数字图像处理-第二章图像数字化

合集下载

数字图像处理(第二版)章 (2)

数字图像处理(第二版)章 (2)
(4) 噪声。数字化设备的噪声水平也是一个重要的性能参 数。例如,数字化一幅灰度值恒定的图像,虽然输入亮度是一 个常量,但是数字化设备中的固有噪声却会使图像的灰度发生 变化。因此,数字化设备所产生的噪声是图像质量下降的根源 之一,应当使噪声小于图像内的反差点(即对比度)。
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)

数字图像处理第2章图像数字化

数字图像处理第2章图像数字化

续图像的频谱与它的平移复制品重叠。
的高频分量混入到它的中频或低频部分,这种现象称为
混叠。在这种情况下,由函数的采样值重建的图像将产生失真。如图 2-1-4 所示,由于采样间隔不满足
奈奎斯特条件,采样图像的频谱在阴影区及其附近产生了混叠。当我们用图示的低通滤波器


重建图像时,将会带来两个问题:
(1) 图像信号损失了一部分高频分量,致使图像变得模糊。
像,但需要付出更大的存储空间作为代价。
连续图像
在二维空间域里进行采样时,常用的方法是对
进行均匀采样。取得各点的亮
度值,构成一个离散的函数 函数来表示,即
。若是彩色图像,则以三基色 R、G、B 的亮度作为分量的三维向量
1
相应的离散向量函数用(1.1.7)表示。
图 2-1-2 采样示意图(2) 评价连续图像经过采样获得数字图像的效果,采用如下一些参数。 图像分辨率是指采样所获得图像的总像素。例如,640×480 图像的总像素数为 307 200 个。在购买 具有这种分辨率的数码相机时,产品性能介绍上会给出 30 万像素分辨率这一参数。 采样密度是指在图像上单位长度所包含的采样点数。采样密度的倒数就是像素间距。 采样频率是指一秒钟内采样的次数。它反映了采样点之间的间隔大小。采样频率越高,丢失的信息 越少,采样后获得的样本更细腻逼真,图像的质量更好,但要求的存储量也就更大。 扫描分辨率表示一台扫描仪输入图像的细微程度。它指每英寸扫描所得到的点,单位是 dpi (dot per inch)。数值越大,表示被扫描的图像转化为数字化图像越逼真,扫描仪质量也越好。无论采用哪种评价 参数,实际上在进行采样时,采样点间隔的选取是一个非常重要的参数。
(a) 中央上升型
(b) 中央平稳型

数字图像处理及MATLAB实现[杨杰][电子教案]第二章

数字图像处理及MATLAB实现[杨杰][电子教案]第二章

距离 像素之间的联系常与像素在空间的接近程度有 关。像素在空间的接近程度可以用像素之间的距 离来度量。为测量距离需要定义距离度量函数。 给定 p, q, r 三个像素,其坐标分别为 ( x, y ), ( s, t ), (u , v) 如果 1) D ( p, q ) ≥ 0( D ( p, q ) = 0 当且仅当 p = q ) 2) D ( p, q ) = D ( q, p ) 3) D ( p, r ) ≤ D ( p, q ) = D (q, r ) 则 D是距离函数或度量。
p 和 q 之间的欧式距离定义为:
De ( p, q) = ( x − s)2 + ( y − t )2
p 和 q 之间的 D4距离(也叫城市街区距离)定义为:
D4 ( p , q ) = x-s + y-t
p 和 q 之间的 D8 距离(也叫棋盘距离)定义为:
D8 ( p, q )=max( x-s , ) y-t
图像获取即图像的数字化过程,包括扫描、 图像获取即图像的数字化过程,包括扫描、 采样和量化。 采样和量化。 图像获取设备由5个部分组成 采样孔, 个部分组成: 图像获取设备由 个部分组成:采样孔, 扫描机构,光传感器, 扫描机构,光传感器,量化器和输出存储 体。 关键技术有:采样——成像技术;量化 成像技术; 关键技术有:采样 成像技术 量化— —模数转换技术。 模数转换技术。 模数转换技术
Sampling
图像的采样
图2.15图像的采样示例 图像的采样示例
Quantization 图像的量化
图2.16图像的量化示例 图像的量化示例
量化等级越多,所得图像层次越丰富, 量化等级越多,所得图像层次越丰富,灰度 分辨率高,图像质量好,但数据量大; 分辨率高,,图像层次欠丰富,灰度分辨 量化等级越少,图像层次欠丰富, 率低,会出现假轮廓现象,图像质量变差, 率低,会出现假轮廓现象,图像质量变差, 但数据量小. 但数据量小

胡学龙《数字图像处理》课后习题答案

胡学龙《数字图像处理》课后习题答案

胡学龙《数字图像处理》课后习题答案胡学龙、许开宇编著《数字图像处理》思考题与习题参考答案第1章概述1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

1.2 采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。

3.数字图像处理技术适用面宽。

4.数字图像处理技术综合性强。

1.3 数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。

1.4 讨论数字图像处理系统的组成。

列举你熟悉的图像处理系统并分析它们的组成和功能。

答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。

图像处理系统包括图像处理硬件和图像处理软件。

图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。

软件系统包括操作系统、控制软件及应用软件等。

图1.8 数字图像处理系统结构图1.5 常见的数字图像处理开发工具有哪些?各有什么特点?答.目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(Image Processing Tool box)。

数字图像处理 第2章 图像的数字化与显示

数字图像处理 第2章 图像的数字化与显示
k
(2.20)
2.3.3 空间与灰 度级分辨率
对一幅图像,当量化级数Q一定 时,采样点数 M×N 对图像质量有着显 著的影响。采样点数越多,图像质量越 好;当采样点数减少时,图像越小,图 上的块状效应就逐渐明显。
图像的采样与数字图像的质量
图像的量化与数字图像的质量
量化级数越多,图像质量越好,当量化级数越少时,图像质量越 差,量化级数最小的极端情况就是二值图像,图像出现假轮廓。
2.2 图像场取样
2.2.1 取样和量化的基本概念
数字化包括取样和量化两个过程 :
取样(sampling):对空间连续坐标(x, y)的 离散化 量化(quantization):幅值 f (x, y)的离散化
(a)连续图像
(b)数字化结果
图2.1 图像的数字化过程
(a)
(b)
图2.2 采样网格 (a) 正方形网格; (b) 正六角形网格
截止频率。
u U c , v Vc u U c , v Vc
(2.8)
其中 U c , Vc 对应于空间位移变量x和y的最高
则当采样周期
x, y满足
(2.9)
1 u s 2U c x 1 vs 2Vc y
此时,通过采样信号 f ( mx, ny ) 能唯一地恢 复或重构出原图像信号f (x,y)。该条件称为 Nyquist采样定理。
• 2.3.1

标量量化
标量量化:将数值逐个量化 。 例:假设抽样信号的范围是0~5 V,将它分为8等
分,这样就有8个量化电平,分别是5/8 V,10/8 V,15/8 V,…,35/8 V。 对每一个采样将它量化为离它最近的电平。 在量化后,为了能在数字信号处理系统中处理 二进制码,还必须经过编码操作。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理 贾永红

数字图像处理 贾永红

第二章基本概念贾永红武汉大学第二章讲解内容1. 图像数字化概念、数字化参数对图像质量的影响、数字化器性能评价2. 图像灰度直方图的基本概念、计算、性质及其应用3.数字图像处理算法形式与数据结构4.图像图像文件格式与特征重点:图像数字化、图像灰度直方图和图像文件BMP格式难点:图像数字化、直方图应用、图像分层结构数据教学法:灵活应用示例法、启发式、提问法等目的:1. 熟悉本章基本概念和图像处理算法形式,了解图像的特征;2.重点掌握图像数字化图像灰度直方图的基本概念及应用、2.2 成象模型3-D客观场景到2-D成像平面的中心投影。

物方点空间坐标与对应的像方点坐标满足几何透视变换关系(共线条件)。

f(x,y)---理想成像面坐标点(x,y)的亮度i(x,y)---照度分量r(x,y)---反射分量,则f(x,y)=i(x,y)×r(x,y)其中:0< i(x,y)< ∞ ,0 <r(x ,y)<12.3图像数字化图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。

模拟图像数字图像正方形点阵具体来说,就是把一幅图画分割成如图2.3.1所示的一个个小区域(像元或像素),并将各小区域灰度用整数来表示,形成一幅点阵式的数字图像。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

2.3.1采样将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

当对图像进行实际的抽样时,怎样选择各抽样点的间隔是个非常重要的问题。

关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。

不同形状的采样孔径2.3.2量化经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。

将像素灰度转换成离散的整数值的过程叫量化。

表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

一幅数字图像中不同灰度级的个数称为灰度级数,用G表示。

数字图像处理基础2

数字图像处理基础2

数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。

由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。

所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。

设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。

显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。

在实际中,一般取L min 的值为0,L max =L-1。

这样,灰度的取值范围就可表示成[0,L-1]。

当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。

为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

图像的数字化包括采样和量化两个过程。

连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

即:空间坐标的离散化。

量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

数字图像处理-z2图像的基本知识

数字图像处理-z2图像的基本知识
由于f(x,y)的值是能量的记录 故其是非负有界的实数。 由于f(x,y)的值是能量的记录,故其是非负有界的实数。 的值是能量的记录, 综上,因为人的视野有限,所以,人看到的平面图像是一个 综上,因为人的视野有限,所以, 二元、有界、非负的连续(指模拟光学图像)函数。 二元、有界、非负的连续(指模拟光学图像)函数。
14
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
空间分辨率
1、采样点数
M M N ↑
(采样间隔 ↓ ) 空间分辨率↑ 空间分辨率↑ ∆y
∆x
2、G不变, N ↓ 图像中各细节区域边缘出现“棋盘- 图像中各细节区域边缘出现“棋盘- 马 赛克”效应,即像素粒子变粗。 赛克”效应,即像素粒子变粗。
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
非均匀采样
– 灰度级变化大区域精确采样,平滑区域粗采样。 灰度级变化大区域精确采样,平滑区域粗采样。
非均匀量化
– 灰度级变化剧烈处,人眼分辨力差,边界附近 灰度级变化剧烈处,人眼分辨力差, 较少灰度级; 较少灰度级; – 平缓区域较多灰度级,避免假轮廓 平缓区域较多灰度级,
7
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 计算机中数字图像的表示
I = f (m, n)

I = f ( x, y ) 模拟光学图像的数字化
结果。 结果。 在计算机中可用一矩阵表示,其中 在计算机中可用一矩阵表示,
0 ≤ m ≤ M − 1,0 ≤ n ≤ N − 1
f(m,n)称为图像元素,简称像素 pixel) 其取值为灰度 f(m,n)称为图像元素,简称像素(pixel),其取值为灰度 像素( 称为图像元素 grey),一幅图像的灰度种类称为灰度级 ),一幅图像的灰度种类称为灰度级( level)。 (grey),一幅图像的灰度种类称为灰度级(grey level)。

数字图像处理第2章课后题答案

数字图像处理第2章课后题答案

第二章数字图像处理基础1.将一幅光学模拟图像转换为数字图像的过程叫做图像的数字化,包括扫描、采样、量化三个过程。

采样点数越多、量化级数越高,图像质量越好。

2.图像数字化过程中造成失真的原因有两个方面:第一个方面,在采样过程中,如果采样点数满足取样定理(即采样频率不小于最高截止频率的2倍)的情况下,重建图像就不会产生失真,否则就会因为取样点数不够而产生所谓混淆失真;第二个方面,在量化过程中,若图像不产生失真,则需要量化级数无穷大,而实际量化级数往往无法满足这样的取值而造成图像的失真。

3.人的眼睛是人类视觉系统的重要组成部分,当外界景象通过眼球的光学系统在视网膜上成像后,视网膜产生相应的胜利电图像并经视神经传入大脑;人眼的视网膜由感光细胞覆盖,感光细胞吸收来自于光学图像的光线,并通过晶体透镜和角膜聚集在视网膜上。

晶状体相当于普通光学镜头,对光线有屈光作用。

4.发光强度简称光强,指单色光源在给定方向上的单位立体角内发出的发光强度。

亮度是指发光体(反光体)表面发光(反光)强弱的物理量。

照度指物体被被照面单位时间内所接受的光通量。

主观亮度是指由观察者判断出的亮度称为主观亮度。

5.常用的颜色模型有RGB模型、CMYK模型、HSI模型等。

RGB模型是色光的彩色模型,因为是由红、绿、蓝相叠加形成其它颜色,因此该模型也叫加色合成法。

所有的显示器、投影设备,以及电视等许多设备都是依赖于这种加色模型的;CMYK模型也称减色合成法,主要应用于印刷行业中;RGB和CMYK颜色模型都是面向硬件的,但从人眼视觉特性来看,HSI模型用色调、饱和度和亮度来描述彩色空间能更好地与人的视觉特性相匹配。

6.由于彩色图像为RGB图像,利用三元组(R,G,B)来表示每个像素的值。

根据题意,三基色灰度等级为8,而23=8,则存储一个颜色分量所需的比特数为3,存储一个三元组所需的比特数为3⨯3=9,该图像大小为1024*768,则存储整幅图像所需的比特数为9⨯1024⨯768=7077888bit=864KB。

第二章 数字图像处理基础

第二章 数字图像处理基础
………………………………….
BMP图像文件格式
文件说明
属性 bfType bfSize bf1 bf2 bfOffBits biSize biWidth 所占字节数 2 4 2 2 4 4 4 起始字节 1 3 7 9 11 15 19 说明 文件类型(“BM”) 文件大小 保留 保留 第一个位图数数的偏移量 文件信息头的长度 位图的宽度(单位是象素)
位图的有关术语
像素(Pixel)
(可大可小)
采样点 (Sample)
位图的有关术语
图像分辨率: 每英寸图像含有的点或像素个数(dpi)
分辨率越高,图像细节越清晰,但文件尺寸大, 处理的时间长,对设备的要求高。
位图的有关术语
打印机分辨率: 打印图像时每英寸的点数(dpi)
激光打印机的分辨率可达600~1200dpi。
0, , 80 200 B 0, , 0 110 255, , 255 255
2.1 图像数字化
2.1.3 采样与量化参数的选择
采样间隔:影响着图像细节的再现程度,反映数字化 后的图像呈现何种的细微程度。采样间隔越大,图像的像素 数越少,空间分辨率低,质量差。严重出现像素块状的棋盘
2. 图像数字化器的性能
(1)分辨率:单位尺寸能够采样的像素数,由采样 孔的大小和像素间距的大小决定;
(2)灰度级:量化为多少等级;
(3)图像大小:允许输入图像的大小;
(4)扫描速度:采样数据的传输速度;
(5)噪声:数字化器的噪声水平。
(6)线性度:线性度是指对光强进行数字化时,灰 度正比于图像亮度的实际精确程度。
数字图像根据灰度级数的差异,可分为:
二值图像、灰度图像和彩色图像 二值图像:

数字图像处理习题参考答案

数字图像处理习题参考答案

《数字图像处理》习题参考答案第1 章概述连续图像和数字图像如何相互转换答:数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

采用数字图像处理有何优点答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。

3.数字图像处理技术适用面宽。

4.数字图像处理技术综合性强。

数字图像处理主要包括哪些研究内容答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。

讨论数字图像处理系统的组成。

列举你熟悉的图像处理系统并分析它们的组成和功能。

答:如图,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。

图像处理系统包括图像处理硬件和图像处理软件。

图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。

软件系统包括操作系统、控制软件及应用软件等。

图数字图像处理系统结构图1常见的数字图像处理开发工具有哪些各有什么特点答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。

两种开发工具各有所长且有相互间的软件接口。

Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。

数字图像处理第二章作业

数字图像处理第二章作业

第二章数字图像处理的基本概念2. 图像数字化包括那两个过程?它们对数字化图像质量有何影响?答:图像数字化包括采样和量化两个过程。

采样:将空间上连续的图像变换成离散点的操作称为采样。

量化:将像素灰度转换成离散的整数值得过程叫量化。

影响:一般来说,采样间隔越大,所得图像像素越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.3。

数字化图像的数据量与哪些因素有关?答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值.一般数字图像灰度级数G为2的整数幂。

那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量.6。

什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息?答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系.以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图.应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。

获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。

但不能反映图像像素的位置。

8。

图像处理按功能分有哪几种形式?答:按图像处理的输出形式,图像处理的基本功能可分为三种形式:(1)单幅图像-—>单幅图像;(2)多幅图像—-〉单幅图像;(3)单(或多)幅图像——>数字或符号等.12。

图像特性包括哪些类型?图像特征是图像分析的重要依据,它可以是视觉能分辨的自然特征,也可以是人为定义的某些特性或参数,即人工特征.数字图像的像素亮度、边缘轮廓等属自然特性;图像经过变换得到的频谱和灰度直方图等属人工特征.1、自然特征图像是空间景物反射或者辐射的光谱能量的记录,因而具有光谱特征、几何特征和时相特征。

数字图像处理第2章

数字图像处理第2章

Digital Image Processing
2.1 色度学基础
颜色模型 人眼视觉的感受颜色可用色调(hue),饱和度 人眼视觉的感受颜色可用色调(hue),饱和度 ), (saturation)和亮度(brightness)来表示. (saturation)和亮度(brightness)来表示. 各种表示颜色的方法,称做颜色模型.目前使用最多 各种表示颜色的方法,称做颜色模型. 的是面向机器(如显示器,摄像机,打印机等)的RGB模型 的是面向机器(如显示器,摄像机,打印机等) RGB模型 和面向颜色处理(也面向人眼视觉) HSI(HSV)模型. 和面向颜色处理(也面向人眼视觉)的HSI(HSV)模型.
f s ( m , n ) ← f s ( x , y ) = f ( x , y ) s( x , y ) =∑
m

n
f ( m x , n y )δ ( x m x , y n y )
Digital Image Processing
2.3 图像数字化
x
y
图2.3.1 采样函数s(x,y)的图示 采样函数s(x,y) s(x,y)的图示
120°

240°
Digital Image Processing
2.1 色度学基础
RGB和HIS之间的模型转换: RGB和HIS之间的模型转换: 之间的模型转换
(1) RGB转换到HSI RGB转换到 转换到HSI (2) HIS转换到RGB HIS转换到 转换到RGB 常见数字图像处理流程,其中包含了RGB模型和HSI模型之间 RGB模型和HSI模型之间 常见数字图像处理流程,其中包含了RGB模型和HSI 的转换. 的转换.
I分量 I分量图 像处理

图像处理 第2章图像的数字化与显示

图像处理  第2章图像的数字化与显示

87
85 134 216 209 172
104 123 166 161 155 160 205 229 218 181 125 131 172 179 180 208 238 237 228 200 131 148 172 175 188 228 239 238 228 206 161 169 162 163 193 228 230 237 220 199
图像空间分辨率的实例 将脸部区域 降低空间分 辨率
12
第2章 图像的数字化与显示 二、图像幅度分辨率
一幅453×374的图像,逐次把灰度级从256减小到2
256级灰度
128级灰度
64级灰度
32级灰度
16级灰度
8级灰度
4级灰度
2级灰度13
第2章 图像的数字化与显示 二、图像幅度分辨率 图像幅度分辨率变化产生的效果 保持图像空间分辨率不变,将图像灰度级数逐次减半, 可以看到图像的灰度平滑区会出现虚假轮廓现象。随着灰 度级数的减少,也就是幅度分辨率的降低,图像的效果越 来越差。
f s ( x, y) f
设f(x,y)的傅里叶变换为F(u,v),若 uc 和 vc 分别是 F(u,v)函数的最大空间频率,则只要采样间隔满足条 件 x
1 1 y 和 ,此时 2vc 2uc
f s ( x, y) 可以无失真地重
建原图像f(x,y)。
2
第2章 图像的数字化与显示
内 容
§2.1 均匀采样和量化 图像的数字化 §2.1.1
§2.1.2 §2.1.3
§2.2
图像的数据量 图像的分辨率
非均匀采样和量化 非均匀采样 非均匀量化
§2.2.1 §2.2.2
3
第2章 图像的数字化与显示 §2.1 §2.1.1 均匀采样和量化 图像的数字化

精品课件-《数字图像处理(第三版)》第2章 数字图像

精品课件-《数字图像处理(第三版)》第2章 数字图像
j 1
其它
i 1,2,n
2.3 数字图像类型
矢量(Vector)图和位图(Bitmap),位图也称为栅格图像。 矢量图是用数学(准确地说是几何学)公式描述一幅图像。(计 算机图形学)
➢ 优点:一是它的文件数据量很小,因为存储的是其数学公式; 其二是图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
2.2.3 颜色变换
对彩色图像进行颜色变换,可实现对彩色图像的增强处理,改 善其视觉效果,为进一步处理奠定基础。 基本变换
➢ 颜色变换模型为:g(x,y)=T[ f ( x,y )] 式中:f ( x , y )是彩色输入图像,其值为一般为向量; g ( x , y )是变换或处理后的彩色图像,与 f(x,y)同维; T是在空间域上对f的操作。T对图像颜色的操作 有多种方式;
2.4 图像文件格式 数字图像有多种存储格式,每种格式一般由不同的软件公司开 发所支持。 文件一般包含文件头和图像数据。就像每本书都有封面,目录, 它们的作用类似于文件头,通过文件头我们可读取图像数据。 文件头的内容由该图像文件的公司决定,一般包括文件类型 、 文件制作者、制作时间、版本号、文件大小等内容,还有压缩方 式。
2.2.2 颜色模型
HSI 颜色模型 ➢ 色调H (Hue): 与光波的波长有关,它表示人的感官对不同 颜色的感受,如红色、绿色、蓝色等, ➢ 饱和度(Saturation): 表示颜色的纯度,纯光谱色是完合饱 和的,加入白光会稀释饱和度。饱和度越大,颜色看起来就 会鲜艳,反之亦然。 ➢ 强度I (Intensity):对应成像亮度和图像灰度,是颜色的 明亮程度。 ➢ HSI模型建立基于两个重要的事实: (1) I分量与图像的彩色 信息无关; (2) H和S分量与人感受颜色的方式是紧密相联 的。这些特点使得HSI模型非常适合彩色特性检测与分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖主要参数
▪ 灰度级(或灰度值)--像素明暗程度的整数。 ▪ 灰度级数(或灰度级分辨率)--一幅数字图像中
不同灰度级的个数G。
256级灰度级数(8位) 64级灰度级数(6位)
位深g是表示存储图像像素灰度值所需的比特位 数, G=2g 。
g f (x, y) i(x, y) • r(x, y) 0 i(x, y) , 0 r(x, y) 1
矩阵表示
第一章 导 论
➢一幅图像若每行(即横向)像素
为N个,每列(即纵向)像素为M
y
个 , 则 图 像 大 小 为 M×N 个 像 素 ,
从而f(x,y)构成一个M×N实数矩阵:
f (0,0) f (0,1) f (0, N 1)
第一章 导 论
两种基色系统 ❖加法系统RGB
❖减法系统CMYK
第一章 导 论
RGB模型
❖RGB模型(相加混色模型)
▪ 有色光照射到消色物体产生加法效应 ▪ 主动产生颜色光源,如显示器
CMYK模型
第一章 导 论
❖ 青色Cyan,洋红Magenta,黄色Yellow,K为真 正黑色。
❖ 采用CMYK模式的原因:有色光照射到有色物体 上产生减法效应
例如
1 0 0 I 0 0 1
1 1 0
第一章 导 论
灰度图像 灰度图像是指灰度级数大于2的图像。但它
不包含彩色信息。
0 150 200 I 120 50 180
250 220 100
第一章 导 论
彩色图像
彩色图像是指每个像素由பைடு நூலகம்、G、B分量构成的图 像,其中R、B、G是由不同的灰度级来描述。
Y轴(j) 图像 f(i,j)
X轴(i)
直角坐标系
列(j) 矩阵 A(i,j) 行(i) 矩阵坐标系
第一章 导 论
不同种类图像的矩阵表示
数字图像根据灰度级数的差异可分为:黑 白图像、灰度图像和彩色图像。
黑白图像
图像的每个像素只能是黑或白,没有中间 的过渡,故又称为二值图像。二值图像的像素 值为0或1。
❖ 人眼的分辨力—人眼区分开相邻两点的能力(视 力)
▪ 用最小视角倒数描述 Ɵ=d / l d两点间最小距离,l为人眼到两点连线的距离 如 E
▪ 非固定不变,与环境亮度和相对对比度有关 ▪ 人眼能感知最高能达到700万像素分辨率的图像
第一章 导 论
2、色彩的鉴别 日光--由各种颜色混合而成
第一章 导 论
灰度图象(128x128)及其对应的数值矩阵(仅列出一部分(26x31))
第一章 导 论
彩色图像矩阵表示示例
(207,137,130) (220,179,163) (215,169,161) (210,179,172) (210,179,172) (207,154,146) (217,124,121) (226,144,133) (226,144,133) (224,137,124) (227,151,136) (227,151,136) (226,159,142) (227,151,136) (230,170,154) (231,178,163) (231,178,163) (231,178,163) (236,187,171) (236,187,171) (239,195,176) (239,195,176) (240,205,187) (239,195,176) (231,138,123) (217,124,121) (215,169,161) (216,179,170) (216,179,170) (207,137,120) (159, 51, 71) (189, 89,101) (216,111,110) (217,124,121) (227,151,136) (227,151,136) (226,159,142) (226,159,142) (237,159,135) (237,159,135) (231,178,163) (236,187,171) (231,178,163) (236,187,171) (236,187,171) (236,187,171) (239,195,176) (239,195,176) (236,187,171) (227,133,118) (213,142,135) (216,179,170) (221,184,170) (190, 89, 89) (204,109,113) (204,115,118) (189, 85, 97) (159, 60, 78) (136, 38, 65) (160, 56, 75) (204,109,113) (227,151,136) (226,159,142) (237,159,135) (227,151,136)
255 240 240 0 160 80 0 80 160
R 255 0
80
G 255 255 160
B
0
0 240
255 0 0 0 255 0 255 255 255
第一章 导 论
灰度图像矩阵表示示例
125,153,158,157,127, 70,103,120,129,144,144,150,150,147,150,160,165,160,164,165,167,175,175,166,133, 60, 133,154,158,100,116,120, 97, 74, 54, 74,118,146,148,150,145,157,164,157,158,162,165,171,155,115, 88, 49, 155,163, 95,112,123,101,137,108, 81, 71, 63, 81,137,142,146,152,159,161,159,154,138, 81, 78, 84,114, 95,
▪ 二维平面静止彩色图像
g fr (x, y), fg (x, y), fb (x, y)
▪ 坐标点(x,y)处像素的亮度用灰度表示,亮度范 围【Lmin,Lmax】或【0,L-1】 0—黑,L-1—白
函数描述
第一章 导 论
▪图像f(x,y)由照射分量i (x,y)和反射分 量r (x,y)两个光分量构成,可表示为两者之 积。
视觉范围
❖ 亮度感觉—相对亮度的变化
▪ 亮度感觉和亮度对数成线性关系 S=K’lnB+K0 ▪ 重现图像的亮度只需保持实际图像亮度对比 ▪ 重现图像时不必精确复制人眼感觉不到的亮度差别
图像对比度 最大亮度/最小亮度 图像相对对比度(最大亮度-最小亮度)/最小亮度
第一章 导 论
人的主观亮度感觉与亮度对数成线性关系
black
C white B
A
D
人眼适应某平均亮度后, 感受的亮度范围《视觉范围
第一章 导 论
亮度感觉(1)
1.平均亮度
2.对比度
第一章 导 论
亮度感觉(2)
图A
图B
图C
亮度感觉取决于亮度的对比
第一章 导 论
亮度的适应与鉴别
❖ 视觉适应性—人眼适应明/暗环境的能力
▪ 暗适应性——从亮光处到暗处 20~30s 杆状细胞 ▪ 明适应性——从暗处到亮光处 1~2s 锥状细胞
❖人眼对亮度的感觉不会随亮度消失而立即 消失
错视现象
第一章 导 论
两线段一样长?
❖人眼对物体的 形状、大小感 觉随背景、布 置条件不同而 不同,会产生 不存在的信息 或错误的物体 几何特性。
第一章 导 论
圆圈一样大?
第一章 导 论
一样的月亮?
会动的转盘
第一章 导 论
波动
第一章 导 论
第一章 导 论
常见彩色模型
第一章 导 论
第一章 导 论
三、视觉现象
❖ 马赫带:由几个亮度逐渐减弱且连着一起的窄带 组成的图像,每个窄带内的亮度是均匀分布的。
亮度过冲
第一章 导 论
马赫带效应:由于人眼视觉系统有边缘增强的作用,在亮度突 变出会出现亮度过冲现象,即明暗边界处亮的更亮,暗的更暗。
第一章 导 论
视觉残留
图像采样与数字图像的质量
图片大小一样,图像采样间隔不同,图片清晰度也会变化。 采样间隔越小,采样像素越多,图像越清晰。
第一章 导 论
图像采样与数字图像的质量
265x180
133x90
66x45
33x22
第一章 导 论
采样间隔与图像质量的关系
第一章 导 论
图像量化
❖把采样后所得的各像素灰度值转换成离散整 数量的过程称为量化。
❖ 重要参数
▪ 采样间隔 节的变化
▪ 采样孔径 ▪ 采样方式
根据采样定理确定,反映细
大小、形状 有缝、无缝、重叠采样
第一章 导 论
图像采样与数字图像的质量
❖ 采样对图像的空间分辨率有较大影响。
▪ 空间分辨率指图像单位范围里像素的个数,影象清晰
度的度量标准。单位 ppi 像素/英寸和dpi 点/英寸
第二章 数字图像处理 的基本概念
第一章 导 论
主要内容
❖人眼的视觉原理 ❖图像数字化 ❖灰度直方图 ❖数字图像处理算法的形式 ❖图像文件格式 ❖图像的特征与噪声
第一章 导 论
2.1 视觉原理及现象 眼睛中图像的形成
一、人眼构造
第一章 导 论
盲点
黄斑区
第一章 导 论
人眼构造
❖锥状细胞
▪ 负责彩色视觉 ▪ 辨别细节和颜色(明视觉/白昼视觉) ▪ 数量600~700万
f (x, y)
f (1,0)
f (1,1)
f (1, N 1)
f
(M
1,0)
f (M 1, N 1)
x
图像坐标
第一章 导 论
❖ 矩阵是按照行列的顺序来定位数据的,但是图像 是在平面上定位数据的,所以有一个坐标系定义 上的特殊性。
相关文档
最新文档