的管道都采用铝塑管,以防止阀门生锈。
打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。
2、微型锅炉、纯滞后系统、热电阻本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。
热电阻为Pt100,三线制工作。
温度变送器内部已有内置电源,不能再接外加电源。
系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。
3、液位传感器本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。
压力变送器通电15分钟后,方可调整零点和量程。
使用的原则是:没通电,不加压;先卸压,再断电。
零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。
满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。
调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。
4、电动调节阀采用德国PS公司生产的PSL 202型智能电动调节阀。
调节阀由220V50HZ电源供电。
工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。
5、变频器采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。
内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。
EFPT过程控制实验装置实验指导书
EFPT过程控制实验装置实验指导书EFAT/P过程控制实验装置简介1、实验装置简介2、控制对象:控制对象由⼯艺设备和现场仪表、电⽓负载三部分组成。
2.1 主要⼯艺设备包括:2.1.1 内部4.5KW三相星形连接电热丝,19升的热⽔夹套锅炉。
2.1.2 38升的⾼位溢流⽔箱(产⽣稳定压⼒的⼯艺介质——⽔)。
2.2.3 35升的液位⽔槽和105升的计量⽔槽。
2.1.4 配三相电机的循环⽔泵。
2.1.5 2只电磁阀(⽤于扰动)和28只⼿动球阀。
2.2 现场仪表包括:3、控制对象的图纸和⼿动阀的操作3.1 控制对象⼯艺流程和现场仪表总图总图实线内的图形、⽅框为安装在对象框架内的⼯艺设备及流量、压⼒、液位、温度信号的检测、变送、执⾏单元,虚线⽅框为安装在操作台上的变送、执⾏单元。
本控制对象通过切换22只⼿动阀开关可以组成不同的⼯艺流程。
在流程图表⽰阀半开半关。
删去这些截⽌状态的⼿动阀,就得到了变更后的⼯艺流程。
可⽤简化图的形式表⽰,如过程控制实验装置应⽤资料之⼀所⽰。
4、过程控制操作台4.1 操作台配电操作台⾯板的第⼀层为信号接线板。
接线板的左边是电源配电部分,其右边是从控制对象中传送来的现场仪表信号和电⽓负载。
⾯板的第⼆层和第三层⽤于插⼊实验板。
每层最多插⼊8块实验板。
4.2 信号板上与控制对象连接的现场仪表信号:虚线为可选件。
4.3信号板上与控制对象连接的电⽓负载a)循环⽔泵的三相电机(星形连接)供电端⼦U,V,W。
b)锅炉加热的三相电热丝(星形连接)供电端RL1, RL2, RL3, RN。
c)锅炉夹套加热的单相电热丝供电端⼦RL,RN(可选件)。
d)⾯板上标有“电磁阀”区域中的VD11、VD12端⼦内部已连接到⼀继电器,经继电器控制220V AC供电给电磁阀;同时该区域中标有“OV”(或-24V)端⼦应连接到同⼀⾯板上标有“24VDC”及“OV”端⼦区域的“OV”端⼦。
4.4 实验板简介4.5 使⽤注意事项⽔泵禁⽌空转:必须有⽔流通的情况下,⽔泵才能运转;第⼀次启动前必须将⽔泵注满⽔(在⽔泵上⼝有⼀只螺帽是注⽔⼝)。
过程控制工程实验指导书
过程控制实验指导书(DCS篇)曾慧敏自动化教研室自动化与电子信息学院自动化教研室2015年12月5日前言本实验指导书是根据求是实验室设备-和利时DCS实验装置和A3000过程控制系统的相关内容编写的,可满足《DCS与现场总线》、《过程控制》、《过程控制与仪表》、《计算机控制》、《自动化仪表》等相关课程的实验教学要求。
过程控制通常是指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,它是自动化技术的重要组成部分。
和利时DCS实验装置根据现行教材教学的要求,设置了压力、流量、液位、温度等单回路、串级、比值及前馈等实验。
实验指导书叙述了实验装置的各个仪表的原理、工作情况,实验项目及实验原理。
并讲述了系统的一些硬件的特点和技术指标。
本书试图通过对各实验原理的认识到对实验的实践,使学生对和利时DCS实验装置和系统原理有一个较为深刻的认识。
同时学生可自行设计实验方案,进行综合性、设计性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。
若有疏漏,恳请批评指正!目录主要内容 (4)第一部分 A3000设备简介 (6)第二部分基础学习 (9)和利时DCS的应用系统设计内容及步骤 (9)第三部分实验内容 (43)实验一水箱液位控制系统 (43)实验二液位和进口流量串级控制系统 (55)主要内容1、实验总体目标通过实验,巩固掌握DCS课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2、适用专业自动化和电气自动化专业本科生、研究生3、先修课程控制装置、自动化仪表、计算机控制系统、过程控制系统及DCS与现场总线4、实验课时分配实验环境:和利时MACS和A3000过程控制系统6、实验总体要求(1)、掌握单回路控制系统原理和参数整定方法;(2)、掌握串级控制系统原理和参数整定方法。
过程控制系统实验指导书第二版
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
过程控制实验指导书
第三章 对象特性测试实验第一节 测试对象特性的方法工业过程动态数学模型的表达方式很多,其复杂程度相差悬殊。
对于数学模型,应根据实际应用情况提出适当的要求。
一般说来,用于控制的数学模型并不要求十分准确。
闭环控制本身具有一定的鲁棒性,模型本身的误差可视为干扰,而闭环控制在某种程度上具有自动消除干扰的能力。
实际生产过程的动态特性非常复杂,往往需要作很多近似处理。
有些近似处理需要作线性化处理、降阶处理等,但却能满足控制的要求。
建立数学模型有两个基本方法,即机理法和测试法。
测试法一般只用于建立输入输出模型。
它的特点是把被研究的工业过程视为一个黑匣子,完全从外部特性上测试和描述它的动态性质,因此不需要深入掌握其内部机理。
一、测试法求取传递函数通过简单的测试获得被被控对象的阶跃响应,进一步把它拟合成近似的传递函数,是建立被控对象数学模型简单有效的方法。
用测试法建立被控对象的数学模型,首先要选定模型的结构。
典型的工业过程的传递函数可以取为各种形式,例如:1、 一阶惯性环节加纯延迟 一阶惯性环节的传递函数:1)(+=Ts Ks G 延迟环节的传递函数为:τs )(-=e s G一阶加纯滞后对象的传递函数1)(τs+=-Ts Ke s GtXΔx阶跃信号一阶惯性环节阶跃响应KΔxT图 3.1.1对于有纯滞后的一阶对象,滞后时间可直接由图中测量出纯滞后时间τ。
2、二阶或高阶惯性环节加纯延迟ns1)(Ts )(+=-τKe s G 在确定传递函数的形式后,要对函数中的各个参数与测试的响应曲线进行拟合。
如果阶跃响应是如图3.1.2所示的S 形单调曲线,就可以用一阶惯性加纯延迟对象的传递函数去拟合。
增益K 由输入输出的稳态值直接算出,而τ和T 则可以用作图法确定。
tABpCy y(∞)τT图 3.1.2在曲线的拐点p 作切线,它与时间轴交于A 点,与曲线的稳态渐进线交于B 点。
0A 段的值即为纯滞后时间τ,CB 段的值即为时间常数T ,这样就确定了τ和T 的数值。
过程控制实验指导书修改
1 +
50O 2
-
3 + 250O
4
+
0.2~1V
+ 7
1~5V 5 -
_
EFPT--0102
压力变送器 锅炉液位LT2
+
50O
250O -
电动调节阀 出水M2
A01 阀位
+
+
4~20MA -
-
L
N
13
四、实验方法与内容
(一)实验内容
1、 熟悉单回路、管路连接、以及控制电路连接 2、 手动整定和自动整定 P\I\D 参数;观察 P\I\D 参数变化对系
下 限 报 警 -10 (LOAL) 比例带(P) 40
输入下限显 0 示(diL)
正偏差报警 405 负 偏 差 报 警 405
(DHAL)
(DHAL)
积 分 时 间 20 微 分 时 间 2.0
(I)
(D)
输入上限显 400 输 出 方 式 4
示(dih)
(OPI)
输出下限 0
输 出 上 限 100 通 讯 地 址
A01
+
4~20MA
-
L
阀位
+
N
五、实验内容与方法 (一)实验内容 1、 测试压力变送器的零点和满量程输入时压力变送器的电 压输出,并反复调节调零电位器及量程电位器,使输出满 足零点时 1.000V±20mV 和满量程 400mm 水柱时 5.000V± 20mV 2、 分别输入 50、100、150、200、250、300、350mm 水柱, 记录相应的输出值
下 限 报 警 -10 (LOAL)
《工业自动化仪表与过程控制》实验指导书
《工业自动化仪表与过程控制》实验指导书授课学时:8课时授课班级:芙蓉自动化0901、0902授课学期:2012年上学期授课教师:敖章洪工业自动化仪表与过程控制实验项目一览表实验参考书:GK-1型操作说明书.实验指导书实验一实验装置的基本操作与仪表调试实验学时:2学时实验类型:验证实验要求:必做一、实验目的1)、了解本实验装置的结构与组成。
2)、掌握液位、压力传感器的使用方法。
3)、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1) TKGK-1型过程控制实验装置:交流变频器GK-07-2直流调速器GK-06PID调节器GK-042)万用表三、实验装置的结构框图图1-1、液位、压力、流量控制系统的结构框图四、实验内容1、设备组装与检查:1)、将GK-07-2、GK-06、GK-04挂件由左至右依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、检查挂件的电源开关是否关闭。
3)、用万用表检查挂件的电源保险丝是否完好。
2、系统接线1)、直流部分:将一台GK04的PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK06的控制电压“输入”;GK06的“电枢电压”和“励磁电压”输出端分别接GK01的直流他励电动机的“电枢电压”和“励磁电压”输入端。
2)、交流部分:将另一台GK04的PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”端接GK-07-2变频器的“2”与“5”接线端;将GK-07-2变频器的输出“A、B、C”接GK-01上三相异步电机的“A、B、C”输入端;将三相异步电机接成三角形,即“A”接“Z”、“B”接“X”、“C”接“Y”;GK-07-2 的“SD”接“STR”使电机正转打水,(若此时电机为反转则“SD”接“STF”)。
3、启动实验装置:1)、将实验装置电源插头接到~220V市电电源。
2)、打开电源空气开关与电源总钥匙开关。
3)、按下电源控制屏上的启动按钮,即可开启电源,交流电压表指示220V。
化工仪表及自动化实验指导书
化工仪表及自动化实验指导书(过控装备与控制工程教研室)南昌大学环境与化学工程学院二0 一0 年五月本实验指导书系根据《过程装备控制技术与应用》课程及实验室已有设备而设置的实验内容编写的。
通过实验操作,使学生增强感性认识,加深对书本理论知识的理解,提高动手能力,熟悉和掌握仪表实验工作的一般方法,为将来的实验工作和科学研究打下基础。
实验要求在实验过程中,务必做到以下几点:1、实验前必须预习有关实验内容;2、进入实验室后,应首先认真听取实验介绍,以提高操作效率;3、熟悉并检查实验装置的组成部分及连线;4、按实验要求连接实验装置后,需经老师检查方可进行操作;5、实验过程中,应遵守实验室的规章制度,爱护设备。
在实验过程中未按操作步骤进行而造成仪器、设备、工具等损坏以及发生事故,待查明原因后,按学校有关规定予以赔偿;6、实验后,各小组须整理清点实验工具,并交老师核查;7、按实验具体要求,认真完成实验报告。
在做实验报告时应注意以下几点:1、明确实验目的;2、了解实验内容;3、熟悉实验装置;4、掌握实验方法;5、制定实验步骤;6、处理实验数据(数据准确、表格合理、图形清晰);7、得出实验结果;8、提出分析建议(注意现象,分析误差等原因)。
目录一、实验一弹簧管压力表的校验 (5)二、实验二热电偶与动圈仪表的配套使用 (7)三、实验三自动电子电位差计的校验 (10)四、实验四自动电子平衡电桥的校验 (12)五、实验五XMZ-102数显仪表的校验 (13)六、实验六XMZ-101数显仪表的校验 (14)七、实验七电容式差压变送器认识与校验 (15)实验一弹簧管压力表的校验一、实验目的:1、熟悉工业用弹簧管压力表的构造、工作原理及校验方法;2、掌握压力校验器的基本结构原理和操作方法。
实验设备1、手轮2、手摇泵3、活塞4、被校压力表5、6、7、针形阀8标准压力表9、贮油杯工作原理如图1所示:往油杯内注入传压工作介质(变压器油),打开针形阀 6,关闭针形阀5和7,逆时针方向旋转手轮 1,将工作介质吸入手摇泵内,然后关闭针形阀 6,打开针形阀5和7,顺时针方向旋转手 轮,使手摇泵内的活塞3移动所产生的压力经工作介质传递至压力表4和8上。
过程控制及仪表实验指导书
过程控制及仪表实验指导书过程控制系统及仪表实验指导书潘岩左利长沙理工大学电气与信息工程学院20XX年4月1目录第一章系统概述第二章实验装置介绍一、THJ-3型高级过程控制对象系统实验装置二、THSA-1型过控综合自动化控制系统实验平台三、软件介绍四、实验要求及安全操作规程第三章实验内容实验一、单容自衡水箱液位特性测试实验实验二、双容水箱特性的测试实验实验三、单容液位定值控制系统实验2第一章系统概述THSA-1型过程综合自动化控制系统(Experiment Platform of Process Synthetic automation Control system)THJ-3型高级过程控制对象系统实验装置、THSA-1型综合自动化控制系统实验平台及上位监控PC机三部分组成。
如图1-1所示。
图1-1 THSA-1过程综合自动化控制系统实验平台该套实验装置紧密结合工业现场控制的实际情况,能够对流量、温度、液位、压力等变量实现系统参数辨识,并能够进行单回路控制、串级控制、前馈-反馈控制、滞后控制、比值控制、解耦控制等多种控制实验,是一套集成了自动化仪表技术、计算机技术、自动控制技术、通信技术及现场总线技术等的多功能实验设备。
THSA-1型过程综合自动化控制系统能够为在校学生和相关科研人员提供有力帮助。
学生通过学习,应对传感器特性及零点漂移有初步认识,同时能掌握自动化仪表、变频器、电动调节阀等仪器的规范操作,并能够整定控制系统中相关参数。
这套实验设备综合性强,所涉及的工业生产过程多,所有部件均来自工业现场,严格遵循相关国家标准,具有广泛的可扩展性和后续开发功能,有利于培养学生的独立操作、独立分析问题和解决问题的创新能力.整套实验装置的电源、控制屏均装有漏电保护装置,装置内各种仪表均有可靠的自保护功能,强电接线插头采用封闭式结构,强弱电连接采用不同结构接头,安全可靠。
3第二章实验装置介绍“THSA-1型过控综合自动化控制系统实验平台”是实验控制对象、实验控制台及上位监控PC机三部分组成。
过程控制与检测仪表课程设计报告指导书
- - -.过程控制与检测仪表课程设计指导书杜玉晓XX工业大学自动化学院二00六年十月实验项目名称:题目一单容水箱液位定值控制系统实验项目性质:综合性所属课程名称:《过程控制系统》、《组态软件技术》、《PLC与电器控技术》实验计划学时:1周一.实验目的使学生针对典型的工业控制对象,实现单容水箱液位的定值控制。
单容液位控制系统设计包括系统的设备选型、控制器设计(智能控制仪表/PLC)和监控界面设计,使学生初步掌握工业控制系统的设计和实现方法。
了解P、PI、PD和PID四种调节器分别对液位控制的作用,了解单容液位定值控制系统的结构与组成,掌握单容液位定值控制系统调节器参数的整定和投运方法。
二、预习与参考自动控制原理、过程控制系统、MCGS、西门子200、300PLC编程。
三.实验要求和设计指标按照实验要求,综合运用所学理论知识,通过查阅手册和文献资料,完成单容液位控制系统的综合与设计,培养学生独立分析问题和解决实际问题的能力。
掌握自动控制系统的综合与设计方法,熟悉控制器的结构、类型及其校正作用。
(1)根据选定的典型系统类型、选择合适的控制器型号;(2)确定控制系统控制算法以及实现方法;(3)智能控制仪表控制设定;或者西门子PLC程序设计;(4)M CGS监控界面。
四.实验(设计)仪器设备和材料清单实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个;SA-12挂件一个、RS485/232转换器一个、通讯线一根;SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。
五.调试及结果测试根据题目指标,实验教师对每个指标进行现场验收。
六.考核形式实验完成后,交实验报告一份,包括计算与系统设计说明。
实验考核方法:随堂考核试验操作能力;评分标准:含各项目成绩、参考平时成绩和实验报告成绩,分为优、良、中、及格、不及格五级打分。
七.实验报告要求每位同学根据自己的实验数据和结果,根据给定的格式,独立完成实验报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制及仪表实验指导书
西安文理学院
机械电子工程系
目录
实验一热电偶特性与应用 (2)
实验二调节器参数校验 (4)
实验三过程特性测试 (7)
实验四控制系统参数整定 (9)
实验一热电偶特性与应用
一、实验目的
1. 了解热电偶构造及热电特性
2. 掌握热电势基本测量方法
3. 领会冷端温度对热电偶输出电势的影响,掌握补偿导线的正确使用方法。
二、实验设备
1. K分度热电偶及补偿导线1支;S分度热电偶及补偿导线1支;
2. 管式电炉1台;
3. 电炉温度控制器1台;
4. UJ-37电位差计1台;
5. 电吹风1支。
三、实验设备连接
图1 热电偶特性与使用设备连接示意图
四、实验内容
1. 热电偶热电特性测量
将两支热电偶分别从电炉两端插入电炉,通过温度测量控制仪依次改变炉温,待炉温稳定后,由控制仪的指示盘读取温度,由UJ-37电位差计测取热电势,得出电势-温度关系,同时记取室温。
2. 观察冷端温度对测量的影响
在炉温保持恒定情况下,用电吹风改变热电偶冷端温度,观察电位差计的读数变化,体会冷端温度补偿的意义,分以下不同情形分别进行:
⑴补偿导线极性连接正确,用电吹风改变热电偶与补偿导线连接点温度,观察电位差计读数变化。
⑵补偿导线极性连接不正确,用电吹风改变热电偶与补偿导线连接点温度,观察电位差计读数变化。
(注意:改变热电偶与补偿导线连接极性时,要同时调换补偿导线与电位差计连接极性。
)
⑶用导线替换补偿导线,用电吹风改变铜导线与热电偶连接点的温度,观察电位差计读数变化情况。
五、实验报告
1、将实验内容1所测得的热电势-温度关系经冷端温度(实验时读取的室温)转换修正后,在方格纸上画出电势-温度曲线,并与K分度的热点偶标准热电势特性比较,简要讨论误差发生的原因。
2、通过实验内容2中三种情况对比,论述正确使用补偿导线的重要性。
实验二调节器参数校验
一、实验目的
1.了解工业用调节器的结构、特性和基本使用方法。
2.学习调节器重要参数的校验方法。
3.体验调节器无扰切换过程。
二、实验设备
1.PID调节器1台
2.校验信号发生器1台
3.24V直流稳压电源1台
4.单刀双掷开关1只
250电阻1只)
5.电阻箱1台(或
6.秒表1只
7.毫安表1只
8.万用表1只
三、实验接线图
图2 仪表校验接线图
四、实验内容与方法
实验内容:调节器PID 参数校验以及手动操作的无扰动切换。
方法如下:
(一)调节器PID 参数校验 1. 比例带P 校验
自动/手动按键开关置手动,内外给定选择开关置内给定,输入电压(信号源1)、给定电压均为3V ,使偏差为零。
“D ”置关,“I ”置 2.5分,倍率选择开关置10⨯,正反作用开关置正作用。
“P ”置被测刻度100%,信号源2为3.5V ,按键开关置自动,当开关K 由信号源1切换到信号源2,记录调节器输出,因为实测比例带为
P =100
121
2⨯--o o i i v v v v %
比例带刻度误差允许范围为±25%,所以随着信号源切换,调节器输出应在
V
v o 667.4~600.32=范围以内。
2. 积分时间I T 校验
调节器自动/手动按键开关置手动,调节器输出3V ,信号源2调到3.5V ;“D ”置关,“P ”置实测100%,“测量/校正”置“测量”“正/反”作用开关置“正”, 倍率选择开关置1⨯,内给定置3V ,信号源1调到3V ,使偏差表指示偏差为零;校验积分时间5.2=I T 分,“I ”置 2.5分,“自动/手动”按键置自动,开关K 由信号源1切换到信号源2,调节器输出由3V 阶跃变化到 3.5V ,开始记时,输出在积分作用下线性增长,达到4V 时停止记时,记录时间即为实测积分时间,因为仪表的积分刻度误差允许范围为-25%~+50%,所以实测积分时间应在1分53秒至
3分54秒之间。
3. 微分时间校验
调节器自动/手动按键开关置手动,调节器输出1V , “D ”置关,“P ”置实测100%,“测量/校正”置“测量”,“正/反”作用开关置“正”, 倍率选择开关置10⨯,内给定置3V ,信号源1调到3V ,开关K 切到信号源1,使偏差表指示偏差为零;信号源2调到3.25V ;校验微分时间10
=D T
分,“D ”置10分,“自动/手动”按键置自动,开关K 由信号源1切换到信号源2,调节器输出在微分作用下由3V 快速变化到最大后按照负指数规律下降趋于稳态值,从输出最大值时开始记时,输出衰减63%(约为2V)时停止记时,记录时间 D
D
K T t =
,t K T D D •=即为实测微分时间。
因为仪表微分增益10=D K ,微分时间刻度误差允许范围为-25%~+50%,所以10=D T 分钟时的记录时间D
D
K T t =
应在45秒到1分30秒范围以内。
注意:如果要连续几次测量微分时间时,需要在校验一个微分时间后,将D 置关,开关K 置信号源1,使偏差为零,调节器置手动,输出1V ,再将D 置被测刻度重新开始测量,测量方法同上述。
(二)手动操作的无扰动切换
DTZ -2100全刻度指示调节器在结构上采用了数字电路,仪表的手动输出具有长时间保持特性,自动与手动之间的切换为非平衡无扰动切换。
1. 从手动到自动切换:当表盘上的红、绿指针重合,即偏差为零时,可从手动方式切换到自动方式;
2. 从自动到手动切换:无需平衡即可做到无扰动切换。
五、实验报告要求
1. 整理实验中的测试数据;
2. 计算P 、I 、D 参数的刻度误差;
3. 将计算得到的刻度误差与仪表允许的刻度误差进行比较,简要分析误差成因。
实验三 过程特性测试
一、实验目的
1. 通过实验进一步体会单回路过程控制系统的基本结构。
2. 学习用调节器、变送器、管式电炉等设备构成温度控制系统。
3. 学习广义过程的特性测试及实验建模方法。
二、实验设备
1. 管式电炉1台
2. 热电偶1支
3. 温度变送器1台
4. 调节器1台
5. 可控硅执行单元1台
6. 直流毫安表1台
7. 万用表1只
8. 秒表1只
三、系统结构示意图
图3 广义过程特性测试的系统结构
四、实验内容
在C o 100和C o 300或C o 200和
C o 400从低往高,分别测试两组广义过程特性。
五、实验方法
1. 按照示意图构成炉温控制系统
2. 电炉升温:手动控制调节器输出电流在50%左右使电炉升温,待到达预定温度后,进入下一步。
3. 温度保持:调整调节器使输出电流1I 维持在约2mA 左右以保持炉温恒定,记录保持电流
1
o I 或保持电压
1
o V 。
4. 在调节器操作面板上将给定值设置为阶跃相应后炉温重新稳定的期望值(约为25%或30%左右)。
5. 加阶跃给定信号:使调节器输出电流增加
1
%20~%10I I i =∆作为
阶跃输入信号,并开始记时,记录炉温从原来稳定温度开始上升的时间,从开始升温到测量与给定指示偏差为零时,将调节器从手动方式切换到做到方式,等到炉温重新达到稳定时停止计时在此期间要同时在温度变送器输出端记录
2
o I 或
2
o V 。
六、实验报告
1. 将实验测试数据整理成表格;
2. 描绘广义过程特性曲线;
3. 对实验结果进行数字处理,求得过程特性参数;
4. 写出广义过程数学模型。
实验四控制系统参数整定
一、实验目的
1. 学习针对广义过程传递函数选择调节器控制规律的方法;
2. 领会调节器参数整定的含义,学习并掌握调节器参数的整定方法;
3. 领会调节器控制规律改变或系统参数变化对系统被控参数和系统性能的影响作用。
二、仪器设备
1. 管式电炉1台
2. 热电偶2支
3. 温度变送器1台
4. 调节器1台
5. 可控硅执行单元1台
6. 直流毫安表1台
7. 万用表1只
8. 秒表1只
9. 电吹风1个
三、系统结构
本次实验系统为单回路温度控制系统,侠义对象为电阻炉,被控参数为炉膛温度,广义对象为调节器以外的其余环节,系统结构入图所示:
四、实验内容与方法
1. 在上次实验广义对象特性测试的基础上,根据自己已经求得的广义过程数学模型,选择调节器控制规律,进行系统整定。
可参考以下方法思路操作:
图4 炉温控制系统参数整定
2. 手动升温至静态工作点(应与实验三建模测试时的温度相同);
维持调节器输出电流(大约在2mA左右)一定,使炉温在一段时间内保持恒定;
3. 根据实验3的建模结果,选择控制规律;参照实验建模中过程动态特性参数,参考相应经验公式计算出调节器整定参数;
4. 将计算得到的调节器整定参数设置在调节器上,按照无扰动切换要求将调节器从手动方式切换到自动方式运行;
5. 当运行稳定后,施加干扰信号(用电吹风改变炉管温度或改变调节器给定值),记录运行(包括各时刻的电流、电动势以及相应时刻等)。
五、实验报告要求
1. 根据实验三测得的广义过程模型选择调节器控制规律的方法;
2. 调节器控制参数的计算过程和结果;
3. 实验数据列表;
4. 被控参数的响应曲线;
5. 对实验结果的分析总结。