spss正交试验设计 ppt课件
合集下载
SPSS的正交实验设计课件
step3,接步骤1对话框,单击options,在弹出的对话框中, 将a、b、c选到display means for中,点击continue,点击 ok。
结果如下:
因素C的多重比较结果,表显示的是两两水平比较,其中1-2的 P值为0.104,大于0.05,说明因素C的水平1和2之间没有显著 差异,水平1和3以及水平2和3的P值分别为0.015和0.034,都 小于0.05,说明因素C的这两组水平之间有显著差异。
结果如下:
检验结果表明:因素A和因素B的P值分别为0.071和0.136 ,都大于0.05,那么这两个因素对实验结果y的作用不显著 ;因素C 的P值为0.028,小于0.05,说明因素C显著。
最优组合先选择因素C最好,因为该因子对试验结果影响显著,操 作步骤如下:
step1,在“Aanalyze”菜单“General Linear Model”中选择Univariate命令;在 弹出的Univariate对话框中,选择“y”变量,使之添加到Dependent Variable框中 ,选择“a”、“b”变量,“c“变量使之添加到Fixed Factor框中;
结果如下:
由以上3个表发现,对于c变量来 说,水平3最好;而因素a和b没有 显著影响,故可随意选择,而最 优组合的选择取决于实验结果y的 取值方向,即实际中y是越大越好 ,还是越小越好,对于本题来说y 是越大越好,则最优组合为: a3B2c3(参考)
7
ቤተ መጻሕፍቲ ባይዱ
3
1
3
2
57
8
3
2
1
3
62
9
3
3
2
1
64
正交实验方差分析
例1 无重复正交实验的方差分析 说明:三因素正交表L9(34) 1、“L”是正交表的代号,L的下标“9”表示表的行数,
结果如下:
因素C的多重比较结果,表显示的是两两水平比较,其中1-2的 P值为0.104,大于0.05,说明因素C的水平1和2之间没有显著 差异,水平1和3以及水平2和3的P值分别为0.015和0.034,都 小于0.05,说明因素C的这两组水平之间有显著差异。
结果如下:
检验结果表明:因素A和因素B的P值分别为0.071和0.136 ,都大于0.05,那么这两个因素对实验结果y的作用不显著 ;因素C 的P值为0.028,小于0.05,说明因素C显著。
最优组合先选择因素C最好,因为该因子对试验结果影响显著,操 作步骤如下:
step1,在“Aanalyze”菜单“General Linear Model”中选择Univariate命令;在 弹出的Univariate对话框中,选择“y”变量,使之添加到Dependent Variable框中 ,选择“a”、“b”变量,“c“变量使之添加到Fixed Factor框中;
结果如下:
由以上3个表发现,对于c变量来 说,水平3最好;而因素a和b没有 显著影响,故可随意选择,而最 优组合的选择取决于实验结果y的 取值方向,即实际中y是越大越好 ,还是越小越好,对于本题来说y 是越大越好,则最优组合为: a3B2c3(参考)
7
ቤተ መጻሕፍቲ ባይዱ
3
1
3
2
57
8
3
2
1
3
62
9
3
3
2
1
64
正交实验方差分析
例1 无重复正交实验的方差分析 说明:三因素正交表L9(34) 1、“L”是正交表的代号,L的下标“9”表示表的行数,
《正交试验设计》PPT幻灯片PPT
或实体
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平
➢
一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平
➢
一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度
正交试验设计及结果分析ppt课件
3
10
上一张 下一张 主 页 退 出
L8(27) 正 交 表
3
11
上一张 下一张 主 页 退 出
常用的正交表已由数学工作者制定出来,供进行正交 设 计 时 选 用 。 2 水 平 正 交 表 除 L8(27) 外 , 还 有 L4(23) 、 L16(215)等;3水平正交表有L9(34)、L27(213)……等。
3
2
上一张 下一张 主 页 退 出
例如:设计一个三因素、3水平的试验
A因素,设A1、A2、A3 3个水平;B因素,设B1、B2、B3 3 个水平;C因素,设C1、C2、C3 3个水平,各因素的水平之间 全部可能组合有27种 。
全面试验:可以分析各因素的效应 ,交互作用,也可选 出最优水平组合。但全面试验包含的水平组合数较多(图示 的27个节点),工作量大 ,在有些情况下无法完成 。
正交试验设计
对于单因素或两因素试验,因其因素少 ,试验的设 计 、实施与分析都比较简单 。但在实际工作中 ,常常
需要同时考察 3个或3个以上的试验因素 ,若进行全面
试验 ,则试验的规模将很大 ,往往因试验条件的限制 而难于实施 。正交试验设计就是安排多因素试验 、寻 求最优水平组合 的一种高效率试验设计方法。
从上图中可以看到,9个试验点在选优区中分布是均衡 的,在立方体的每个平面上,都恰是3个试验点;在立方体 的每条线上也恰有一个试验点。
9个试验点均衡地分布于整个立方体内 ,有很强的代表 性,能够比较全面地反映选优区内的基本情况。
3
9
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
3
1
上一张 下一张 主 页 退 出
正交试验设计方法(详细步骤)PPT课件
2021
42
6.3 正交试验设计结果的方差分析法
能估计误差的大小 能精确地估计各因素的试验结果影响的重要程度
2021
43
6.3.1 方差分析的基本步骤与格式
设: 用正交表Ln(rm)来安排试验 试验结果为yi(i=1,2,…n)
2021
44
(1)计算离差平方和
①总离差平方和
S S Ti n 1(y i y )2i n 1y i2 1 n(i n 1y i)2 Q P
三个指标都是越大越好
2021
23
对三个指标分别进行直观分析: ➢ 提取物得率:
因素主次:C A B 优方案:C3A2B2 或C3A2B3 ➢ 总黄酮含量: 因素主次:A C B 优方案:A3C3B3 ➢ 葛根素含量 : 因素主次:C A B 优方案:C3A3B2 综合平衡:A3B2C3
2021
53
(6)列方差分析表
2021
54
6.3.2 二水平正交试验的方差分析
正交表中任一列对应的离差平方和:
例6-9
SSj
1 n(K1
K2)2
2021
55
6.3.3 三水平正交试验的方差分析
r=3,所以任一列的离差平方和:
SSj
3( 3 n i1
Ki2) P
例6-10 注意: ➢ 交互作用的方差分析 ➢ 有交互作用时,优方案的确定
n
设: Q
y
2 i
i1
n
T yi i1
P
1( n n i1
yi )2
T2 n
2021
45
②各因素引起的离差平方和
第j列所引起的离差平方和 :
SSj n r(i r1Ki2)T n2n r(i r1Ki2)P
正交试验设计法.ppt
影响试验指标的因素往往很多,要根据专业知 识和实践经验认真筛选,筛选的原则是: (1)为减少工作量,一般应尽量少选。为此,应 选择影响大的、未曾研究过的、未掌握其作用规律 的因素为试验因素,而把其他因素作为可控的试验 条件加以确定。 (2)在不影响试验次数的情况下,可以适当增加 试验因素。尤其在初步筛选试验中。
1. 极差分析的内容
1.
数
图示
据
极 差
处
理
K jm 、K jm
计算
分
析
Rj
法
因素主次
2.
优水平
判
最优组合
断
交互作用
变化趋势
2. 极差分析举例
(1) 单指标正交试验的极差分析
用大麻秆制取配抄新闻纸用APMP,要求白度 在55%ISO以上。采用正交试验优化化学预处理的条 件,拟采用的水平因素表如下。
以大麻秆APMP制浆试验为例。
大麻秆APMP试验结果
A B C D 白度(%) 得率(%) 裂断长(km)
1 4.0 2.0 30 60 51.0
83.6
2.71
2 4.0 2.5 40 70 53.3
82.8
2.87
3 4.0 3.0 50 80 53.8
82.1
2.94
4 5.0 2.0 40 80 51.5
有交互列的L827正交表的表头设计
因素 A B A×B C A×C B×C D
列号 1 2 3 4 5
67
• 表中实际安排了ABCD四个因素,其余分别是 某两个因素的交互列。
6. 编制试验方案
杨木浆脂肪酶脱树脂试验方案表
试验号 A
试验因素
B
C
试验结果(树 D 脂降低率/%)
1. 极差分析的内容
1.
数
图示
据
极 差
处
理
K jm 、K jm
计算
分
析
Rj
法
因素主次
2.
优水平
判
最优组合
断
交互作用
变化趋势
2. 极差分析举例
(1) 单指标正交试验的极差分析
用大麻秆制取配抄新闻纸用APMP,要求白度 在55%ISO以上。采用正交试验优化化学预处理的条 件,拟采用的水平因素表如下。
以大麻秆APMP制浆试验为例。
大麻秆APMP试验结果
A B C D 白度(%) 得率(%) 裂断长(km)
1 4.0 2.0 30 60 51.0
83.6
2.71
2 4.0 2.5 40 70 53.3
82.8
2.87
3 4.0 3.0 50 80 53.8
82.1
2.94
4 5.0 2.0 40 80 51.5
有交互列的L827正交表的表头设计
因素 A B A×B C A×C B×C D
列号 1 2 3 4 5
67
• 表中实际安排了ABCD四个因素,其余分别是 某两个因素的交互列。
6. 编制试验方案
杨木浆脂肪酶脱树脂试验方案表
试验号 A
试验因素
B
C
试验结果(树 D 脂降低率/%)
正交试验设计及结果分析ppt课件
.
上一张 下一张 主 页
四因素、三水平的试验因素水平表
水平
试验因素
A
B
C
D
1
2
3
.
(3) 选择合适的正交表
正交表的选择是正交试验设计的首要问题。确定了因 素及其水平后,根据因素、水平及需要考察的交互作用的多 少来选择合适的正交表。正交表的选择原则是在能够安排下 试验因素和交互作用的前提下,尽可能选用较小的正交表, 以减少试验次数。
正交表的三个基本性质中,正交性是核心, 是基础,代表性和综合可比性是正交性的必然结 果。
.
上一张 下一张 主 页 退 出
1.4 正交表的类别 1、等水平正交表 各列水平数相同的正交表称为等水
平正交表。如L4(23)、L8(27)、L12(211)等各列中的水平为2, 称为2水平正交表;L9(34)、L27(313)等各列水平为3,称为3 水平正交表。
哪个是次要因素; ▪ 判断因素对试验指标影响的显著程度;
极差分析 ▪ 找出试验因素的优水平和试验范围内的最优组合,即试验因 素各取什么水平时,试验指标最好; ▪ 分析因素与试验指标之间的关系,即当因素变化时,试验指
标是如何变化的。找出指标随因素变化的规律和趋势,为进
方差分析 一步试验指明方向;
▪ 了解各因素之间的交互作用情况; ▪ 估计试验误差的大小。
一般情况下,试验因素的水平数应等于正交表中的水平 数;因素个数(包括交互作用)应不大于正交表的列数;最 低的试验次数(行数)=Σ(每列水平数一1)+l
.
上一张 下一张 主 页
等 水 平 正 交 表 La(bc)
正交设计
因素个数,列数
La(bc)
试验总次数,行数
上一张 下一张 主 页
四因素、三水平的试验因素水平表
水平
试验因素
A
B
C
D
1
2
3
.
(3) 选择合适的正交表
正交表的选择是正交试验设计的首要问题。确定了因 素及其水平后,根据因素、水平及需要考察的交互作用的多 少来选择合适的正交表。正交表的选择原则是在能够安排下 试验因素和交互作用的前提下,尽可能选用较小的正交表, 以减少试验次数。
正交表的三个基本性质中,正交性是核心, 是基础,代表性和综合可比性是正交性的必然结 果。
.
上一张 下一张 主 页 退 出
1.4 正交表的类别 1、等水平正交表 各列水平数相同的正交表称为等水
平正交表。如L4(23)、L8(27)、L12(211)等各列中的水平为2, 称为2水平正交表;L9(34)、L27(313)等各列水平为3,称为3 水平正交表。
哪个是次要因素; ▪ 判断因素对试验指标影响的显著程度;
极差分析 ▪ 找出试验因素的优水平和试验范围内的最优组合,即试验因 素各取什么水平时,试验指标最好; ▪ 分析因素与试验指标之间的关系,即当因素变化时,试验指
标是如何变化的。找出指标随因素变化的规律和趋势,为进
方差分析 一步试验指明方向;
▪ 了解各因素之间的交互作用情况; ▪ 估计试验误差的大小。
一般情况下,试验因素的水平数应等于正交表中的水平 数;因素个数(包括交互作用)应不大于正交表的列数;最 低的试验次数(行数)=Σ(每列水平数一1)+l
.
上一张 下一张 主 页
等 水 平 正 交 表 La(bc)
正交设计
因素个数,列数
La(bc)
试验总次数,行数
正交试验设计ppt课件
研究生课程
20
*
*
xx
正交表的三个基本性质中,正交 性是核心,是基础,代表性和综 合可比性是正交性的必然结果
研究生课程
21
*
*
xx
5.1.4 正交表的类别 1、等水平正交表 各列水平数相同的正交表称为 等水平正交表。如L4(23)、L8(27)、L12(211)等各列中 的水平为2,称为2水平正交表;L9(34)、L27(313)等 各列水平为3,称为3水平正交表。
B3
A3B3C1
A3B3C2
xx
C3 A1B1C3 A1B2C3 A1B3C3 A2B1C3 A2B2C3 A2B3C3 A3B1C3 A3B2C3 A3B3C3
研究生课程
8
*
*
xx
图5-1
3 因 素 3 水 平 的 全 面试验水平组合数为33=27 ,4 因素3水平的全面试验水平组合数为34=81 ,5因 素3水平的全面试验水平组合数为35=243,这在科学 试验中是有可能做不到的。
*
xx
试验优化设计
第一章 引言 第二章 方差分析 第三章 相关与回归分析 第四章 多元线性回归模型 第五章 正交试验设计方法 第六章 试验优化设计
研究生课程
1
*
*ቤተ መጻሕፍቲ ባይዱ
xx
概述
对于单因素或两因素试验,因其因素少 ,试验的设 计 、实施与分析都比较简单 。但在实际工作中 ,常
常需要同时考察 3个或3个以上的试验因素 ,若进行
利用正交表L9(34)安排,试验方案仅包含9个水平组合,就
能反映试验方案包含27个水平组合的全面试验的情况,找 出最佳的生产条件。
研究生课程
6
利用SPSS的正交设计-PPT
20
21
22
23
24
25
26
练习:研究高频呼吸机A、B、C、D四个 参数对通气量的影响,每个参数有高低 两个水平,试进行正交设计,并列出试 验安排及结果记录表。要求研究A、B、 C、D、A×B、B×D
27
列号 1 2 3 4 5 6 7 因素 A B A×B C D B×D
.013
AB
1.904 1
1.904 11.841
C
.799 1
.799 4.971
AC
5.227E-02 1 5.227E-02
.325
BC
1.335 1
1.335 8.301
Error
2.734 17
.161
Total
775.984 24
Corrected Total
6.903 23
a. R Squared = .604 (Adjusted R Squared = .464)
Type III Sum
Source
of Squares df
Corrected Model
4.170a 6
Mean Square
.695
F 4.322
Intercept
769.081 1 769.081 4782.841
A
7.707E-02 1 7.707E-02
.479
B
2.017E-03 1 2.017E-03
练习题1:长梗胶股蓝总皂甙提取工艺研究。 主要研究的因素
溶媒的品种与提取因素有着密切的关系,溶媒的 品种与溶媒用量也有密切关系,直接影响指标值 皂甙提取量,存在着交互作用。
68
表头设计
列号 1 2 3 4 5 6 7 因素 A B A×B C A×C D
正交试验设计1ppt课件-35页文档资料
(2) 选因素、定水平,列因素水平表
根据专业知识、以往的研究结论和经验,从影响试验指 标的诸多因素中,通过因果分析筛选出需要考察的试验因素。
一般确定试验因素时,应以对试验指标影响大的因素、 尚未考察过的因素、尚未完全掌握其规律的因素为先。
试验因素选定后,根据所掌握的信息资料和相关知识, 确定每个因素的水平,一般以2-4个水平为宜。对主要考察 的试验因素,可以多取水平,但不宜过多(≤6),否则试验 次数骤增。
试验设计前必须明确试验目的,即本次试验要解决 什么问题。试验目的确定后,对试验结果如何衡量,即 需要确定出试验指标。
试验指标可为定量指标,如强度、硬度、产量、出 品率、成本等;也可为定性指标如颜色、口感、光泽等。 一般为了便于试验结果的分析,定性指标可按相关的标 准打分或模糊数学处理进行数量化,将定性指标定量化。
L9 (34 )中不同数字有1、2和3,它们各出现3次 。
整齐可比是指每一个因素的各水平间具有可比性。因为正 交表中每一因素的任一水平下都均衡地包含着另外因素的 各个水平 ,当比较某因素不同水平时,其它 因素的效应都 彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、 A2、A3条件下各有 B 、C 的 3个不同水平。
即:
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较 A 因素不同水平时,B 因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水平 间具有综合可比性。同样,B、C因素3个水平间亦具有综合 可比性。
(2)均衡分散性:任两列之间各种不同水平的所有 可能组合都出现,且数对出现的次数相等。
6.2.3 正交试验方案合理性的直观解释: