量子力学试卷
量子力学基础试题及答案
量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学试卷
量子力学试卷(总22页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除05级2学分A一、回答下列问题(每题5分,共30分)1 十九世纪末期人们发现了哪些不能被经典物理学所解释的新的物理现象?2 什么是束缚态什么是定态3 试述电子具有自旋的实验证据。
4 写出量子力学五个基本假设中的任意三个。
5 表示力学量的厄米算符有哪些特性?6一维空间两粒子体系的归一化波函数为),(21x x ψ,写出下列概率: 发现粒子1的位置介于x 和dx x +之间(不对粒子2进行观测) 二、本题满分10分设单粒子定态波函数为 )(1)(ikr ikrk be e rr +=-ψ,试利用薛定谔方程确定其势场。
三、本题满分12分利用厄米多项式的递推关系和求导公式:()()()02211=+--+x nH x xH x H n n n ,()()x nH x H n n12-=' 证明:一维谐振子波函数满足下列关系:)](21)(2[1)(11x n x n x x n n n +-++=ψψαψ /)],(21)(2[)(11ωαψψαψm x n x n dx x d n n n =+-=+-已知一维谐振子的波函数为:()()21212!2,22⎪⎪⎭⎫ ⎝⎛==-n N x H eN x n n n xn n πααψα四、本题满分12分一粒子在一维无限深势阱⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,0,0,0,)( 中运动,求粒子的能级和相应的归一化波函数。
五、本题满分12分已知氢原子的电子波函数为)(),()(41),,,(2/11131z z nlmm s Y r R s r sχϕθϕθψ=)(),()(432/12032z s Y r R -+χϕθ。
求在ψ态中测量氢原子能量E 、2L 、z L 、2s 、z s 的可能值和这些力学量的平均值。
量子力学试题含答案
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
量子力学试题及答案
量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学考研试题及答案
量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。
答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。
答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。
答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。
答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。
答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。
在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。
2. 描述一下量子力学中的量子态叠加原理。
答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。
这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。
3. 解释什么是量子纠缠,并给出一个实际应用的例子。
答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。
量子力学试卷
模拟试卷一一、名词解释(本题40分,每小题5分)1.波粒二象性 2、测不准原理 3、定态波函数 4、算符 5、隧道效应 6、宇称 7、Pauli 不相容原理 8、全同性原理二、问答题(本题28分,每小题7分) 1、波函数有哪些性质?2、变分法求能量的步骤有哪几步?3、对称波函数和反对称波函数有何区别,举例说明。
4、以两个相同粒子(a ,b )分配给3种状态为例,说明三种统计方法的不同。
三、计算题(本题32分,每小题8分)1、试将笛卡尔坐标转化为球极坐标,写出推导过程。
2、一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x ax x x U ,,,0 00)(中运动,求粒子的能级和对应的波函数。
3、试根据热力学公式推导出麦氏关系。
4、根据公式∑∂∂-=lll V a P ε证明,对于非相对论粒子:)()2(21222222z y x n n n Lm m p s ++== π,z y x n n n ,,=0,±1,±2,…,有V U p 32=上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。
