对数函数图像及其性质题型归纳

合集下载

指数、对数常见题型

指数、对数常见题型

一、指数函数指数函数的图象和性质二、对数函数对数函数的性质:一、指数函数1.比较大小①较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.练习1:比较下列各组数的大小(1),(2)2、求解有关指数不等式(1) 已知2321(25)(25)x x a a a a -++>++,则x 的取值围是___________. 分析:利用指数函数的单调性求解,注意底数的取值围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x 的取值围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.(2)已知(3)解不等式3.求定义域及值域问题 例3 求函数216x y -=-的定义域和值域.解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞. 令26x t -=,则1y t=-,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.练习1:函数的定义域为 .练习2 当x练习3 函数(a>0且a 的定义域和值域都是[0,2],则实数a的值为4.最值问题例4 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a≤≤,即1t a a≤≤.∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a≤≤,即1a t a≤≤,∴ 1t a=时,2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13.评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.练习1:已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x 的最大值和最小值练习2: 设 ,求函数 的最大值和最小值题型五:单调区间问题(主要根据复合函数单调性满足“同增异减”) 例:求函数2222++-=x x y 的定义域,值域和单调区间练习:函数y =23231+-⎪⎭⎫⎝⎛x x 的单调区间.二对数函数1.求定义域{求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

第19讲 对数函数图像及性质

第19讲 对数函数图像及性质

第19讲对数函数图像及性质【知识点梳理】1.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数,它是指数函数x y a =(0a >且1)a ≠的反函数.对数函数的图象:由于对数函数是指数函数的反函数,所以对数函数的图象只须由相应的指数函数图象作关于y x =的对称图形,即可获得.同样也分1a >与01a <<两种情况归纳:以2log y x =与12log y x =为例1a >01a <<图象性质定义域:(0)+∞,值域:R过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y≤(2)底数变化与图象变化的规律在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)图2-3-3【典型例题】题型一:对数函数的概念【例1】下列函数是对数函数的是()A .()log 2a yx =B .lg10xy =C .()2log a y x x =+D .ln y x=【题型专练】1.已知函数①4x y =;②log 2x y =;③3log y x =-;④0.2log y =3log 1y x =+;⑥()2log 1y x =+.其中是对数函数的是()A .①②③B .③④⑤C .③④D .②④⑥题型二:对数函数的定义域【例1】函数()ln 1f x -的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4【例2】函数y =)A .2,3⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞ ⎪⎝⎭C .2,13⎛⎤⎥⎝⎦D .[)1,+∞【例3】已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,则函数2(log )y f x =的定义域为()A .(0,)+∞B .(0,1)C .2⎤⎥⎣⎦D .⎤⎦【例4】下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是()A .y =xB .y =lg xC .y =2xD .y【例5】已知函数()21f x +的定义域为[]1,2,则函数()()()lg 2f x g x x =-的定义域为()A .[]2,5B .()(]2,33,5⋃C .(]2,5D .[)(]2,33,5⋃【题型专练】1.函数()()2ln 56f x x x =-+-的定义域是__________.2.已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是()A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .3.函数()()1log 121-=x x f 的定义域为().A .(),2-∞B .()2,C .()1,2D .(]1,24.函数()21log (3)f x x =-的定义域为题型三:对数函数的定义域为R 和值域为R 的区别【例1】已知函数()()2lg 32f x ax x =++的定义域为R ,则实数a 的取值范围是___________.【例2】函数()()2lg 234f x mx x =-+的值域为R ,则实数m 的取值范围为______.【题型专练】1.(1)若函数()()22log 1f x ax ax =++的定义域为R ,则实数a 的取值范围是___________;(2)若函数()()22log 1f x ax ax =++的值域为R ,则实数a 的取值范围是___________.2.若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。

专题27 对数函数的图像和性质(一)(解析版)

专题27 对数函数的图像和性质(一)(解析版)

专题27 对数函数的图像和性质(一)题组1 对数函数的图像1.已知函数f (x )=133,1log ,1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A. B. C. D.【答案】D【解析】先画出函数f (x )=133,1log ,1x x x x ⎧≤⎪⎨>⎪⎩的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象,故选:D.2.函数f (x )=10x 与函数g (x )=lgx 的图象 A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于y=x 对称【答案】D【解析】因为f (x )=10x 与函数g (x )=lgx 是一对反函数,所以其图象关于y=x 对称. 故选D. 3.函数f (x )=ln|11xx+-|的大致图象是( ) A. B. C. D.【答案】D【解析】因为()()11lnln 11x xf x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.4.函数f (x )=log 2(x+1)与g (x )=2﹣x +1在同一直角坐标系下的图象大致是( )A. B. C. D.【答案】B 【解析】定义域为,函数为增函数;定义域为,函数为减函数,所以结合指数函数对数函数的性质可知B 图像正确5.已知函数f(x)=-x 2+2,g(x)=log 2|x |,则函数F(x)=f(x)·g(x)的图象大致为( )A. B. C. D.【答案】B【解析】由题意得,函数()(),f x g x 为偶函数,∴函数()()()F x f x g x =为偶函数,其图象关于y 轴对称, 故只需考虑0x >时的情形即可.由函数()(),f x g x 的取值情况可得,当0x >时,函数()F x 的取值情况为先负、再正、再负, 所以结合各选项得B 满足题意.故选B. 6.设函数()()21ln 11f x x x=+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A.1,13⎛⎫ ⎪⎝⎭B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞+∞ ⎪⎪⎝⎭⎝⎭【答案】A【解析】因为函数()()21ln 11f x x x =+-+定义域为R ,关于原点对称, 且()()()()()2211ln 1ln 111f x x x f x xx -=+--=+-=++-, 所以函数()f x 是偶函数, 又()f x 在()0,∞+是增函数, 所以()()21f x f x >-等价于()()21fx f x >-,所以2213410x x x x >--+<,, 解得113x <<,故选:A7.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( )A. B. C . D.【答案】C【解析】函数2()ln(1)x xe ef x x --=+,则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln(1)x xe ef x x --=→+∞+,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+, 排除D 选项;综上可知,C 为正确选项, 故选:C. 8.函数()1ln 1y x x=-+的图象大致为( ) A. B. C. D.【答案】A【解析】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 9.函数()()22ln 11x f x x +=+的大致图像为( )A. B. C. D.【答案】B【解析】因为()()22ln 11x f x x +=+是由()22ln xg x x=向左平移一个单位得到的, 因为()22ln ()(0)()xg x g x x x --==≠-,所以函数()22ln xg x x=为偶函数,图像关于y 轴对称, 所以()f x 的图像关于1x =-对称,故可排除A ,D 选项; 又当2x <-或0x >时,2ln 10x +>,()210x +>, 所以()0f x >,故可排除C 选项 故选:B .10.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A. B. C. D.【答案】D【解析】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.故选:D11.函数()24ln x f x x=的部分图象大致为( )A. B. C. D.【答案】A【解析】因为()24ln x f x x =是偶函数,排除B ,当01x <<时,ln 0x <,()204ln x f x x=<,排除C , 当x e =时()214ef e =>,排除D.故选:A.12.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣2x ﹣3,求当x≤0时,不等式f (x )≥0整数解的个数为( ) A.4 B.3 C.2 D.1 【答案】A【解析】由函数为奇函数可知当x≤0时,不等式f (x )≥0整数解的个数与0x ≥时()0f x ≤的个数相同,由奇函数可知()00f =,由2230x x --≤得()()320x x -+≤,所以整数解为1,2,3,所以满足题意要求的整数点有4个 13.若x 1,x 2是方程2x =12⎛⎫ ⎪⎝⎭+1-1x 的两个实数解,则x 1+x 2=________.【答案】-1 【解析】 ∵2x =1112x-+⎛⎫⎪⎝⎭,∴2x =112x -,∴x =1x-1,∴x 2+x -1=0. ∴x 1+x 2=-1. 故答案:-114.已知函数()lg f x x =.(1)画出函数()y f x =的草图,并根据草图求出满足()1f x >的x 的集合; (2)若0a b <<,且()()f a f b >,求证:1ab <. 【答案】(1)图见解析,(0,110)∪(10,+∞).(2)证明见解析 【解析】(1)画出函数()y f x =的草图,如图所示:令()1f x =,则lg 1,lg 1x x ==±,可得10x =或110x =. 故满足()1f x >的x 的集合为1(0,)(10,)10⋃+∞. (2)证明:若0a b <<,且()()f a f b >,则lg lg a b >. 当01a b <<≤时, lg lg a b >显然成立且1ab <.当01a b <≤≤,因为lg lg a b >则lg lg lg +lg 0lg 01a b a b ab ab -><⇒<⇒<,成立 当1a b ≤<时, lg lg a b >不成立. 综上所述1ab <成立.15.已知函数2()4||3f x x x =-+,(1)试证明函数()f x 是偶函数;(2)画出()f x 的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分) (3)请根据图象指出函数()f x 的单调递增区间与单调递减区间;(不必证明)(4)当实数k 取不同的值时,讨论关于x 的方程24||3x x k -+=的实根的个数;(不必求出方程的解) 【答案】(1)详见解析(2)详见解析(3)增区间()()+∞-,2,0,2减区间)2,0(),2,(--∞(4)①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根【解析】(1)()f x 的定义域为R ,且2()()4||3f x x x -=---+ 24||3()x x f x =-+=故()f x 为偶函数; (2)如图(3)递增区间有:()()+∞-,2,0,2 递减区间有:)2,0(),2,(--∞ (4)根据图象可知,①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根; ③当3k =时,方程有三个实数根; ④当13k -<<时,方程有四个实数根; 16.已知函数f (x )=x ln x -x .(1)设g (x )=f (x )+|x -a |,a ∈R.e 为自然对数的底数.①当32a e=-时,判断函数g (x )零点的个数; ②1,x e e ⎡⎤∈⎢⎥⎣⎦时,求函数g (x )的最小值.(2)设0<m <n <1,求证:()2201mf n m +<+ 【答案】(1)① g (x )有且仅有两个零点.②a -e.(2)证明见解析 【解析】(1)①当32a e =-时, g (x )=x ln x -x +|x +32e |=x ln x +32e, g′(x )=1+ln x ,当0<x <1e 时,g′(x )<0;当x >1e时,g′(x )>0; 因此g (x )在(0,1e )上单调递减,在(1e,+∞)上单调递增,又434412424g =0e e e e e -⎛⎫-=> ⎪⎝⎭,g (1e )=-1e +23322e e e-=<0,g (1)=32e >0, 所以g (x )有且仅有两个零点. ②(i )当a ≤1e时,g (x )=x ln x -x +x -a =x ln x -a , 因为x ∈[1e ,e ],g′(x )=1+lnx ≥0恒成立, 所以g (x )在[1e ,e ]上单调递增,所以此时g (x )的最小值为g (1e )=-1e-a .(ii )当a ≥e 时,g (x )=x ln x -x +a -x =x ln x -2x +a ,因为x ∈[1e ,e],g′(x )=ln x -1≤0恒成立, 所以g (x )在[1e ,e ]上单调递减,所以此时g (x )的最小值为g (e )=a -e .(iii )当1e <a <e 时,若1e≤x ≤a ,则g (x )=x ln x -x +a -x =x ln x -2x +a , 若a ≤x ≤e ,则g (x )=x ln x -x +x -a =x ln x -a , 由(i ),(ii )知g (x )在[1e,a ]上单调递减,在[a ,e ]上单调递增, 所以此时g (x )的最小值为g (a )=a ln a -a , 综上有:当a ≤1e 时,g (x )的最小值为-1e-a ;当1e<a <e 时,g (x )的最小值为a ln a -a ; 当a ≥e 时,g (x )的最小值为a -e . (2)设h (x )=221xx +, 则当x ∈(0,1)时,h′(x )=()()222211x x -+>0,于是h (x )在(0,1)单调递增,又0<m <n <1,所以h (m )<h (n ), 从而有()()()2222ln 111m f n f n h n n n m n ⎛⎫+<+=-+ ⎪++⎝⎭设φ(x )=22ln 11n n -++,x >0 则φ′(x )=()()()222222114011x xx x x x --=≥++因此φ(x )在(0,+∞)上单调递增,因为0<n <1,所以φ(n )<φ(1)=0,即ln n -1+221n +<0, 因此()2222ln 1011m f n n n m n ⎛⎫+<-+< ⎪++⎝⎭ 即原不等式得证.17.已知函数f (x )=xln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ). (1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数; (2)当1[,]x e e∈时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围. 【答案】(1)答案不唯一,见解析;(2)3<a ≤e +2e+1. 【解析】(1)()1f x lnx '=+, 所以切线的斜率()11k f ='=, 又()10f =,所以曲线在点(1,0)处的切线方程为1y x =-,由221y x ax y x ⎧=-+-⎨=-⎩,得2(1)10x a x +-+=,由△22(1)423(1)(3)a a a a a =--=--=+-可得,当△0>时,即1a <-或3a >时,有两个公共点,当△0=时,即1a =-或3a =时,有一个公共点,当△0<时,即13a -<>时,没有公共点,(2)2()()2y f x g x x ax xlnx =-=-++,由0y =,得2a x lnx x =++, 令2()h x x lnx x =++,则2(1)(2)()x x h x x -+'=,当1[x e ∈,]e 时,由()0h x '=,得1x =,所以()h x 在1[e ,]e 上单调递减,在[1,]e 上单调递增,因此()()13min h x h ==,由11()21h e e e =+-,()21h e e e =++,比较可知()1h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得,当231a e e <++时,函数()()y f x g x =-有两个零点.18.根据函数f(x)=log 2x 的图像和性质解决以下问题:(1)若f(a)>f(2),求a 的取值范围;(2)求y =log 2(2x -1)在[2,14]上的最值.【答案】(1) (2,+∞) (2) 最小值为log 23,最大值为log 227【解析】(1)由函数2()log f x x =的单调性及()(2)f a f >,即可求出a 的取值范围;(2)根据定义域为[2,14],表示出21x -的取值范围,结合对数函数的性质,即可求得最值.试题解析:函数f (x )=log 2x 的图象如图:(1)因为f (x )=log 2x 是增函数,故f (a )>f (2),即log 2a >log 22,则a >2.所以a 的取值范围为(2,+∞).(2)∵2≤x ≤14,∴3≤2x -1≤27,∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在[2,14]上的最小值为log 23,最大值为log 227. 题组2 对数函数的性质 19.已知定义在R 上的函数()y f x =满足()()()111f x f x f x -=+=-,当[]12x ∈,时,2()log f x x =,若方程()0f x ax -=在()0+∞,上恰好有两个实数根,则正实数a 的值为( )A.2log ee B.1ln 2e C.12 D.2【答案】C【解析】由()()()111f x f x f x -=+=-,可知()f x 为偶函数,且一条对称轴为1x =,再由()()11f x f x +=-,可得()2()f x f x +=,即函数()f x 的周期为2.根据[]12x ∈,时,2()log f x x =作出函数()f x 的草图,如图所示:方程()0f x ax -=在()0+∞,上恰好有两个实数根,∴函数y ax =与()y f x =的图象在y 轴右侧有两个交点,设y ax =与2log y x =相切时,切点坐标为()020log x x ,,由1ln2y x '=,得2000log 1ln2x x x =,解得02x e =>.∴由图象可知,当直线y ax =过点()21,时,方程()0f x ax -=在()0+∞,上恰好有两个实数根,12a ∴=.故选:C .20.已知函数2|1|,0()log ,0x x f x x x +≤⎧=⎨>⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是( ). A.(1,)-+∞B.[1,1)-C.(,1)-∞D.(]1,1- 【答案】D 【解析】函数()21,0|log ,0x x f x x x ⎧+⎪=⎨>⎪⎩,的图象如下:根据图象可得:若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则11x a +=-,21x a +=,23log x a =-,24log x a =.(01)a <≤122x x +=-,32a x -=,42a x =∴则31222344()22221222a a a a a x x x x x ---++=-⋅+=-⋅. 令2a t ,(1t ∈,2],而函数2y t t=-在(1,2]单调递增. 所以211t t -<-≤,则21212a a ∴-<-. 故选:D.21.函数()log 1xa f x a x =-有两个不同的零点,则实数a 的取值范围是( ) A.()1,10B.()1,+∞C.0,1D.()10,+∞【答案】B【解析】函数()f x 有两个零点等价于1x y a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.22.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为()A.1,2⎛⎤-∞- ⎥⎝⎦ B.[)2,-+∞ C.12,2⎡⎤--⎢⎥⎣⎦ D.12,2⎡⎫--⎪⎢⎣⎭【答案】D【解析】当1x ≤时,(]2,2x y a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭,两段均为增函数,函数()f x 恰有两个零点,可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭.故选:D23.给出下列四个结论:(1)若集合A ={x,y },B ={0,2x },且A=B ,则x =1,y =0;(2)若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0);(3)函数1()f x x =的单调减区间是{}0x x ≠;(4)若()()()f x y f x f y +=⋅,且(1)2f =,则(2)(4)(2014)(2016)(2018)2018(1)(3)(2013)(2015)(2017)f f ff f f f f f f +++++=其中不正确的有______.【答案】(3)【解析】(1)因为A=B ,所以20,0,1x y x x x ≠==∴=,故(1)正确;(2)因为函数f (x )的定义域为(-1,1),所以121110x x -<+<∴-<<,故(2)正确; (3)函数1()f x x =的单调减区间是(,0)-∞和(0,)+∞,故(3)错误;(4)因为()()()f x y f x f y +=⋅,所以(1)()(1)2()f x f x f f x +=⋅=,因此(2)(4)(2014)(2016)(2018)210092018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=⨯=,故(4)正确; 故答案为:(3)题组3 对数值大小比较24.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ).A.b a c <<B.c b a <<C.c a b <<D.b c a <<【答案】C 【解析】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,225log log 107c =<=因此c a b <<故选:C.25.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是()A.2,13⎛⎫ ⎪⎝⎭ B.(0,1) C.20,3⎛⎫⎪⎝⎭ D.[)3,+∞【答案】C【解析】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数,∴01a <<,因为函数()f x 在[]0,3上为增函数,由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C .26.设3log 7a =, 1.12b =, 3.10.8c =,则( )A.b a c <<B.a c b <<C.c b a <<D.c a b << 【答案】D【解析】因为333log 7(log 3,log 9)a =∈,所以(1,2)a ∈; 1.122b =>; 3.100.80.81c =<=; 所以c a b <<,故选D.27.三个数0.76,60.7,0.7log 6的大小顺序是( )A.60.70.7log 60.76<<B.60.70.70.76log 6<<C.0.760.7log 660.7<<D.60.70.70.7log 66<< 【答案】A 【解析】因为0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=;所以60.70.7log 60.76<<.故选:A.28.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A.x y z <<B.y z x <<C.z y x <<D.z x y <<【答案】B【解析】0.40221x =>=,2lg lg105y =<=,0.4021525z ⎛⎫<= ⎪⎝⎫⎭⎭⎛=⎪⎝,又0z >,即01z <<.因此,y z x <<.故选:B.。

对数函数考点与题型归纳

对数函数考点与题型归纳

对数函数考点与题型归纳一、基础知识1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).y=log a x的3个特征(1)底数a>0,且a≠1;(2)自变量x>0;(3)函数值域为R.2.对数函数y=log a x(a>0,且a≠1)的图象与性质底数a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即恒有log a1=0当x>1时,恒有y>0;当0<x<1时,恒有y<0当x>1时,恒有y<0;当0<x<1时,恒有y>0在(0,+∞)上是增函数在(0,+∞)上是减函数注意当对数函数的底数a的大小不确定时,需分a>1和0<a,<1两种情况进行讨论.3.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.二、常用结论对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,1),⎝⎛⎭⎫1a ,-1,依据这三点的坐标可得到对数函数的大致图象.(2)函数y =log a x 与y =log 1ax (a >0,且a ≠1)的图象关于x 轴对称.(3)当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.考点一 对数函数的图象及应用[典例] (1)函数y =lg|x -1|的图象是( )(2)已知当0<x ≤14时,有x <log a x ,则实数a 的取值范围为________.[解析] (1)因为y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意.(2)若x <log a x 在x ∈⎝⎛⎦⎤0,14时成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,作出图象如图所示.由图象知14<log a 14, 所以⎩⎨⎧0<a <1,a 12>14,解得116<a <1.即实数a 的取值范围是⎝⎛⎭⎫116,1. [答案] (1)A (2)⎝⎛⎭⎫116,1 [变透练清]1.[变条件]若本例(1)函数变为f (x )=2log 4(1-x ),则函数f (x )的大致图象是( )解析:选C 函数f (x )=2log 4(1-x )的定义域为(-∞,1),排除A 、B ;函数f (x )=2log 4(1-x )在定义域上单调递减,排除D.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)3.[变条件]若本例(2)变为不等式x 2<log a x (a >0,且a ≠1)对x ∈⎝⎛⎭⎫0,12恒成立,求实数a 的取值范围.解:设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝⎛⎭⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x ) =x 2在⎝⎛⎭⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝⎛⎭⎫0,12上恒成立,需f 1⎝⎛⎭⎫12≤f 2⎝⎛⎭⎫12, 所以有⎝⎛⎭⎫122≤log a 12,解得a ≥116,所以116≤a <1. 即实数a 的取值范围是⎣⎡⎭⎫116,1.考点二 对数函数的性质及应用考法(一) 比较对数值的大小[典例] (2018·天津高考)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 因为c =log 1213=log 23>log 2e =a ,所以c >a .因为b =ln 2=1log 2e <1<log 2e =a ,所以a >b .所以c >a >b . [答案] D考法(二) 解简单对数不等式[典例] 已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.[解析] 原不等式⇔⎩⎪⎨⎪⎧ 0<x <1,2x 2+1>3x >1①或⎩⎪⎨⎪⎧x >1,2x 2+1<3x <1②,解不等式组①得13<x <12,不等式组②无解,所以实数x 的取值范围是⎝⎛⎭⎫13,12.[答案] ⎝⎛⎭⎫13,12考法(三) 对数型函数性质的综合问题[典例] 已知函数f (x )=log 4(ax 2+2x +3),若f (1)=1,求f (x )的单调区间. [解] 因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).[题组训练]1.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a解析:选C 0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213=log 23>1,∴c >a >b .2.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫12,+∞ D .(0,+∞)解析:选A ∵-1<x <0,∴0<x +1<1.又∵f (x )>0,∴0<2a <1,∴0<a <12.3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________. 解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增,则y =ax 2-x 在[3,4]上单调递增,且y =ax 2-x >0恒成立,即⎩⎪⎨⎪⎧12a ≤3,9a -3>0,解得a >13.答案:⎝⎛⎭⎫13,+∞[课时跟踪检测]A 级1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎡⎭⎫23,+∞D.⎝⎛⎭⎫23,+∞解析:选C 由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log2x B.12xC .log 12xD .2x -2解析:选A 由题意知f (x )=log a x (a >0,且a ≠1). ∵f (2)=1,∴log a 2=1.∴a =2.∴f (x )=log 2x . 3.如果log 12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:选D ∵log 12x <log 12y <log 121,∴x >y >1.4.(2019·海南三市联考)函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )解析:选C 函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图象可知选C.5.(2018·惠州调研)若a =20.5,b =log π3,c =log 2sin 2π5,则a ,b ,c 的大小关系为( ) A .b >c >a B .b >a >c C .c >a >bD .a >b >c解析:选D 依题意,得a >1,0<b =log π3<log ππ=1,而由0<sin 2π5<1,2>1,得c <0,故a >b >c .6.设函数f (x )=log a |x |(a >0,且a ≠1)在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定解析:选A 由已知得0<a <1,所以1<a +1<2,又易知函数f (x )为偶函数,故可以判断f (x )在(0,+∞)上单调递减,所以f (a +1)>f (2).7.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x 128.已知函数f (x )=log a (x +b )(a >0,且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0, 且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧ b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1.答案:19.(2019·武汉调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是________. 解析:由函数f (x )=log a (x 2-4x -5),得x 2-4x -5>0,得x <-1或x >5.令m (x )=x 2-4x -5,则m (x )=(x -2)2-9,m (x )在[2,+∞)上单调递增,又由a >1及复合函数的单调性可知函数f (x )的单调递增区间为(5,+∞).答案:(5,+∞)10.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________________.解析:由f (a )>f (-a )得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a 或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ).解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)11.求函数f (x )=log 2x ·log2(2x )的最小值.解:显然x >0,∴f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当x =22时,有f (x )min =-14. 12.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,且a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. B 级1.已知函数f (x )=log a x (a >0,且a ≠1)满足f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,则f ⎝⎛⎭⎫1-1x >0的解集为( ) A .(0,1) B .(-∞,1) C .(1,+∞)D .(0,+∞)解析:选C 因为函数f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为单调函数,而2a <3a 且f ⎝⎛⎭⎫2a >f ⎝⎛⎭⎫3a ,所以f (x )=log a x 在(0,+∞)上单调递减,即0<a <1,结合对数函数的图象与性质可由f ⎝⎛⎭⎫1-1x >0,得0<1-1x<1,所以x >1,故选C. 2.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916, 因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案:(0,+∞)3.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数, 所以f (x )=f (-x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).。

§5.3 对数函数的图像与性质

§5.3 对数函数的图像与性质
1 0, 2
.
解: 因为x 2 2 x 5 , 2 对一切实数都恒有 x 2 x 5 4 , 所以函数定义域为R, 从而 log2 ( x 2 x 5) log2 4 2 ,
2
即函数值域为 [ 2, ).
例题解析 2 (3) y log1 ( x 4 x 5)
由(2) 当a
2
,
综合(1)(2)得 1
x 0 且0 a 1 .
例题解析
1 当 1 x 0 时( x x )的 最 大 值 为 4
2
1 1 2 所以0 x x ,所以 loga ( x x ) loga 4 4
2
所以 原函数定义域为:
(2)考察对数函数y=log0.7x,因为 0.7<1 , 1.6<1.8所以 log0.71.6 >log0.71.8.
例题解析 例 3 求下列函数的定义域、值域:
(1) y 2
x 2 1
解:要使函数有意义,必须:2 2 即: x 1 2 1 x 1 2 值域:因为 1 x 1所以 1 x 0

练习 97页1 例6 在同一坐标系内函数y= x 与 y= 2 的函数图像
log
2
x
2.利用对称性画图. 因为指数函数y=2x (0<a≠1)与对数函数
y=log2x(0<a≠1) 的图像关于直线y=x
对称.
Y
5
Y=2x
Y=X ● ●
4
3 2 ● ● 1●


Y=log2x
-1 O -1
(3) y=log(x-1)(3-x); (4) y=log0.5(4x-3).

对数函数的图像与性质

对数函数的图像与性质

想 一 想 ?
对数函数解析式有哪些结构特征?
①底数:a>0,且 a≠1
②真数: 自变量为x
③系数:1
试一试,我能行!
下列函数中,哪些是对数函数? 2 ④ y logx a( x 0, 且x 1); ① y log a x ; ② y log 2 x 1; ⑤ y log5 x.
③y
2 log 8 x;
解: ①中真数不是自变量x,不是对数函数; ②中对数式后减1,不是对数函数; ③中系数不为1,不是对数函数; ④真数不是自变量x,而是常数,不是对数函数; ⑤是对数函数。
动脑思考 探索新知 问 题
利用“描点法”来作函数 y log 2 x 和 y log 1 x 的图像
解:⑴考察对数函数 y = log 2x, 因为a=2>1,所以y = log 2x在(0,+∞)上是增函数, 于是log 23.4<log 28.5 ⑵考察对数函数 y = log 0.3 x, 因为a=0.3,即0<0.3<1, 所以y = log 0.3 x在(0,+∞)上是减函数, 于是log 0.31.8>log 0.32.7

Байду номын сангаас
log a5.1 , log a5.9 ( a>0 , a≠1 )
分析:对数函数的增减性决定于对数的底数是 大于1还是小于1.而已知条件中并未指出底数a 与1哪个大,因此需要对底数a进行讨论: (3)当a>1时,函数y=log ax在(0,+∞)上是 增函数,于是log a5.1<log a5.9
< ㏑e ⑸㏑2___ >㏒3e ⑹㏒ 3π __
若A < B,则
log10A < log10B log0.5A >log0.5B

对数函数 对数函数的图像和性质

对数函数    对数函数的图像和性质
函数值变化情况:x>1时,y>0;x=1时,y=0; 0<x<1时,y<0. 单调性:在(0,+∞)上是增函数.
问题 2:函数 y=log 况及单调性如何?
1 2
x 的定义域、值域、函数值的情
提示:定义域:(0,+∞),值域:(-∞,+∞), 函数值变化情况:x>1 时,y<0;x=1 时,y=0; 0<x<1 时,y>0. 单调性:在(0,+∞)上是减函数. 问题 3:它们的图像有什么关系? 提示:关于 x 轴对称.
对数函数y=logax(a>0,且a≠1)的图像与性质 a>1 0<a<1


a>1
0<a<1 定义域:(0,+∞) 值域: R
图像过定点: (1,0)
性 当x>1时,y > 0, 当x>1时,y < 0, 质 当0<x<1时,y < 0 当0<x<1时,y > 0
增区间: (0,+∞)
奇偶性: 非奇非偶函数
答案:B
[例2]
作出函数y=lg|x|的图像,并由图像判断其奇
偶性,并求出f(x)>0的解集. [思路点拨] 先去掉绝对值号,画出y轴右边的图像,
再由对称性作出另一部分,最后结合图像求解集.
[精解详析]
lgx, = lg-x,
f(x)=lg|x| x>0, x<0.
又y=lgx与y=lg(-x)关于y轴对称,从而将函数y=lgx (x>0)的图像对称到y轴的左侧与函数y=lgx的图像合起来得 函数f(x)的图像,如图所示.由图知:此函数是偶函数, f(x)>0的解集为 (-∞,-1)∪(1,+∞).
(3)底不相同,真数也不相同的几个数,可通过特殊值来

对数函数知识点总结及练习题

对数函数知识点总结及练习题

1对数函数知识点总结及练习题1. 定义:设0a >且1a ≠﹐0x >,则函数()log a y f x x ==称为以a 为底数的对数函数。

2. 函数图形:对数函数y =log a x 的图形为一曲线﹒(1)通过定点(1,0)﹒(2)函数图形在y 轴右方(定义域:0x >)﹐值域y 为实数﹒(3)渐近线为y 轴﹒(4)1a >时﹐曲线凹向上,严格递增﹒01a <<时﹐曲线凹向上,严格递减﹒3. 函数图形的特性:(1) y =log a x 与1log a y x =的图形对称于x 轴﹒(2)指数函数 y =a x 与对数函数 y =log a x 的图形对称于直线 y =x 。

【练习】 1. 将下列函数 f (x )=2x ,g (x )=(21)x ,h (x )=log 2x ,k (x )=log 21x 的图形画在同一个直角坐标平面上,则这些函数图形共有几个交点? 【5】2. 下图(左)是 y =log a x 的图形,下列选项哪些是不可能的? 【ACDE 】(A) a =-2 (B) a =2 (C) a =21 (D) y =log a x 与 x 轴的交点为(2,0) (E) y =log a x 与 x 轴会有两个交点。

3. 上图(中)的曲线表 y =log a (x -k )的函数部分图形,其中 a ,k 为常数,虚线为其渐近线,点 A 为曲线与 x 轴之交点,点 B 为渐近线与 x 轴之交点,请选出正确选项?(A)渐近线平行 y 轴 (B) 0<a <1 (C) B (k ,0) (D)AB = 1 (E)函数曲线与直线 y =-200 无交点。

【ABCD 】4. 如上图(右),各对数函数的底数,分别为 a ,b ,c ,d ,下列哪些正确?(A) a >b >1(B) b >a >1 (C) b >c >1 (D) 1>c >d >0 € 1>d >c >0。

3.3对数函数y=logax的图像和性质(解析版)

3.3对数函数y=logax的图像和性质(解析版)

3.3对数函数y=log a x 的图像和性质1.对数函数的概念:一般地,形如log (01)a y x a a =>≠且的函数叫对数函数.2.对数函数log (01)a y x a a =>≠且的图像和性质。

log a y x = 1a > 1a <图像性质(1)定义域:(0,)+∞ (2)值域:R(3)图像过定点:(1,0) (4)在(0,)+∞上是增函数(1)定义域:(0,)+∞ (2)值域:R(3)图像过定点:(1,0) (4)在(0,)+∞上是减函数3.指对数函数性质比较图象特征函数性质共性 向x 轴正负方向无限延伸 函数的定义域为R 函数图象都在x 轴上方 函数的值域为R + 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都过定点(0,1) 过定点(0,1)0<a<1自左向右看,图象逐渐下降 减函数 在第一象限内的图象纵坐标都小于1 当x>0时,0<y<1; 在第二象限内的图象纵坐标都大于1 当x<0时,y>1图象上升趋势是越来越缓函数值开始减小极快,到了某一值后减小速度较慢; a>1自左向右看,图象逐渐上升 增函数 在第一象限内的图象纵坐标都大于1 当x>0时,y>1; 在第二象限内的图象纵坐标都小于1 当x<0时,0<y<1图象上升趋势是越来越陡函数值开始增长较慢,到了某一值后增长速度极快;1.作出以下函数的大致图像,并指出它的单调区间和奇偶性. (1)12log ()y x =-; (2)12log y x =-; (3)12log ||y x =.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析.【分析】根据函数解析式,由对数函数的性质求定义域区间,画出其大致图象,进而判断单调区间和奇偶性.【详解】(1)由12log ()y x =-知:定义域为(,0)-∞,图象如下:∴由图知:函数在(,0)-∞上单调递增,且为非奇非偶函数. (2)由12log y x =-知:定义域为(0,)+∞,图象如下:∴由图知:函数在(0,)+∞上单调递增,且为非奇非偶函数. (3)由12log ||y x =知::定义域为(,0)(0,)-∞+∞,图象如下:∴由图知:函数在(,0)-∞上单调递增,在(0,)+∞上单调递减,且偶函数.2.设a 与b 为实数,0a >,1a ≠.已知函数log ()a y x b =+的图象如图所示,求a 与b 的值.【答案】3a =,3b =【分析】由图象可知,函数图象过点(2,0),(0,2)-,将点的坐标代入函数中,可得关于,a b 的方程组,从而可求出,a b 的值【详解】由图象可知,函数log ()a y x b =+的图象过点(2,0),(0,2)-, 所以0log (2)a b =-+,且2log a b =,由0log (2)a b =-+,得21b -+=,解得3b =, 则2log 3a =,得3a =, 所以3a =,3b =3.在同一平面直角坐标系中画出下列函数的图像,并指出它们之间的关系. (1)5log y x =; (2)15log y x =;(3)5x y =.【答案】(1)答案见解析 (2)答案见解析 (3)答案见解析【分析】根据指数函数和对数函数的解析式画出对应的图象,利用数学结合的思想即可得出函数之间的关系. (1) 如图所示; (2)如图所示,函数5log y x =与函数15log y x=的图像关于x 轴对称;(3)如图所示,函数5log y x =与函数5x y =的图像关于直线y x =对称.题型二:判断对数函数的图像 1.函数eln ||()e e x xx f x -=+的图像大致为( )A .B .C .D .【答案】C【分析】判断出()f x 是偶函数,结合102f ⎛⎫< ⎪⎝⎭可选出答案.【详解】由已知可得函数的定义域为{}0x x ≠,eln ||eln ||()()e e e e x x x xx x f x f x ----===++,所以()f x 是偶函数,函数图像关于y 轴对称,可排除 A ,B ; 由11221eln 1202e e f -⎛⎫ ⎪⎛⎫⎝⎭=< ⎪⎝⎭+,可排除D . 故选:C2.函数ln||1()e x f x x=+的图像大致为( ) A . B . C . D .【答案】A【分析】当0x >时,根据函数的极值可以排除C 、D ,当0x <时,根据函数的单调性可以排除B ,从而得到结果. 【详解】当0x >时,1()f x x x=+,在1x =处取得最小值,排除C 、D , 当0x <时,1()f x x x=-为减函数, 故选:A .3(多选).在同一坐标系中,函数x y a -=与log (0,a y x a =>且1)a ≠的图象可能是( )A .B .C .D .【答案】BD【分析】分情况进行讨论指数函数与对数函数的图象即可求解.【详解】当1a >时,x y a -=定义域为R ,且在R 上单调递减,log a y x =定义域为(0,)+∞,且在(0,)+∞上单调递增,D 符合;当01a <<时,x y a -=定义域为R ,且在R 上单调递增,log a y x =定义域为(0,)+∞,且在(0,)+∞上单调递减,B 符合.故选:BD .题型三:根据对数函数图像判断参数范围1.已知函数()()log a f x x b =-(0a >且1a ≠,a ,b 为常数)的图象如图,则下列结论正确的是( )A .0a >,1b <-B .0a >,10b -<<C .01a <<,1b <-D .01a <<,10b -<<【答案】D【分析】根据函数图象及对数函数的性质可求解.【详解】因为函数()()log a f x x b =-为减函数,所以01a << 又因为函数图象与x 轴的交点在正半轴,所以10x b =+>,即1b >- 又因为函数图象与y 轴有交点,所以0b <,所以10b -<<, 故选:D2.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【答案】D【分析】根据对数函数的图象与单调性确定大小.【详解】y =log ax 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log bx ,y =log cx 的图象在(0,+∞)上都是下降的,因此b ,c ∈(0,1),又易知c >b ,故a >c >b . 故选:D .3.已知函数f (x )=ln(x +a )的图象不经过第四象限,则a 的取值范围是( ) A .(0,1) B .(0, +∞)C .(0,1]D .[1,+∞)【答案】D【分析】根据对数函数的图象结合图象平移变换可得.【详解】()f x 的图象是由ln y x =的图象向左平移a 个单位所得.ln y x =的图象过(1,0)点,函数为增函数,因此1a ≥. 故选:D .二、多选题4.已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a-=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.)x a -1.函数()log ,(01)a f x x a a =>≠且的图象所过定点的坐标为___________. 【答案】(1,0)【分析】由对数函数的性质求解,【详解】由题意得(1)0f =,()f x 的图象过定点(1,0), 故答案为:(1,0)2.函数()()log 111a y x a =++>必过定点___________. 【答案】(0,1)【分析】根据对数函数的性质,令0x =即可确定定点. 【详解】由对数的性质知:当0x =时log 111a y =+=, 所以函数必过定点(0,1). 故答案为:(0,1)3.已知0a >且1a ≠,若函数()x mf x a n +=+与()()log 14a g x x =-+的图象经过同一个定点,则m n +=__________. 【答案】1【分析】由log 10a =可得出函数()g x 所过定点,再由01a =可得出,m n 的值,得出答案. 【详解】函数()()log 14a g x x =-+的图象经过定点()2,4所以()x m f x a n +=+的图象也过定点()2,4, 即()22=4mf a n +=+则2,3m n =-=,所以1m n += 故答案为:1题型五:对数函数图像的应用1.已知函数()()log a f x x b =+的图象如图,则ab =________.【答案】8【分析】由图像可得:()f x 过点()3,0-和()0,2,代入解得a 、b .【详解】由图像可得:()()log a f x x b =+过点()3,0-和()0,2,则有:()3log 0log 2b a a b -⎧=⎪⎨=⎪⎩,解得42b a =⎧⎨=⎩. ∴8ab =. 故答案为:8.2.若1132log log m n >(01,01m n <<<<),则m ______n (填“<”或“>”).【答案】< 【分析】结合1132log ,log y x y x==的图象确定正确结论. 【详解】画出1132log ,log y x y x==的图象如下图所示:通过观察这两个函数在区间()0,1上的图象可知,要使1132log log m n>,则需m n <.故答案为:<3.函数2()log (1)2f x x =++的图像是把函数2log y x =的图像先向___________平移___________个单位,再向上移动2个单位. 【答案】 左 1【分析】根据自变量加减左右移,函数值上加下减的平移原则,即可得到答案; 【详解】22log log (1)x x →+,图象向左平移1个单位,22log (1)log (1)2x x +→++,图象向上平移2个单位, 故答案为:左,1 题型六:对数函数单调性1.下列函数中,在区间()0,∞+上单调递减的是( ) A .2log y x = B .2xy -=C .1y x =+D .3y x =【答案】B【分析】根据函数解析式直接判断单调性.2.已知2log (1)log (2)a a a a +<,则实数a 的取值范围是_________.【答案】()0,1【分析】对a 进行分类讨论,结合对数函数的单调性求得a 的取值范围. 【详解】当01a <<时,log a y x =在()0,∞+上递减, ()22212,2110a a a a a +>-+=->恒成立.当1a >时,log a y x =在()0,∞+上递增, ()22212,2110a a a a a +<-+=-<无解.综上所述,a 的取值范围是()0,1. 故答案为:()0,13.已知log 2log 1a a >,则底数a 的取值范围为_________. 【答案】(1,)+∞【分析】根据对数函数底数范围和对数函数单调性即可判断a 的范围. 【详解】若0<a <1,则log 2log 1a a <,不符题意; 若a >1,则log 2log 1a a >,符合题意; 综上,a >1. 故答案为:(1,)+∞.题型七:对数型复合函数单调性1.己知函数()22()log 45f x x x =--+,则函数()f x 的单调递增区间为( )A .(,2)-∞-B .(5,2)--C .(2,1)-D .(2,)-+∞【答案】B【分析】求出给定函数的定义域,再利用复合函数单调性求解作答.【详解】函数()22()log 45f x x x =--+有意义,则2450x x --+>,解得51x -<<,即函数()f x 的定义域为(5,1)-,函数245u x x =--+在(5,2)--上单调递增,在(2,1)-上单调递减,而函数2log y u =在(0,)+∞上单调递增,因此函数()f x 在(5,2)--上单调递增,在(2,1)-上单调递减, 所以函数()f x 的单调递增区间为(5,2)--. 故选:B2.若()()22log 6f x x ax =-+在区间[2,2)-上是减函数,则实数a 的取值范围为( )A .[4,5]B .(4,5]C .[4,5)D .[5,)+∞3.函数()2ln(421)f x x x =+-的单调递减区间是______.【答案】(,7)-∞-【分析】根据复合函数的单调规律来判断.【详解】要使()2ln(421)f x x x =+-有意义,则24210x x +->,解得7<-x 或3x >,()2ln(421)f x x x =+-定义域为()(),73,-∞-⋃+∞,设()()2421,,73,x x x μ=+-∈-∞-⋃+∞,则ln y u =,因为ln y u =在定义域上单调递增;()()2421,,73,x x x μ=+-∈-∞-⋃+∞的增区间为()3,+∞,减区间为(),7-∞-,所以根据复合函数的单调性可得()2ln(421)f x x x =+-的递减区间为(),7-∞-故答案为:(),7-∞-题型八:对数函数单调性应用1.已知lge 2ln e,10a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .a c b << C .b a c << D .b<c<a2.已知e 是自然对数的底数,函数()e e x x f x -=-,实数,m n 满足不等式(32)(2)0f n m f n -+->,则下列结论正确的是( ) A .e 2e m n > B .若1,n >-则11n nm m+>+ C .ln()0m n -> D .20222022m n >3.已知()()()512,10,1log ,1a a x a x f x a a x x ⎧-+≤=>≠⎨>⎩是R 上的减函数,则a 的取值范围是______. 1.已知函数12log y x =,当3,x a a ⎡⎤∈⎣⎦时,函数的最大值比最小值大4,则实数=a ______.2.设a >1,函数f (x )=log ax 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.3.已知函数()22,4log ,4x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是______.【答案】(],2-∞-【分析】根据分段函数的解析式讨论x 的取值范围,再利用指数函数、对数函数的单调性即可求解.【详解】当4x <时,()2xf x a =-的取值范围是(),16a a --,当4x ≥时,()2log 42f x ≥=, 若()f x 存在最小值,则2-≥a , 解得2a ≤-,即实数a 的取值范围是(],2-∞-. 故答案为:(],2-∞-.题型十:根据对数函数的最值求参数1.函数log a y x =在[]2,3上最大值比最小值大1,则=a ______.2.已知函数()f x 为函数(1)x y a a =>的反函数,且()f x 在区间[],2a a 上的最大值与最小值之差为1,则a 的值为___________. 【答案】2【分析】由题意知:()log a f x x =且在[,2]a a 上单调递增,由此即可列出等式,解出答案. 【详解】因为()f x 为函数x y a =的反函数,所以()log a f x x =, 又1a >,所以()f x =log a x 在[,2]a a 上单调递增,所以当[,2]x a a ∈时min ()()log 1a f x f a a ===,()max ()(2)log 2a f x f a a ==, 由题意,()log 211a a -=, 所以()log 22a a =,22a a =, 解得2a =或0a =(舍去). 故答案为:2.3.已知函数41()log (41).2xf x x =+-(1)求证:44log (41)log (14)x xx -+-=+;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求实数a 的取值范围. 【答案】(1)证明见解析; (2)0a ≤.1.设x ,y 是实数,则“01x <<,且01y <<”是“22log log 0x y +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件22log log 0x y +<得不出“01x <<,且01y <<”,所以“01x <<,且01y <<”是“22log log 0x y +<充分不必要条件; 故选:A【点睛】关键点点睛:本题的关键是要熟悉充分条件和必要条件的定义,能正确判断条件能否推出结论,结论能否推出条件.2.已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,若[]10,3x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥,则实数m 的取值范围为( ) A .1,2⎛⎤-∞- ⎥⎝⎦B .1,4⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭3.若关于x 的不等式9log 2(0xa x a -≤>且1)a ≠在02⎛⎤ ⎥⎝⎦,上恒成立,则a 的取值范围为______.。

对数函数题型归纳大全非常完整

对数函数题型归纳大全非常完整

对数与对数函数题型归纳总结知识梳理 1.对数的概念如果a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log aN =N ;②log a a b =b (a >0,且a ≠1). (2)换底公式:log a b =log c blog ca (a ,c 均大于0且不等于1,b >0).利用换底公式推导下面的结论 ①ab b a log 1log =.推广log log log log a b c a b c d d ⋅⋅=. ②b mnb a na m log log =,特例:log log n n a a b b = (3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ).3.函数0(log >=a x y a ,且)1≠a 叫做对数函数,x 是自量,函数定义域是(0,)+∞.注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy =都不是对数函数,而只能称其为对数型函数.(2)对数函数对底数的限制:0(>a ,且)1≠a . 4.对数函数的定义、图象与性质结论1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 结论 2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 5.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 例题分析题型一 对数的运算例题1: (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=_____;(2)计算:(1-log 63)2+log 62·log 618log 64=___解析:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.例题2: 设x 、y 、z 为正数,且,则x 、y 、z 之间的关系式为 . 解析:设,由知,取以为底的对数可得,所以,,,所以,所以. 变式1: (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于 (2)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =___,b =____ 解析: (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,∴t =2,则a =b 2.又a b =b a ,∴b 2b =b b 2,即2b =b 2,又a >b >1,得b =2,a =4. 变式2: 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a =______,b =____ 分析:进行对数运算常用的方法:(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2lg51+=解析:设log ,1b a t t =>则,所以152t t +=,解得2t =,所以2a b =, 于是由b a a b =,得22b b b b =,所以22b b =, 解得2,4b a ==.题型二 对数函数的定义域346x y z==346x y z t ===0x >1t >t log 3log 4log 61t t t x y z ===1log 3t x =1log 4t y=1log 6t z =1111log 6log 3log 2log 422t t t t z x y -=-===1112z x y-=例题3: 函数y =__________.解析:要使()21log 1y x =-+有意义,则()21log 10x -+≥,即()2log 11x +≤,即012x <+≤,即11x -<≤,即函数()21log 1y x =-+的定义域为(]1,1-.变式3: 函数256()lg 3x x f x x -+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 分析:求函数的定义域主要从三个方面考虑:(1)分式中的分母要求不等于0;(2)偶次根式的被开方数要求非负;(3)对数式的真数要求为正数. 解析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解得44,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .题型三 对数函数的值域 例题4: 求下列函数的值域:(1)31log y x =-;(2)()212log 23y x x =--.解析:(1)∵31log 0x -≥∴33log 1log 3x ≤=∴0x <<3,函数的定义域为(]0,3x ∈∵31log 0x -≥函数的值域为[)0,y ∈+∞. (2)∵2230x x -->∴3x >或1x -<所以函数的定义域为()(),13,x ∈-∞-+∞因为2230x x -->,即223x x --能取遍一切正实数,所以()212log 23x x R --∈ 所以函数的值域为y R ∈. 题型四 对数函数的奇偶性例题5: 若函数()f x 为奇函数,当0x >时,()2log f x x =,则12f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭() A .2- B .1- C .0 D .1解析:()()2211log 11log 1022f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,选C .变式4: 若函数()2lg 2+1f x a x ⎛⎫= ⎪+⎝⎭为奇函数,则实数a =_______.解析:12-题型五 对数函数的对称性例题6: 若1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x 解析:x x 252-=,x x 25)1(log 22-=-,即x x -=-2521,x x -=-25)1(log 2,作出12-=x y ,x y -=25,)1(log 2-=x y 的图象(如图).由图知12-=x y 与)1(log 2-=x y 的图象关于1-=x y 对称,它们与x y -=25的交点A 、B 的中点为x y -=25与1-=x y 的交点C ,47221=+=x x x C ,∴2721=+x x题型六 对数函数的单调性例题7: 求函数()20.1log 253y x x =--的递减区间. 解析:先求函数的定义域,由22530x x -->,得12x -<,或3x >.令2253u x x =--,0.1log y u =,∵对数的底数0.11<,∴函数0.1log y u =减函数,由复合函数单调性“同增异减”的规律可知,要求原函数的单调间区间,只需求函数2253u x x =--(12x -<,或3x >)的递增区间即可.∵22549253248u x x x ⎛⎫=--=-- ⎪⎝⎭,∴函数2253u x x =--(12x -<,或3x >)的递增区间()3,+∞,所以函数()20.1log 253y x x =--的递减区间为()3,+∞.变式5: 函数()()2log 45a f x x x =--(1a >)的单调递增区间是() A .(),2-∞- B .(),1-∞- C .()2,+∞ D .()5,+∞分析:复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.解析:由函数()()2log 45a f x x x =--得2450x x -->,得1x <-或5x >, 根据题意,设245u x x =--,则()229u x =--,图象开口向上, 因函数()()2log 45a f x x x =--为单调增函数, 由1a >得:()log a f x u =也是增函数,又因245u x x =--在()5,+∞上是增函数,故x 的取值范围是()5,+∞,故选D . 变式6: 已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是___________.分析:(1)忽视真数要求大于0的条件;(2)只注意真数所对应的二次函数的单调性而忽视外层函数的单调性.解析:令2t x ax a =-+,则有函数()f x 在区间()2,+∞上是减函数,可得函数t 在区间()2,+∞上是增函数,且(2)0t >,所以22(2)420at a ⎧≤⎪⎨⎪=->⎩,解得4a ≤所以实数a 的取值范围是4a ≤变式7: 若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2)..变式8: 已知函数 (a >0,且a ≠1),若在区间[1,2]上恒成立,则实数a 的取值范围是________.()()8a f x log ax =-()1f x >解析:当时,在[1,2]上是减函数,由在区间[1,2]上恒成立,则,解之得。

(完整版)对数函数图像及其性质题型归纳,推荐文档

(完整版)对数函数图像及其性质题型归纳,推荐文档

对数函数及其性质题型总结1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征Error!判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x是对数函数,则实数a =__________.(1)图象与性质a >10<a <1图象(1)定义域{x |x >0}(2)值域{y |y R }∈(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x<1时,y >0性质(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数性质(6)底数与真数位于1的同侧函数值大于0,位于1的俩侧函数值小于0性质(7)直线x =1的右侧底大图低谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.题型一:定义域的求解 求下列函数的定义域.例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3).y =在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.题型二:对数值域问题对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.221log 1(4y ax ax R a =++数的定义域为,变式求实数的围。

对数函数的图象及性质

对数函数的图象及性质

解得65<x<3.
2x+3<5x-6
②当 0<a<1 时,2x+3>0

5x-6>0
解得 x>3.
综 上 所 得 , 当 a>1 时 , 原 不 等 式 的 解 集 为
x65
<x<3;
当 0<a<1 时,原不等式的解集为{x|x>3}.
与对数函数有关的定义域问题
求下列函数的定义域.
(1)y=log(x-1)(3-x);(2)y= log2x+1-1;
一.中真数不是自变量x,不是对数函数; 二.中对数式后减1,∴不是对数函数; 三.中log8x前的系数是2,而不是1,∴不是对数函数.
1.下列函数是对数函O 数N E的是( )
A.y=log32x
1B.y=log3x2
C.y=log13x 答案:D.yC=log131x
对数概念的理解 求下列各式中 x 的范围. (1)log(2x-1)(x+2);(2)log(x2+1)(-3x+8).
4解.求下析列:函数的(值1)域∵. x2-4x+6=(x-2)2+2≥2,
(又1)y=f(loxg)2=(x2lo-g42xx+6在);(0,+∞)上是增函数, (∴2)yl=olgog2(2x(x22--44xx-+5).6)≥log22=1. ∴函数的值域是[1,+∞). (2)∵x2-4x-5=(x-2)2-9≥-9, ∴x2-4x-5 能取得所有正实数. ∴函数 y=log2(x2-4x-5)的值域是 R.
由题目可获取以下主要信息:(1)中底数相同,真数不同;(2) 中底数不同,真数相同;(3)(4)中底数与真数各不相同.解答 本题可考虑利用对数函数的单调性或图象求解.

(完整word版)对数函数图像及其性质题型归纳,推荐文档

(完整word版)对数函数图像及其性质题型归纳,推荐文档

对数函数及其性质题型总结1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征⎩⎪⎨⎪⎧ log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.(1)性质(性质(7)直线x =1的右侧底大图低谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.题型一:定义域的求解 求下列函数的定义域.例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3)y =.在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.题型二:对数值域问题对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.221log 1()4y ax ax R a =++数的定义域为,变式求实数的围。

对数函数常见题型

对数函数常见题型

4.4 对数函数1.对数函数的定义一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(1)由于指数函数y=a x中的底数a满足a>0,且a≠1,则对数函数y=log a x中的底数a也必须满足a>0,且a≠1.(2)对数函数的解析式同时满足:①对数符号前面的系数是1;②对数的底数是不等于1的正实数(常数);③对数的真数仅有自变量x.2.对数函数的图象和性质一般地,对数函数y=log a x(a>0,且a≠1)的图象和性质如下表所示:a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数非奇非偶函数3.反函数对数函数y=log a x(a>0,且a≠1)和指数函数y=a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x 对称.4.对数型复合函数的单调性复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)与g(x)的单调性相反,则其复合函数f[g(x)]为减函数.对于对数型复合函数y=log a f(x)来说,函数y=log a f(x)可看成是y=log a u与u=f(x)两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.另外,在求复合函数的单调区间时,首先要考虑函数的定义域.5.对数型复合函数的值域对于形如y=log a f(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:(1)分解成y=log a u,u=f(x)两个函数;(2)解f(x)>0,求出函数的定义域;(3)求u的取值范围;(4)利用y=log a u的单调性求解.题型一 对数函数的判断例1、(1)给出下列函数:①223log y x =;②3log (1)y x =-;③(1)log x y x +=;④log e y x =.其中是对数函数的有( ) A .1个B .2个C .3个D .4个(2)若函数2log 32a y x a a =+-+为对数函数,则a =( )A .1B .2C .3D .4跟踪练习1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1). A .1个B .2个C .3个D .4个2.下列函数表达式中,是对数函数的有( )①log 2x y =;②()log a y x a =∈R ;③8log y x =;④ln y x =;⑤()log 2x y x =+;⑥42log y x =;⑦()2log 1y x =+. A .1个 B .2个 C .3个D .4个3.若函数()2()log 45a f x x a a =+--是对数函数,a =_________.题型二 对数函数的解析式或函数值例2(1)对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5xB .y =15log xC .y =13log xD .y =log 3x(2)设()log a f x x =(0a >且1a ≠),若1(2)2f =,则12f ⎛⎫= ⎪⎝⎭( ). A .2 B .2-C .12-D .12跟踪练习1.若某对数函数的图象过点()4,2,则该对数函数的解析式为( ) A .2log y x =B .42log y x =C .2log y x =或42log y x =D .不确定2.若函数()()lo 1g a f x x =+(0,1)a a >≠的图像过点(7,3),则a 的值为( ) A 2B .2C 2D .12题型三 对数函数的定义域例3(1)函数()4f x x=-的定义域为( )A .(]1,2B .[]1,4C .()1,4D .[]2,4(2)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是( ) A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .[3,9](3)若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1 B .-1 C .2 D .无法确定跟踪练习1.函数()00.5log 21y x =-⎡⎤⎣⎦的定义域为( )A .1,12⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .()1,11,2⎛⎫+∞ ⎪⎝⎭2.函数3()log (21)1xf x x x =--的定义域是( ) A .1,12⎛⎤ ⎥⎝⎦B .1,12⎡⎤⎢⎥⎣⎦C .(1,)+∞D .1(,1)23.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],4.求下列函数的定义域 (1)2112y x x=+-- (2)函数221()x f x --=(3)20()(54)lg(43)x f x x x =+-+ 题型四 对数函数的定点例4函数()log 272=+-a y x (0a >,且1a ≠)的图象一定经过的点是( ) A .7,22⎛⎫-- ⎪⎝⎭B .()3,2--C .()3,1--D .()4,2--跟踪练习1.函数()()log 310,1a y x a a =->≠的图象过定点( ) A .2,13⎛⎫ ⎪⎝⎭B .()1,0-C .2,03⎛⎫ ⎪⎝⎭D .()0,1-2.函数()log 1a y x =-的图象必过的点是( ) A .()1,0-B .()1,0C .()0,0D .()2,03.已知函数log (3)2a y x =-+(0a >且1a ≠)的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则lg (4)lg (25)f f +=( )A .2-B .2C .1D .1-题型五 对数函数的值域(最值)例5(1)已知184x ≤≤,则函数2()log f x x =的值域是 。

对数函数专题——含参对数函数完整版题型汇总

对数函数专题——含参对数函数完整版题型汇总

对数函数专题——含参对数函数完整版题型汇总一、定义与性质1. 对数函数的定义对数函数是指定义域在正数集合上的函数,它的函数值是指数函数的反函数。

通常用符号 $\log$ 表示对数函数。

2. 对数函数的性质- 对数函数的图像是一条倾斜的曲线,与指数函数的图像关于直线 $y = x$ 对称。

- 对数函数具有单调递增性质,即随着自变量的增加,函数值也会增加。

- 对数函数的定义域是正数集合,值域是实数集合。

二、常见题型1. 对数运算题型例题:计算 $\log_3 27$。

解析:由于 $3^3 = 27$,所以 $\log_3 27 = 3$。

2. 对数方程题型例题:求解方程 $2^x = 8$。

解析:将 $8$ 表示成 $2$ 的幂次形式得到 $8 = 2^3$,所以$2^x = 2^3$,即 $x = 3$。

3. 对数不等式题型例题:求解不等式 $\log_2 \left( \frac{x}{3} \right) \geq 2$。

解析:根据对数定义,$\log_2 \left( \frac{x}{3} \right) \geq2$ 可转化为 $\frac{x}{3} \geq 2^2$,即 $\frac{x}{3} \geq 4$。

解得$x \geq 12$。

三、注意事项1. 在计算对数函数的值时,要注意指数与对数的关系,充分运用指数函数和对数函数的定义和性质。

2. 在解对数方程和不等式时,要注意将题目中的式子转化为指数形式,再进行相应的运算。

以上是对数函数专题中含参对数函数完整版题型汇总的简要内容。

对数函数作为数学中常见的函数之一,在应用中具有广泛的用途。

掌握对数函数的基本定义、性质和解题方法,有助于提高数学问题的解决能力。

高考数学-对数函数图像和性质及经典例题

高考数学-对数函数图像和性质及经典例题

高考数学-对数函数图像和性质及经典例题对数函数图像和性质及经典例题第一部分:回顾基础知识点对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞).对数函数的图象和性质○1 在同一坐标系中画出下列对数函数的图象;(1)x y 2log = (2) x y 21log =(3) x y 3log = (4) x y 31log =○2 对数函数的性质如下:图象特征函数性质1a >1a 0<< 1a > 1a 0<<函数图象都在y 轴右侧函数的定义域为(0,+∞)图象关于原点和y 轴不对称非奇非偶函数向y 轴正负方向无限延伸函数的值域为R函数图象都过定点(1,1)11=α自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数第一象限的图象纵坐标都大于0第一象限的图象纵坐标都大于0 0log ,1>>x x a0log ,10><<="" p="" x="">第二象限的图象纵坐标都小于0第二象限的图象纵坐标都小于00log ,10<<<="" p="" x="">0log ,1<>x x a○3 底数a 是如何影响函数x y alog =的.规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.第二部分:对数函数图像及性质应用例1.如图,A ,B ,C 为函数x y 21log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1).(1)设?ABC 的面积为S 。

求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值.解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1,则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C .)441(log )2(4log 232231t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5,[)∞++=.541在v v 上是减函数,且1S ??=59,1log 3在u 上是增函数,所以复合函数S=f (t ) [)+∞++=,1)441(log 23在tt 上是减函数(3)由(2)知t =1时,S 有最大值,最大值是f (1) 5log 259log 33-== 例2.已知函数f(x 2-3)=lg 622-x x ,(1)f(x)的定义域;(2)判断f(x)的奇偶性;(3)求f(x)的反函数; (4)若f[)(x φ]=lgx,求)3(φ的值。

对数运算,对数函数图像性质题型归纳含详解

对数运算,对数函数图像性质题型归纳含详解

对数运算,对数函数图像性质题型归纳题型一:指数式与对数式互化1、将下列指数式改写为对数式:7/1 γ3 1(1)5'3=125; (2)鼠=4;(3) - =8; (4) 6'2 =-⑸ 54 = 625; (6)2一6(7)3" =27; = 5.732、将下列对数式改写成指数式:(1) log2 64 = 6 ;(2) log3— = -4 ;(3) lg0.001 = -3;81(4)%4 = -2 ⑸ log। 8 = -3 ;(6)ιθgJl +√2) = -1,题型二:对数的简单运算1、求下列各式的值:(1)lθg216j (2) log21 ;(3) log5 25 ;(4) log04 1 ;(5) IglO; (6) IglOO; (7) IgO.Ol;(8) ∣ne>5.2、求下列各式的值:(1) 2一喻3;(2) lθ2⅛35 (3) e3,n7;(4) log392; (5) IglOO2; (6) lg0.0012.3、计算:(1) log927 ;(2) ∣og用81;(3)卜唱方625题型三:求未知数1、求下列各式中工的值:⑴ log;x = -3;(2)logγ49 = 4 ;(3) lg0.00∞l = x j (4) ↑n y fe=-x∙2(5) log64x = -- ;(6) log x8 = 6;(7) lgl∞ = x j(8) -∖ne2 =x-32、求下列各式中X的值:⑴ log2(log5x) = 05(2) log3(lgx) = l.(3)已知Iog2(log3(log4x))=θ,且log4(log2y)=L求五.)口的值.(4) log3(3「l”og3(3i-g题型四:对数计算1、求下列各式的值: ∕1x 2log 32-log 332 + log 38(5)(l °s 2125 +1°8425+⅝85)∙(tog 1258÷log 254+log 52) (6) 1°δ2 25 lθ838 1°g l 27 4、计算下列各式的值:=22)log 256.25 + lgθ.θl + ln√β-2l+lθδz3(3)322log 32-log 3y + log 38-5,°g53 4log 23-log 2^÷7,o ^5÷log 9√3(4)- 4(4) log 3√27+lg25 + lg4 + 7,og72 +(-9.8)°(6) log 525 + lg —+ ln√^ + 2,og23 100(7)322log 32-log 3-+log 38lg5 + lg2-(-^-)^2 +(>∕2-l)0 +log^ 8(8)32、计算下列各式的值:21g 5 + ∣l g 8 + l g 5.1g20÷l g 22(l g 2)3 + 31g2.1g5 + (l g 5)3l g 25÷lg21g 50÷(l g 2)221g5 + ∣lg8 + lg5∙lg20 + (lg2)2 (4) 3(5) lg2×lg50+lg5×l g 20-21g 5×l g 23、计算下列各式的值:log 1 2 + 21g4 + lg→e 3,n2/ A、 ;O(6)lg5.1g20-lg2.1g 50-l g 25∙θg 251 1°g4 5-log 13-log 2 4 + 5,og5 2(2) 2 3(4) Iog23∙log35∙log516j(4) (log32+log92)(Iog 43 + Iog83).题型五:用已知参数表示1、已知48" =24,试用〃表示下列各式: (1) log 48 2 •(2) log 48 3 .一 M 32、设x = log0M, y = log 〃N (。

对数函数的图像与性质

对数函数的图像与性质

专题9 对数函数的图像与性质考点1 对数函数的概念1.函数()()25log a f x a a x =+- 为对数函数,则18f ⎛⎫ ⎪⎝⎭等于( )A .3B . 3-C .3log 6-D .3log 8-2.下列函数是对数函数的是( ) A .log (2)a y x = B .2log 2xy =C .2log 1y x =+D .lg y x =考点2 对数函数的定义域与值域 3.函数()xy lg 42=-的定义域是()A .()2,4B .()2,∞+C .()0,2D .(),2∞-4.函数1log 82x x y的定义域是( )A .()1,3-B .()0,30C .()3,1-D .()()1,00,3-5.函数y = )A .3,4⎛⎫-∞ ⎪⎝⎭B .3,14⎛⎤⎥⎝⎦C .(,1]-∞D .3,14⎛⎫⎪⎝⎭6.已知集合}{13≤<-=x x A ,集合(){}2|lg 2B x y x ==-,则AB =( )A .[B .(C .[-D .(-7.下列函数中,与函数y=( )A .()ln f x x =B .()1f x x=C .()||f x x =D .() xf x e =考点3 反函数8.函数()()21log 1f x x x =+≥的反函数________.9.函数1()2x f x +=的反函数______考点4 对数函数的图像10.函数()ln(1)f x x =-向右平移1个单位,再向上平移2个单位的大致图像为( )A .B .C .D .11.函数()()()log 201a g x x a =+<<的图象是( )A .B .C .D .12.若函数||x y a =(0a >,且1a ≠)的值域为(]0,1,则函数log ||a y x =的图象大致是( )A .B .C .D .13.图中曲线分别表示log ay x =,log b y x =,log c y x =,log d y x =的图象,a b c d ,,,的关系是( )A .a <b <d <cB .b <a <c <dC .d <c <a<bD .c <d <a <b考点5 对数函数的性质14.下列函数中,在其定义域上既是奇函数又是增函数的是( ) A .2log y x = B .3y x x =+C .3x y =D .1y x=-15.若实数0.2log 0.3a =,0.3log 0.2b =,0.3log 2c =,则( ) A .c b a << B .c a b <<C .a b c <<D .b a c <<易错专攻易错点1 (易错点提醒:忽略对底数的讨论而致错) 16.若,则a 的取值范围是________.易错点2 (易错点提醒:忽略复合函数中函数的定义域而致错)17.若函数y =log a (2﹣ax )在区间(0,1)上单调递减,则a 的取值范围为_____.易错点3 (易错点提醒:忽略符合函数中的值域而致错)18.已知函数⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛=x x x f 4log 2log )(5.02,(x ∈,求: (1)求x 2log 的取值范围;(2)求)(x f 的值域.19.已知函数f (x )=log 0.5(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是( ) A .(-∞,2) B .[2,+∞) C .1[,2]2- D .1(,2]2-易错点4 (易错点提醒:忽略分段函数的定义域分界点而致错)20.设函数()()212log ,0{log ,0x x f x x x >=-<,若()()f a f a >-,则实数a 的取值范围是( )A .∪B .∪C .∪D .∪21.3(21),1()2log ,1a a x a x f x x x ⎧--<⎪=⎨⎪≥⎩是R 上的增函数,则a 的取值范围为( ) A .(0,1) B .(1,2]C .11,73⎡⎤⎢⎥⎣⎦D .1,17⎡⎤⎢⎥⎣⎦22.已知函数()()211,1log 1,1a a x x f x x x ⎧--≤=⎨+>⎩,若函数()f x 在定义域R 上单调递增,则实数a 的取值范围为( ) A .312a << B .312a <≤C .32a >D .32a ≥专题9 对数函数的图像与性质考点1 对数函数的概念1.函数()()25log a f x a a x =+- 为对数函数,则18f ⎛⎫ ⎪⎝⎭等于( )A .3B . 3-C .3log 6-D .3log 8-【答案】B 【解析】 【分析】可以先根据对数函数的性质来确定a 的取值范围,再带入18得出结果. 【详解】因为函数()f x 为对数函数,所以函数()f x 系数为1,即251a a +-=,即2a =或3-, 因为对数函数底数大于0, 所以2a =,()2log f x x =,所以138f ⎛⎫=- ⎪⎝⎭. 【点睛】对数函数的系数等于一、真数大于0、底数大于0且不等于1. 2.下列函数是对数函数的是( ) A .log (2)a y x = B .2log 2xy =C .2log 1y x =+D .lg y x =【答案】D 【解析】 【分析】根据对数函数的定义即可判断. 【详解】由对数函数的定义:形如log (0a y x a =>且1)a ≠的形式,则函数为对数函数,只有D 符合.故选D【点睛】本题考查对数函数的定义,需掌握对数函数的定义. 考点2 对数函数的定义域与值域 3.函数()xy lg 42=-的定义域是()A .()2,4B .()2,∞+C .()0,2D .(),2∞-【答案】D 【解析】 【分析】由对数函数的定义域以及指数函数的性质可得函数()xy lg 42=-的定义域.【详解】由函数()xy lg 42=-,得到x 420->,即x 2242<=, 解得x 2<,则函数的定义域是(),2∞-, 故选D . 【点睛】本题考查了对数函数的定义域以及指数函数的性质,是基础题目.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.4.函数1log 82x x y的定义域是( )A .()1,3-B .()0,30C .()3,1-D .()()1,00,3-【答案】D 【解析】 【分析】根据对数底以及真数限制条件列不等式,解得结果【详解】3820(1,0)(0,3)1,010,11x x x x x x x <⎧->⎧∴∴∈-⋃⎨⎨>-≠+>+≠⎩⎩,选D. 【点睛】本题考查对数函数定义域,考查基本分析求解能力,属基础题。

对数函数及其性质

对数函数及其性质
5
1 (2) y log 2 x
1 (3) y log 7 ( ) 1 3x
【探究】在同一直角坐标系中用描点法画出函 数
y log 1 x y log 1 x y log2 x y log3 x
2
3
的图象。
2.对数函数y=logax (a>0且a≠1) 的图象和性质:
[问题提出] 1.什么是对数函数?其大致图象如何? 函数y=logax (a>0且a≠1)叫做对数函数,
定义域为(0,+∞) 例1 求下列函数的定义域:
(1) y log a x
2
{x|x≠0}
( 2) y log a (4 x ) {x|x<4}
变式练习 求下列函数的定义域: (1) y log (1 x)
0<x<1
y>0
y<0
2.对数函数y=logax (a>0且a≠1) 的图象和性质:
图象特征: 性质:
(1)都在y轴右方;
(2)图像不关于原点 和y轴不对称 (3)向y轴正负方向无限 延伸 (4)都过点(1,0) (5)当a>1时,从左向右看逐 渐上升;当0<a<1时,从左向 右看逐渐下降
(1)定义域:(0,+∞)
2.2.2 对数函数及其性质
(1)
P70
1.对数的定义P62 :
一般地,如果a(a>0, a≠1)的b次幂等于N, 就是ax=N ,那么数x叫做以a为底N的对数, 记作:logaN=x.
2.几个常用的结论(P63) :
(1)负数与零没有对数 (2) loga 1 0 (3) loga a 1 loga N (4)对数恒等式:a
用描点法画函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数及其性质题型总结
1.对数函数的概念
(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).
(2)对数函数的特征:
特征⎩⎪⎨⎪⎧ log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数
log a x 的真数:仅是自变量x
判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.
比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.
【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.
(1)
当x >1时,y <0;当性质(性质(7)直线x =1的右侧底大图低
谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.
题型一:定义域的求解 求下列函数的定义域.
例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);
(3)y =.
在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.
题型二:对数值域问题
对数型函数的值域的求解
(1)充分利用函数的单调性和图象是求函数值域的常用方法.
(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:
①分解成y =log a u ,u =f (x )这两个函数;
②求f (x )的定义域;
③求u 的取值范围;
④利用y =log a u 的单调性求解.
注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.
(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.
221log 1()4
y ax ax R a =++数的定义域为,变式求实数的围。

:取值范若函 221log ()R 4
y ax ax a =++若函数的值域为,变式求实数的2:取值范围。

()()[]log 01,23,.a f x x a a a a =<<若函数在区间上的最大值是最小值的变倍:求3的值式题型三:定点问题
例3:求下列函数恒经过哪些定点
21()log (1)2a f x x =++、
2、y =l o g a (4a -x ) +1恒过﹙4,1﹚,求a 的值.
3、若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.
题型四:对数单调性问题
判断函数y =log a f (x )的单调性的方法 函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.
222221*********
3452=∈=-++∈=--.
()()log ,[,];
()()log (),[,];()()l g (.o )
f x x x f x x x x f x x x 下列函数的值 求例域
213log (43)y x x =-+例4:求单调区间
()21=-lg .()f x x x 求函数的变式单调区间
归纳:形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =
f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反. 2423123=+-lo
g ()
();
();
().
y x x 求函数的定义域求函数的单调区间求函练数已知函数.的值域习
题型五:对数图像问题
作出下列函数的图象:
(1) y=lgx , y=lg(-x), y=-lgx ; (2) y=lg|x|; (3) y=-1+lgx.
例5已知函数y =log a (x +c )(a ,c 为常数。

其中a >0,a ≠1)的图象如图,
则下列结论成立的是( )
A .a >1,c >1
B .a >1,0<c <1
C .0<a <1,c >1
D .0<a <1,0<c <1
变式1:已知函数12log ,0,()2,
0,x x x f x x >⎧⎪=⎨⎪≤⎩若关于x 的方程()f x k =有两个不等的实根,则实
数k 的取值范围是 ( ) A .(0,)+∞ B .(,1)-∞ C .(1,)+∞ D .(0,1]
题型六:对数不等式解法 例6.解下列不等式 12
12
1122
1341
2342
3343+>+<+>-()log ()()log ()()log ()log ()
x x x x
21201+>>≠log (),(,).a x a a 解不等1:式变式: 题型七:对数不等式综合问题
例2、已知函数f (x )=1log 1a x x
+-(a >0,且a ≠1). (1)求函数f (x )的定义域;
(2)判断函数f (x )的奇偶性;
(3)求使f (x )>0的x 的取值范围.
变式1:已知函数⎩⎨⎧>≤+=-2
,32),1()(x x x f x f x ,则=)2(log 3f .
题型七:对数方程问题
73(1)log (log )1(2)x =-、、lgx+lg(x-3)=1
题型八:比较大小 3.4 4.379
330.50.513344(1)log log ;log log (2)log log (3)log log 0,,,1a a m n m n <<、与与、与、已知试确定的大小关系
的解集。

求不等式且上是增函数在的偶函数、定义域为例0)(log ,0)21(),0[)(14>=+∞x f f x f R。

相关文档
最新文档