答案:一、名词解释(本题40分,每小题5分)1.波粒二象性 :一切微观粒子均具有波粒二象性(2分),满足νh E =(1分),λhP =(1分),其中E 为能量,ν为频率,P 为动量,λ为波长(1分)。
2、测不准原理 :微观粒子的波粒二象性决定了粒子的位置与动量不能同时准确测量(2分),其可表达为:2/P x x ≥∆∆,2/P y y ≥∆∆,2/P z z ≥∆∆(2分),式中 (或h )是决定何时使用量子力学处理问题的判据(1分)。
3、定态波函数 :在量子力学中,一类基本的问题是哈密顿算符不是时间的函数(2分),此时,波函数)t ,r ( ψ可写成r函数和t 函数的乘积,称为定态波函数(3分)。
4、算符使问题从一种状态变化为另一种状态的手段称为操作符或算符(2分),操作符可为走步、过程、规则、数学算子、运算符号或逻辑符号等(1分),简言之,算符是各种数学运算的集合(2分)。
量子力学试题及答案
量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子力学模拟试题及答案
量子力学模拟试题及答案一、选择题1. 根据量子力学,以下哪个选项描述了波函数的物理意义?A. 粒子的位置B. 粒子的动量C. 粒子在空间中某点出现的概率密度D. 粒子的质量答案:C2. 海森堡不确定性原理表明,粒子的什么两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 质量与速度D. 动量与能量答案:A二、填空题1. 量子力学中的波函数通常用符号________表示。
答案:Ψ2. 薛定谔方程是量子力学的基本方程,它描述了波函数随时间的________。
答案:演化三、简答题1. 简述量子力学中的叠加原理。
答案:量子力学中的叠加原理表明,如果一个量子系统可以处于多个可能状态中的任何一个,那么它实际上可以处于这些状态的任意线性组合,即叠加态。
这意味着,除非进行测量,否则系统的行为不能被归结为单一确定的状态。
四、计算题1. 假设一个粒子在一维无限深势阱中,其势阱宽度为L。
求该粒子的基态能量。
答案:基态能量可以通过以下公式计算:E0 = (h^2 / (8mL^2)),其中h是普朗克常数,m是粒子质量,L是势阱宽度。
五、论述题1. 论述量子纠缠现象及其在量子信息科学中的应用。
答案:量子纠缠是量子力学中的一种非经典现象,其中两个或多个量子系统处于一种特殊的关联状态,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。
在量子信息科学中,量子纠缠是实现量子通信、量子计算和量子密钥分发等技术的关键资源。
例如,在量子密钥分发中,纠缠粒子可以用来生成和共享密钥,确保通信的安全性。
六、实验题1. 设计一个实验来验证海森堡不确定性原理。
答案:一个简单的实验设计是使用双缝干涉实验。
通过测量通过双缝的粒子的位置和动量,可以观察到当一个物理量被更精确地测量时,另一个物理量的不确定性会增加,从而验证海森堡不确定性原理。
实验中,可以使用光电探测器来测量粒子通过特定缝隙的位置,然后通过测量粒子在屏幕上的分布来估算其动量的不确定性。
量子考试题及答案
量子考试题及答案一、选择题(每题2分,共20分)1. 量子力学的创始人是:A. 牛顿B. 爱因斯坦C. 普朗克D. 薛定谔答案:C2. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C3. 海森堡不确定性原理表明:A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的位置和能量可以同时准确测量D. 粒子的动量和能量可以同时准确测量答案:B4. 量子力学中的泡利不相容原理适用于:A. 电子B. 质子C. 中子D. 所有基本粒子答案:A5. 量子纠缠是指:A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子之间的引力相互作用D. 两个粒子之间的电磁相互作用答案:B6. 量子力学中的薛定谔方程是一个:A. 线性方程B. 非线性方程C. 微分方程D. 代数方程答案:C7. 量子力学中的隧道效应是:A. 粒子通过势垒的概率不为零B. 粒子通过势垒的概率为零C. 粒子通过势垒的概率为一D. 粒子通过势垒的概率为负答案:A8. 量子力学中的叠加态是指:A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子处于确定的状态D. 粒子处于随机的状态答案:A9. 量子力学中的测量问题涉及:A. 粒子的测量结果B. 粒子的测量过程C. 粒子的测量设备D. 粒子的测量结果和过程答案:D10. 量子力学中的退相干是指:A. 量子态的相干性消失B. 量子态的相干性增强C. 量子态的相干性不变D. 量子态的相干性随机变化答案:A二、填空题(每题2分,共20分)1. 量子力学中的波粒二象性表明,粒子既表现出______的性质,也表现出______的性质。
答案:波动;粒子2. 量子力学中的德布罗意波长公式为:λ = ______ / p,其中λ表示波长,p表示动量。
答案:h / p3. 量子力学中的能级是______的,这是由量子力学的______决定的。
量子力学试题及答案
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。
答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。
答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。
答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。
答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。
答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。
求该粒子在基态时的能量和波函数。
答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。
2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。
求该粒子的能级和相应的波函数。
答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。
量子力学试题含答案
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。
高中量子力学试题及答案
高中量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是波粒二象性,以下哪个现象不是波粒二象性的体现?A. 光的干涉现象B. 光电效应C. 电子的衍射现象D. 牛顿运动定律2. 根据量子力学,一个粒子的位置和动量不能同时被准确测量,这是由以下哪个原理所描述的?A. 能量守恒原理B. 泡利不相容原理C. 测不准原理D. 相对性原理3. 量子力学中的波函数是用来描述什么?A. 粒子的电荷B. 粒子的动量C. 粒子在空间中的概率分布D. 粒子的质量4. 量子力学中,一个系统的状态可以用一个什么来描述?A. 波函数B. 动量C. 位置D. 能量5. 以下哪个是量子力学中的一个基本假设?A. 所有物体都遵循牛顿运动定律B. 粒子在没有观察时不具有确定的位置C. 所有物体都具有确定的动量和位置D. 能量守恒定律不适用于微观粒子6. 量子力学中的薛定谔方程是用来描述什么的?A. 粒子的动量B. 粒子的位置C. 粒子的波函数随时间的变化D. 粒子的总能量7. 量子力学中的量子态叠加原理指的是什么?A. 粒子的动量和位置可以同时被准确测量B. 粒子可以同时处于多个状态的叠加C. 粒子的状态只能由一个确定的波函数描述D. 粒子的状态不能被准确预测8. 量子纠缠是量子力学中的一个现象,它描述了什么?A. 两个粒子之间的相互作用B. 两个粒子之间的空间关系C. 两个或多个粒子的量子态不能独立于彼此存在D. 两个粒子之间的动量守恒9. 量子力学中的泡利不相容原理指的是什么?A. 两个相同的费米子不能处于同一个量子态B. 两个相同的玻色子不能处于同一个量子态C. 两个不同的费米子可以处于同一个量子态D. 两个不同的玻色子不能处于同一个量子态10. 以下哪个实验支持了量子力学的波粒二象性?A. 双缝实验B. 光电效应实验C. 迈克尔逊-莫雷实验D. 万有引力实验二、简答题(每题5分,共30分)1. 请简述量子力学与经典力学的主要区别。
量子力学试题及答案
量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。
波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。
这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。
量子力学考试试题(附答案)
量子力学考试试题(附答案)1.束缚于某一维势阱中的粒子,其波函数由下列诸式所描述:()()()023cos 222ikx L x x x L L x Ae x L L x x ψπψψ=<-=-<<=>(a )、求归一化常数A,(b )、在x=0及x=L/4之间找到粒子的概率为何? 解:(a )由波函数的归一化条件()222222222331coscos 33cos cos 3cos 6cos 126sin 262ikx ikx ikx ikx LLx x x dx Ae Ae dx L Lx x A e e dxL L x A dx L A x dx L A L x x L A L ππψππππππ∞∞-∞-∞∞--∞∞-∞∞-∞-====⎛⎫=+ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭=⎰⎰⎰⎰⎰于是:A =(b)()224406sin 0.196926LL A L x x dx x L πψπ⎛⎫=+= ⎪⎝⎭⎰2、证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r mi e r e r e r e r m i mi J e r t f r t r Et i Et i Et iEt i Etiψψψψψψψψψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ-----)()(, 可见t J 与无关。
4、波长为1.0*10-12m 的X 射线投射到一个静止电子上,问在与入射光成60o 角的方向上,探测到散射光的波光为多少?解:由公式 22sin 2c θλλλ'-=其中:120 2.43102ch m m cλ-==⨯可得:1212212601.0102 2.4310sin 1.215102λλλ---''-=-⨯=⨯⨯⨯=⨯ 01212212601.0102 2.4310sin 1.215102λλ---'-=-⨯=⨯⨯⨯=⨯122.21510m λ-=⨯。
量子力学考试题库及答案
量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。
下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。
答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。
答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。
答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。
这一现象在经典物理学中是不可能发生的。
一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。
6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。
答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。
这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。
四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。
答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。
量子力学考试题和答案
量子力学考试题(共五题,每题20分)1、扼要说明:(a )束缚定态的主要性质。
(b )单价原子自发能级跃迁过程的选择定则及其理论根据。
2、设力学量算符(厄米算符)∧F ,∧G 不对易,令∧K =i (∧F ∧G -∧G ∧F ),试证明:(a )∧K 的本征值是实数。
(b )对于∧F 的任何本征态ψ,∧K 的平均值为0。
(c )在任何态中2F +2G ≥K3、自旋 /2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为S H ˆˆω=∧H =ω∧z S +ν∧x S (ω,ν>0,ω»ν)(a )求能级的精确值。
(b )视ν∧x S 项为微扰,用微扰论公式求能级。
4、质量为m 的粒子在无限深势阱(0<x<a )中运动,处于基态。
写出能级和波函数,并计算平均值x ,x p ,x xp5、某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。
已知单粒子“轨道”态只有3种:a ψ(→r ),b ψ(→r ),c ψ(→r ),试分别就以下两种情况,求体系的可能(独立)状态数目。
(i )无自旋全同粒子。
(ii )自旋 /2的全同粒子(例如电子)。
量子力学考试评分标准1、(a ),(b )各10分(a )能量有确定值。
力学量(不显含t )的可能测值及概率不随时间改变。
(b )(n l m m s )→(n’ l’ m’ m s ’)选择定则:l ∆=1±,m ∆=0,1±,s m ∆=0 根据:电矩m 矩阵元-e →r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧K 是厄米算符,所以其本征值必为实数。
(b )∧F ψ=λψ,ψ∧F =λψK =ψ∧K ψ=i ψ∧F ∧G -∧G ∧F ψ =i λ{ψ∧G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F-i ∧G )=∧F2+∧G 2-∧Kψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧F -i ∧G )ψ︱2≥0 ∴<∧F 2+∧G 2-∧K >≥0,即2F +2G ≥K3、(a),(b)各10分(a) ∧H =ω∧z S +ν∧x S =2 ω[1001-]+2 ν[0110]=2[ωννω-]∧H ψ=E ψ,ψ=[b a ],令E =2λ,则[λωννλω---][b a ]=0,︱λωννλω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2 22νω+,E 2=222νω+当ω»ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22E 1≈-2 [ω+ων22],E 2 =2[ω+ων22](b )∧H =ω∧z S +ν∧x S =∧H 0+∧H ’,∧H 0=ω∧z S ,∧H ’=ν∧x S∧H 0本征值为ω 21±,取E 1(0)=-ω 21,E 2(0)=ω 21相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01] 则∧H ’之矩阵元(S z 表象)为'11H =0,'22H =0,'12H ='21H =ν21E 1=E 1(0)+'11H +)0(2)0(12'21E E H -=-ω 21+0-ων 2241=-ω 21-ων241E 2=E 2(0)+'22H +)0(1)0(22'12E E H -=ω21+ων2414、E 1=2222ma π,)(1x ψ=⎪⎩⎪⎨⎧0sin 2a x a π a x x a x ≥≤<<,00x =dx x a⎰021ψ=2sin 202a dx a x x a a=⎰π x p =-i ⎰=adx dx d 011ψψ-i ⎰=aa x d a 020)sin 21(2πx xp =-i ⎰⎰-=aa a xd a x x a i dx dx d x 0011)(sin sin 2ππψψ =⎰-aa x xd a i 02)(sin 1π =0sin [12a a x x a i π --⎰adx a x 02]sin π=0+⎰=ai dx ih 02122 ψ 四项各5分5、(i ),(ii )各10分(i )s =0,为玻色子,体系波函数应交换对称。
量子力学试题及答案
量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。
A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。
A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。
A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。
A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。
A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。
答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。
答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。
答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。
德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。
这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。
2. 什么是量子隧穿效应?请给出一个实际应用的例子。
量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。
这一效应是量子力学中特有的,与经典物理学预测的结果不同。
一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。
量子力学试题
量子力学试题一、选择题1. 量子力学中的波函数描述了什么?A. 粒子的运动轨迹B. 粒子的概率分布C. 粒子的质量D. 粒子的电荷2. 海森堡不确定性原理表明了哪两者之间存在不确定性关系?A. 粒子的位置和速度B. 粒子的动能和势能C. 粒子的自旋和宇称D. 粒子的质量和能量3. 薛定谔方程是量子力学中的哪个基本方程?A. 能量守恒方程B. 波动方程C. 动力学方程D. 热力学方程4. 泡利不相容原理指的是什么?A. 两个相同的粒子不能处于同一个量子态B. 两个不同的粒子不能处于同一个量子态C. 所有的粒子都不能处于相同的量子态D. 电子不能处于相同的能级5. 量子纠缠是指什么现象?A. 两个粒子间存在即时的作用,无论距离多远B. 两个粒子间不存在任何相互作用C. 两个粒子间的作用受到速度的限制D. 两个粒子间的作用受到距离的限制二、填空题6. 在量子力学中,一个粒子的波函数必须满足________方程,才能保证物理现象的预测与实验结果相符。
7. 量子力学中的“观测者效应”表明,观测本身会对________产生影响,从而改变其状态。
8. 双缝实验展示了粒子的________和________的双重性质,这是量子力学区别于经典力学的重要特征之一。
9. 根据德布罗意假说,任何物质都具有波粒二象性,电子的德布罗意波长可以通过公式λ = \frac{h}{p}计算,其中h是________,p是________。
10. 量子力学中的“隧穿效应”是指粒子能够穿越一个经典力学中不可能穿越的________。
三、简答题11. 请简述普朗克量子假说的内容及其对物理学的影响。
12. 描述波恩规则的基本内容,并给出一个实际应用的例子。
13. 解释什么是量子退相干,并说明它在量子计算中的重要性。
14. 阐述波函数坍缩的概念,并讨论它在量子测量理论中的作用。
15. 讨论量子纠缠在量子信息科学中的应用及其潜在的科学意义。
量子力学试题
量子力学试题(一)及答案 一. (20分)质量为m 的粒子,在一维无限深势阱中 中运动,若0=t 时,粒子处于状态上,其中,()x n ϕ为粒子能量的第n 个本征态。
(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为 (1) 首先,将()0,x ψ归一化。
由可知,归一化常数为于是,归一化后的波函数为 能量的取值几率为能量取其它值的几率皆为零。
(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。
二. (20分)质量为m 的粒子在一维势阱中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。
解:对于02<-=V E 的情况,三个区域中的波函数分别为 其中,在a x =处,利用波函数及其一阶导数连续的条件 得到 于是有此即能量满足的超越方程。
当021V E -=时,由于故40ππ-=n a mV, ,3,2,1=n最后,得到势阱的宽度三.(20分)设厄米特算符Hˆ的本征矢为n ,{n 构成正交归一完备系,定义一个算符(1) 计算对易子()[]n m U H,ˆ,ˆ; (2) 证明()()()p m U q p U n m U nq ,ˆ,ˆ,ˆδ=+;(3) 计算迹(){}n m U,ˆTr ; (4) 若算符A ˆ的矩阵元为nm mn A A ϕˆ=,证明 解:(1)对于任意一个态矢ψ,有 故(2)()()()p m U q p U n m U nq q p n m ,ˆ,ˆ,ˆδϕϕϕϕ== (3)算符的迹为(4)算符 而四. (20分)自旋为21、固有磁矩为s γμ=(其中γ为实常数)的粒子,处 于均匀外磁场k 0 B B =中,设0=t 时,粒子处于2=x s 的状态,(1) 求出0>t 时的波函数;(2) 求出0>t 时x sˆ与z s ˆ的可测值及相应的取值几率。
量子力学试题
量子力学试题(共21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--量子力学试题(一)及答案一. (20分)质量为m 的粒子,在一维无限深势阱中()⎩⎨⎧><∞≤≤=a x x a x x V ,0 ,0,0中运动,若0=t 时,粒子处于 ()()()()x x x x 3212131210,ϕϕϕψ+-=状态上,其中,()x n ϕ为粒子能量的第n 个本征态。
(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为()xan a x n n m a E n n πϕπsin 2,3,2,1 ,22222===(1) 首先,将()0,x ψ归一化。
由12131212222=⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛c 可知,归一化常数为 1312=c 于是,归一化后的波函数为 ()()()()x x x x 3211331341360,ϕϕϕψ++-=能量的取值几率为 ()()()133;134;136321===E W E W E W 能量取其它值的几率皆为零。
(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为()()()()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=t E x t E x t E x t x 332211i exp 133i exp 134i exp 136, ϕϕϕψ(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。
二. (20分)质量为m 的粒子在一维势阱()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V ,00,0.0 中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 2 2 h 2 8ma 2
(n 1, 2,3,......)
n
1 n sin ( x a) 2a a
( x a)
( x a)
n 0
3、假设微观粒子被关在一维无限深势阱中,a 表示势阱的宽度,在阱内势能等于零,在阱 外势能为无穷大。求能量本征值 运动粒子的归一化波函数。
(A 卷)证明计算题(共每小题 6 分,共 12 分)
1、 (15 分)证明算符对易式 证: (分) (分) (分)
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1.证明: [ AB, C ] A[ B, C ] [ A, C ]B
。
(要求写出完整的证明过程)
ˆ ˆ ˆ CAB ˆˆ ˆ ˆ ˆ, C ˆ ] ABC (1) [ AB
3、写出定态薛定谔方程:
。 ih
h2 2 U t 2m
4\泡利矩阵 x 分量
。 x
0 1 1 0
* ˆ 。 A d
5、力学量的平均值的积分形式为: 6、
表示粒子在时刻 t 、位置 r 出现的概率密度。 (r, t )
2
L11 7、平均值公式的矩阵表式为: L ( a , a , ) L21 ...
ˆ 也是 也是 H ˆ 的属于同一本征值 E的 的本征态。 即G
(8 分)
ˆ ] 0 , 与 G ˆ ,G ˆ 也是 一般不是同一本征态,这是因为,对于 F ˆ 的本征态 ,即 但由于 [ F ˆ G ˆF ˆ F ' F ' G ˆG ˆ G ˆ F ˆ 是不同的量子态。但它们是 H ˆ 也是 不是 F ˆ 的本征态。但 是 F ˆ 的本征态,故 与 G ˆ 即G
ˆ 的本征函数是 利用波函数的归一化条件,可得 S x
2 2 2 , 2 , 2 2 2 2
(1 分)
h 利用本征函数可得本征值 。 2
(1 分)
2 ˆ 的本征值是 h ,对应的本征函数是 2 , 同理求得 S y 2 2 i 2
4、 (分)求自旋算符 函数。
及
的本征值和所对应的本征
ˆ 的本征值是 s ,本征函数是 x ,则满足 解:设 S x x y
x h 0 1 x 1 0 y s x y (1 分) 2 求解上式,可得 x 2 y 2 , (1 分)
(B 卷)一、判断题。判断以下概念是否正确,对的打(√),错的打(×)(每题 2 分,共 20 分) 1、经典黑体辐射理论存在困难的原因是平均能量与频率相关。( 因是与温度相关。 2、波函数 (r , t ) 和 ) 答案 ×存在困难的原
C (r , t ) 描述的是同一粒子的相对概率密度相等。 ( )
等证明:
。
2、如果体系有两个彼此不对易的守恒量,则体系的能级一般是简并的。 (16 分)
ˆ,H ˆ]0,F ˆ 和H ˆ 可有共同的本征态 。这样 证明:因为 [ F ˆ E H ˆ F ' . F
ˆ,H ˆ ] 0 ,从而有 考虑到 [G ˆ G ˆH ˆ , ˆG ˆ EG H
rr i u ( pr Et ) h,Biblioteka 。 质心的平动,原子中电子的
0 i i 0
5、 多电子角动量耦合的方式有: : 6、 ( , )* 。
耦合和
耦合。 L-S 耦合和 j-j 耦合
( , )
(A 卷)三、简答题(每题 7 分,共 21 分) 1. 简述量子力学波与经典平面波的区别. 答: 1.量子的干涉是波内部的干涉, 经典平面波是波与波之间的干涉, 2.传播方式不一样,经典 是粒子间的相互作用,而量子力学中波是概率波,与粒子间相互作用无关,没有确定的轨道.3. 波峰波谷:经典平面波的振同与能量有关,量子力学中表示概率大小.4.可否归一(束缚态),量子 力学平面波可以归一,经典平面波是发散的.5.量子力学:给出波函数可以得到物理量物理量 的周期性(粒子的分布)看成波的振幅,6.量子力学中机率波(去掉干涉,衍射,保留叠加性),7. 量子力学波是线叠加,满足态叠加原理.
2
( x a , x a )
阱内: 1 k 1 0 其中 k
2
2mE h2
方程的通解为: 1 ( x) A cos kx B sin kx 波函数连续性的边界条件为:
1 (2a) 2 (2a) 0, 1 (2a) 2 (2a ) 0
h 2 d 2 1 解:在阱内: E 1 2m dx 2
在阱外:
''
(a x 0)
h 2 d 2 2 2 E 2 2m dx 2
2
( x a, x 0)
阱内: 1 k 1 0 其中 k
2
2mE h2
方程的通解为: 1 ( x) A cos kx B sin kx 波函数连续性的边界条件为:
(分)
J 0 t
B 卷三、简答题(每题 7 分,共 21 分) 1、简述态叠加原理及其物理意义. 答:若 Ψ1 与 Ψ2 为描述粒子的两个不同状态的波函数,它们的线性叠加态 Ψ=c1Ψ1+c2Ψ2, 表示粒子既可能处于 Ψ1 态又可能处于 Ψ2 态,处于这两个态的概率分别为
2、简述量子力学中守恒量和定态的概念,说明他们的区别。 答:守恒量是物理系统一种特殊的物理量(力学量) , (分) 守恒量在系统一切可能的状态下, 其平均值 (分) ( 分)
3、电子只有粒子性没有波动性。(
4、杨氏双缝干涉实验屏上出现条纹的原因是因为粒子入射过程中粒子间的干涉.(
× 量子力学的干涉衍射是波内部的干涉衍射而非粒子间的干涉衍射,即使每次只有一个粒 子入射也会出现明暗条纹。 5、粒子在全空间出现的机率是发散的. ( ) ×是归一化的 ) √
6、线性算符之和仍然是线性算符,满足加法的交换律和结合律. ( 7.
西南科技大学 2013-2014-2 学期
《原子物理与量子力学》本科期末考试 参考答案及评分细则
课程代码 2 4 3 9 9 0 8 2 0 命题单位 国防学院:核工程与技术教研室
(A 卷)一、判断题。判断以下概念是否正确,对的打(√),错的打(×)(每题 2 分,共 20 分) 1、经典黑体辐射理论的困难是在短波波段理论与实验事实相悖。( 灾难” 。 2、 玻尔的氢原子理论指出, 原子结构不发生坍塌的原因是规定体系处在一些不连续的定态, 不向外辐射能量。( ) √ ) ×物质具有波粒二象性。 ) ) 答案 ×应该是”紫外
(ˆ l 2 , lˆz ) 有共同的本征函数. √其共同本征函数是球谐函数.
8、自旋是电子的一种内禀属性,与坐标动量无关. √ 9、一个轨道里最多只能容纳 2 个电子,它们的自旋方向相同。( ) ×自旋方向相同
10、能量最低原理认为,基态原子核外电子的排布力求使整个原子的能量处于最低状态。 ( )√
2、证明:厄米算符的平均值为实数。 (要求写出完整的证明过程)
ˆ 的平均值为 证明: (1)由厄米算符的定义,在任意状态 下,厄米算符 A
ˆ ) (A ˆ , ) ( , A ) * A * , A ( , A
即厄米算符的平均值必为实数,得证。
2、 (10 分)已知
,利用基本对易式
√
3、因为物质具有波粒二象性,所以电子既具有波的特点,又具有粒子性。√ 4、 杨氏双缝干涉实验过程中如果控制粒子入射,保证一次只有一个粒子入射,则屏上不会出现 明暗条纹. ( ) × 量子力学的干涉衍射是波内部的干涉衍射而非粒子间的干涉衍射,即使
每次只有一个粒子入射也会出现明暗条纹。 .5、量子力学中的算符运算适合于所有坐标系。( 商不协变. 6、算符运算顺序可以随便互换.( ) ×不是所有的算符都可以相互对易,所以不能随便调换运 算顺序. 7、 把原子放入磁场中,其光谱线发生分裂,光谱线的分裂反映原子的简并能级发生分裂, 即能 级简并被解除或部分解除。 √ 7、 把原子放入磁场中,其光谱线发生分裂,谱线分裂成三种成分的叫做反常塞曼效应.×正常塞 曼效应. 8、核外电子填充过程中, 5S 能级比 4d 低。( ) √ E=n+0.7l ) ×适用于直角坐标系,对于球坐标等微
2 2 2 i 2
(1 分) 。
4、 (分)设角动量算符(
,
)的共同本征态为
,计算
的平均值。
解:本征态 lm 满足本征方程
r L2 lm l (l 1)h 2 lm
Lz lm mh lm
(1 分)
和取各本征值的概率不随时间改变。 (分)
3、简述题:微扰理论的基本思想是: 哈密顿拆分为:
ˆ H ˆ H ˆ H 0
ˆ 然后逐级近似:以 H 0 的本征态和本征值为基础, 逐级近似考虑微扰项
ˆ 的影响, ˆ H 求出 H的
本征值和本征函数的逐级近似解,得到微扰修正的结果,直至达到需要的精度为止。
* 1 * 2
L12 L22 ...
... a1 ... a2 。 ...
(B 卷) 二、填空题(每空题 2 分,共 18 分) 1、爱因斯坦的光量子假说指出:能量 E= ,动量 P= 。 (每空 1 分)
E h , p hk
2、两体问题质心系运动可以分解为 相对运动. 3、写与量子力学波函数的指数表式现式: 4、泡利矩阵 y 分量 。 y 。 Ae
的同一能级的态,故能级简并。
(8 分)
3、假设微观粒子被关在一维无限深势阱中,4a 表示势阱的宽度,在阱内势能等于零,在 阱外势能为无穷大。求能量本征值 运动粒子的归一化波函数。
解:在阱内: