初中数学一次函数教学设计及反思

合集下载

初中数学教学课例《一次函数》课程思政核心素养教学设计及总结反思

初中数学教学课例《一次函数》课程思政核心素养教学设计及总结反思
耗油量 yL 0 6 12 18 24 36
②y=6·x. ③z=60-x. 若两个变量 x,y 间的对应关系可以表示成 y=kx +b(k,b 为常数,k≠0)的形式,则称 y 是 x 的一次函 数.例如 y=2x+1,y=x-1 等都是一次函数. 特别地,当 b=0 时,称 y 是 x 的正比例函数.例 如,y=2x,y=-3x 等都是正比例函数.
并利用它解决实际问题.
3.经历利用一次函数解决实际问题的过程,发展
学生的数学应用能力.
本节课是函数学习的起始课,因此理解函数的基本
思想和表达方式是本节课的重点.通过生活实例中对变
量的提取,帮助学生比较深刻地领悟了函数的意义.教
学生学习能 材安排的实际问题,旨在让学生通过直观感知,领悟相
力分析 关概念,这些问题不宜单纯作为教师讲解的例题,要注
初中数学教学课例《一次函数》教学设计及总结反思
学科
初中数学
教学课例名
《一次函数》

本节课是函数学习的起始课,因此理解函数的基本
思想和表达方式是本节课的重点.通过生活实例中对变
量的提取,帮助学生比较深刻地领悟了函数的意义.教
材安排的实际问题,旨在让学生通过直观感知,领悟相
关概念,这些问题不宜单纯作为教师讲解的例题,要注
设计不同层次的习题,让不同层次的学生得到不同程度
的练习,以提高学生的解题能力和对一次函数与正比例

函数的理解和掌握.
一、情境导入二、探究新知三、举例分析四、练习
巩固 教学过程
五、小结
六、课外作业
课例研究综 述
一次函数的相关概念. (1)课件出示教材第 79 页“做一做”上面的题目. 分析:当不挂物体时,弹簧长度为 3cm,当挂 1kg

人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例

人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例
(二)过程与方法
1.通过小组合作、讨论的方式,引导学生观察、分析一次函数图象的特点,培养学生的观察能力和逻辑思维能力。
2.引导学生运用数形结合的思想,将实际问题转化为数学模型,提高学生分析问题和解决问题的能力。
3.通过对一次函数图象的探究,培养学生归纳总结的能力,使学生能够从具体实例中提炼出一般性规律。
二、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的表示方法,能够准确地识别一次函数的图象。
2.学会运用一次函数图象分析实际问题,掌握一次函数图象与实际问题之间的联系,提高解决问题的能力。
3.能够运用一次函数的性质,解决线性方程和不等式问题,为后续学习打下基础。
4.学会使用现代教育技术手段,如图形计算器、电脑软件等,绘制一次函数图象,提高实际操作能力。
人教版八年级数学下册第十九章一次函数(图象信息)优秀教学案例
一、案例背景
在我国初中数学教学中,一次函数是学生接触到的第一个具体的函数概念,它对于培养学生的函数思想具有重要的意义。人教版八年级数学下册第十九章一次函数,特别是图象信息部分,旨在帮助学生通过图象直观地理解一次函数的性质,提高学生运用数学知识解决实际问题的能力。在教学实践中,我们发现,由于一次函数图象信息的抽象性,学生往往难以把握其与实际问题的联系。为此,本教学案例将结合实际生活情境,运用现代教育技术手段,引导学生探究一次函数图象的特点及其应用,从而提高学生的数学素养和实际操作能力。在教学过程中,注重培养学生观察、分析、归纳和运用数学语言表达的能力,使学生在轻松愉快的氛围中掌握一次函数图象信息的内涵和应用。
4.鼓励学生积极参与课堂活动,敢于提出问题、表达观点,培养学生的表达能力和沟通能力。
(三)情感态度与价值观

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。

2、直线y = — 2X — 2 不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。

5、过点(0,2)且与直线y=3x平行的直线是:。

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

初中数学_一次函数的图象和性质教学设计学情分析教材分析课后反思

初中数学_一次函数的图象和性质教学设计学情分析教材分析课后反思

《一次函数的图象和性质》教学设计一、回顾旧知,提出问题问题1:正比例函数的图象和性质是什么?学生回答:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升, y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降, y随x的增大而减小.问题2:画函数图象的步骤是什么?学生回答:列表、描点、连线。

二、合作交流,探究新知例1. 画出函数y=-6x与y=-6x+5的图象.解:列表小组讨论,填下面的空:问题2:请大家在同一个直角坐标系中再画出一次函数y=-6x-5的图象,然后小组讨论填空。

一次函数y=kx+b(k≠0)的图象可以看作由直线 y=kx 平移 |b| 个单位长度得到.(当b >0时,向 上 平移;当b <0时,向 下 平移)。

例2、用两点法画一次函数图像实践:用两点法在同一坐标系中画出函数y=2x -1 与y=-0.5x+1的图象.问题3:一次函数的图象是直线,故选择其上合适两点即可.一般选择( ,0),和(0,b ).问题4:探究:一次函数的性质当k>0时,直线y=kx+b (k,b 是常数,k ≠0)从左向右 上升 ,y 随x 的增大而 增大 ; 当k<0时,直线y=kx+b (k,b 是常数,k ≠0)从左向右 下降 ,y 随x 的增大而 减小 。

问题5:1. 在同一坐标系中作出下列函数的图象k b思考:k,b 的值跟图像有什么关系? 2.在同一坐标系中作出下列函数的图象归纳:通过作以上一次函数的图像我们发现y=kx+b 中,k,b 的取值跟图像的关系如下:x3111-11- x三、课堂练习 练习1.下列一次函数中,y 的值随x 的增大而减小的有 (2)(4) (1) y=10x+9 (2) y=-0.3x+2 (3) (4) 练习2.已知一次函数y=(1-2k)x+k 的函数值y 随x 的增大而增大,且图象经过一、二、三象限,则k 的取值范围是 0<x<1/2. .练习3. 如果一次函数y=kx -3k+6的图象经过原点,那么k 的值为___2______。

《19.2.3 一次函数与方程、不等式》教学设计教学反思-2023-2024学年初中数学人教版12八

《19.2.3 一次函数与方程、不等式》教学设计教学反思-2023-2024学年初中数学人教版12八

《一次函数与方程、不等式》教学设计方案(第一课时)一、教学目标1. 理解一次函数的概念,掌握一次函数的定义条件。

2. 通过一次函数的学习,掌握方程、不等式与一次函数的关系。

3. 提高分析问题、解决问题的能力,培养数学思维。

二、教学重难点1. 重点:一次函数的概念及图像性质。

2. 难点:运用一次函数解决实际问题,建立方程、不等式与一次函数的关系。

三、教学准备1. 准备教学用具:黑板、白板、投影仪等教学设备,以及几何画板等数学软件。

2. 准备教材和练习题:选择适合学生理解和应用的教材,同时准备一定量的练习题供学生练习。

3. 备课:深入理解一次函数与方程、不等式的关系,设计合理的教学计划,以使学生更好地理解和运用相关知识。

4. 准备课堂互动环节:为了活跃课堂气氛,激发学生的学习热情,准备组织一些互动环节,如小组讨论、抢答等,以增强学生的学习参与度。

5. 课后反馈:课后,我会收集学生的反馈,了解他们对知识的掌握情况,以便对教学计划进行调整和改进。

总之,我会尽心尽力地做好备课、授课和课后反馈三个环节,以确保学生能够充分理解和掌握一次函数与方程、不等式的关系,并能够灵活运用相关知识解决实际问题。

感谢您的支持和信任,期待与您共同探讨和进步!四、教学过程:本节课是《一次函数与方程、不等式》教学的第一课时,具体教学过程如下:(一)导入新课:1. 回顾一次函数的概念、性质和应用。

2. 引出方程、不等式与一次函数的关系。

3. 引导学生思考如何利用一次函数解决相关问题。

(二)新课教学:1. 讲解一次函数与方程的关系:通过实例引导学生发现一次函数与一元一次方程的关系,并总结规律。

2. 讲解一次函数与不等式的关系:通过实例引导学生发现一次函数与一次不等式的联系,并总结规律。

3. 练习:让学生完成相关练习题,巩固所学知识。

(三)小组合作:将学生分成若干小组,让小组内成员互相讨论、交流,共同解决遇到的问题。

教师在此过程中可以进行适当的引导和提示,帮助学生更好地进行讨论。

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思

初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思
学生学情分析
经过前面的学习,学生已经掌握了函数的概念并且具有了一些分析实际问题中量与量之间的关系的能力,所以在这节课中,学生会用到前面所学。
教学过程设计
教师活动
预设学生活动
设计意图
1、提问:1.什么是函数?2.函数有哪几种表示方法?
2、提问:能否说出x的一次式的一般形式是什么样的?
3、思考:k≠0这个条件能否省略不写
4、提问:正比例函数与一次函数有怎样的关系?
1、学生回答并举例子
2、学生讨论回答
3、学生思考后回答
4、思考后回答教师的提问
1、了解函数的概念
2、理解一次函数定义
3、了解k≠0的意义
4、理解正比例函数是一次函数的特例
板书设计
自主探究,做一做:
1.某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.
(1)完成下表:
路程x/km
0
50
100
150
200
300
余油量y/L
(2)你能写出y与x之间的关系吗?
教学反思
我在这节课中通过分析变量间的关系,发展学生的数学思维;经历利用一次函数解决实际问题的过程,发展学生的数学应用能力;通过一次函数概念的引入,使学生进一步认识数学是来源于生活并用于生活,同时渗透热爱自然和生活的教育,在学生掌握了函数的概念的基础上,进一步的分析情境中量与量之间的关系,从而抽象出函数关系,让学生认识理解一次函数和正比例函数的概念以及之间的关系,为后面进一步学习一次函数的图像和性质以及一次函数的应用做铺垫,我觉得我对这节课的引入是这节课的亮点,通过举例子让学生更加清楚地学习了一次函数的概念和使用。我这节课值得总结的就是所举的例子回让一些学生觉得抽象,在以后的教学中我会尽量杜绝这种勤快的再次发生的。

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。

能够用一次函数的知识解决实际问题。

过程与方法:掌握用待定系数法求函数解析式的一般方法。

情感态度与价值观:继续渗透数形结合的数学思想。

教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。

难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。

八年级数学一次函数的图像和性质教学反思

八年级数学一次函数的图像和性质教学反思

一次函数的图像
01
一次函数的图像是一条直线。当 $k > 0$时,直线从左向右上升; 当$k < 0$时,直线从左向右下降 。
02
一次函数图像上的点都满足一次 函数的解析式。通过描点法可以 画出一次函数的图像。
一次函数的性质
增减性
当$k > 0$时,函数值随自变量的增 大而增大;当$k < 0$时,函数值随 自变量的增大而减小。
REPORTING
教学内容的优化
强化一次函数基本概念
在后续教学中,应进一步强调一次函数的基本概念,包括 定义、表达式、斜率和截距等,确保学生能够准确理解和 运用。
增加实际应用案例
为了提高学生对一次函数图像和性质的理解,可以增加更 多与现实生活相关的应用案例,如行程问题、价格问题等 ,让学生感受到数学的实际应用价值。
注重实践与应用
在教学中,应注重实践与应用环节的设计,让学生通过实际操作和问 题解决来巩固所学知识,提高解决问题的能力。
对未来教学的展望
01
深化对一次函数图像和性质的理解
在未来的教学中,可以进一步深化学生对一次函数图像和性质的理解,
通过更多的探究活动和案例分析,提高学生的思维能力和创新能力。
02
拓展与其他学科的联系
XXX
八年级数学一次函数
的图像和性质教学反

汇报人:XXX
2024-01-27
REPORTING
• 引言 • 教学目标与要求 • 教学内容与过程 • 教学效果与反思 • 学生学习情况分析 • 教学改进与展望
目录
XXX
PART 01
引言
REPORTING
反思目的和背景
反思目的

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇篇一:一次函数的优秀教学设计篇一课题:14.2.2 一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c•的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.篇二:一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

初中数学_一次函数教学设计学情分析教材分析课后反思

初中数学_一次函数教学设计学情分析教材分析课后反思

初中数学七年级上册第六章第二节《一次函数》教学设计一、教材分析(1)教材的内容、地位和作用本节内容是教育出版社出版的义务教育教科书《数学》七年级上册第六章第二节,一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数。

在此之前,学生已经学习了函数,这为过渡到本节的学习起着铺垫作用。

本节课是在学生掌握了函数的概念的基础上,进一步地分析情境中量与量之间的关系,从而抽象出函数关系,让学生认识理解一次函数和正比例函数的概念以及它们之间的关系,为后面进一步学习一次函数的图像和性质以及一次函数的应用做铺垫。

它是整个函数中起承上启下作用的核心知识之一。

本节内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材。

因此,在初中数学“函数与分析”中,起着重要的地位。

(2)教材的比较、分析与整合旧教材在讲几个具体的函数时,是按先讲正、反比例函数,后讲一次、二次函数顺序编排的。

这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接。

新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数。

为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

二、学情分析(1)从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

《19.2.2 一次函数》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册

《19.2.2 一次函数》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册

《一次函数》教学设计方案(第一课时)一、教学目标1. 理解一次函数的概念,掌握一次函数的定义。

2. 能够识别一次函数图像,理解图像的性质。

3. 学会利用一次函数解决实际问题。

二、教学重难点1. 重点:理解一次函数的概念和图像性质,能够正确画出一次函数图像。

2. 难点:灵活运用一次函数解决实际问题。

三、教学准备1. 准备教学用具:黑板、白板、笔、尺子、彩色笔等。

2. 准备教学材料:一次函数例题、习题及相关练习题。

3. 设计教学方案:明确教学内容和步骤,设计互动环节,引导学生积极参与。

4. 安排教学时间:预计一课时(45分钟),合理安排各个教学环节的时间。

四、教学过程:本节课的主要教学目标是帮助学生理解一次函数的概念,并能够解决实际问题。

在教学过程中,我们将采用以下步骤:1. 引入:通过具体问题情境引入一次函数的概念,引导学生思考如何用函数模型来描述这些问题。

引入问题:假设你正在参加一场长跑比赛,你的速度是x公里/小时,你需要跑y公里。

请问你应该以什么样的速度进行比赛,才能确保在规定时间内完成比赛?这个问题将帮助学生理解一次函数的基本形式,即y=kx+b (k≠0)。

2. 探究:通过探究活动,让学生自己发现一次函数的特点和性质。

探究问题:画出y=2x+1的图像,并观察图像的特点。

通过图像,你能发现哪些关于一次函数的信息?这个探究活动将帮助学生直观地理解一次函数的特点和性质,例如,图像是一条直线,直线的交点坐标对应于函数上的一个点等。

3. 讲解:教师对一次函数的概念和性质进行详细讲解,包括正比例函数、反比例函数等特殊形式的一次函数。

讲解内容:一次函数的概念、表达式、性质、正比例函数、反比例函数等特殊形式的一次函数的特点和区别。

4. 练习:通过一系列的练习题,帮助学生巩固一次函数的概念和性质。

练习题包括选择题、填空题和解答题,涵盖了不同形式的一次函数的应用和计算。

通过这些练习题,学生可以加深对一次函数的理解和应用。

一次函数 初中八年级下册数学教案教学设计课后反思

一次函数 初中八年级下册数学教案教学设计课后反思

《一次函数》教学设计一、教学目标(一)理解一次函数的概念以及它和正比例函数之间的关系;(二)确定一次函数解析式;(三)会画一次函数图像,并根据一次函数图像解决实际问题。

重点:理解一次函数的概念以及一次函数图像的性质。

难点:根据一次函数图像解决实际问题。

二、教材内容分析本课主要通过类比正比例函数来探究一次函数的概念,引导学生画出一次函数的图像并根据图像解决实际问题。

一次函数是一种最基本的初等函数,在现实生活中有着广泛的应用,而熟练掌握一次函数的性质和应用,是渗透“数形结合”的思想方法的重要途径,对今后进一步学习反函数以及二次函数具有启示作用。

三、教学方法(一)由实际问题引出一次函数解析式的过程,充分体现数学与生活之间的联系;(二)在画一次函数图像过程中体会“数形结合”的思想方法。

四、活动准备:(一)学生准备:课前认真复习正比例函数相关知识;(二)物质材料准备:课件《一次函数》。

五、活动过程:(一)课堂回顾1、引导学生利用绘制表格的方式回顾正比例函数的相关知识。

正比例函数的函数解析式为,当时,它的图像为。

(出示课件)。

当时,正比例函数的图像经过一三象限,且y随x的增大而增大。

当时,它的图像为。

(出示课件)当时,正比例函数的图像经过二四象限,且y随x的增大而减小。

(二)新课导入1、某登山队大本营所在地气温为5℃,海拔每升高1km下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y 与x的关系。

2、以下变量之间的对应关系是函数关系吗?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的变化而变化.通过列一次函数解析式归纳出一次函数的概念。

初中数学教学课例《一次函数》课程思政核心素养教学设计及总结反思

初中数学教学课例《一次函数》课程思政核心素养教学设计及总结反思
初中数学教学课例《一次函数》教学设计及总结反思
学科
初中数学
教学课例名
《一次函数》

一次函数。它是在认识了函数、函数的图象和正比
例函数的基础上进行的,一次函数是最基本、最简单的
函数,本节课主要学习一次函数的概念。本节内容既是
前面知识的深化和应用,又为今后学习反比例函数、二
次函数的概念,提供了一般思路和方法。因此本节课具
在开始她每个月可以得到 150 元的零用钱,小丸子计划 每月将零用钱的 60%存入银行,用以购买她期盼已久的 CD 随身听(价值 1680 元)
(1)列出小丸子的银行存款(不计利息)y 与月 数 x 的函数关系式;
(2)多长时间以后,小丸子的银行存款才能买随 身听?
例 4 为了加强公民的节水意识,合理利用水资源, 某城市规定用水收费标准如下:每户每月用水量不超过 6 米 3 时,水费按 0.6 元米 3 收费;每户每月用水量超 过 6 米 3 时,超过部分按 1 元米 3 收费。设每户每月用 水量为 x 米 3,应缴水费 y 元。写出每月用水量不超过 6 米 3 和超过 6 米 3 时,y 与 x 之间的函数关系式,并 判断它们是否为一次函数。已知某户 5 月份的用水量为 8 米 3,求该用户 5 月份的水费。
“一次函数”这一章的重点是一次函数的概念、图 象和性质,一方面,在学生初次接触函数的有关内容时, 一定要结合具体函数进行学习,因此,全章的主要内容, 课例研究综 是侧重在具体函数的讲述上的。另一方面,在大纲规定 述 的几种具体函数中,一次函数是最基本的,教科书对一 次函数的讨论也比较全面。通过一次函数的学习,学生 可以对函数的研究方法有一个初步的认识与了解,从而
生共同分析,得出函数解析式,为下面的问题的解决提 择与设计

新人教版八年级数学下册《一次函数》教学反思(共五则范文)

新人教版八年级数学下册《一次函数》教学反思(共五则范文)

新人教版八年级数学下册《一次函数》教学反思(共五则范文)第一篇:新人教版八年级数学下册《一次函数》教学反思本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。

求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。

通过本节课的教学发现:1、有一小部分的学生还是不懂得看函数图像。

2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。

3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。

另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。

1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。

2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。

第二篇:八年级数学下册一次函数教学设计八年级数学下册一次函数教学设计教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。

能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

教学过程1、复习:函数与正比例函数的概念和它们之间的关系。

2、问题:某登山队大本营所在地的气温为15℃.海拔每升高1km 气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃。

试用解析式表示y与x的关系。

3、反思:这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式函数还会有吗?中下层的学生对登高xkm,气温下降多少度不能想出来,课堂上应及时点拨在对旧知的复习中突出函数是对变量间关系的刻画,正比例函数则是对某一类关系共性的抽象反映。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一次函数教学设计及反思
一、一次函数
1、问题导入:
问题1:小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均速度是95千米/时.己知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
问题2:小张准备将平时的零用钱节约一些储存起来.他己存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份数之间的函数关系式.
请同学们思考后回答:
(1)找出问题中的变量并用字母表示,列出函数关系式.
(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?
以上这些问题,请各小组讨论一下,派代表回答.引出课题(板书课题)教师最后总结一次函数的概念.(板书)
2、引导学生观察这两个函数关系式的结构特征,引出一次函数的一般形式(学生回答,且互相补充)老师最后归纳:一次函数通常可以表示为的形式,其中为常数,
.特别地,当时,一次函数(常数)也叫做正比例函数.
二、一次函数的图象是什么形状呢?
1、做一做:
我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目).根据学生的动手实践、观
察与讨论,得出结论:一次函数的图象是一条直线.特别地,正比例函数的图象是经过原点的一条直线.
2、接下来教师提问:
(1)观察所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点.
(2)能否从中了现一些规律?对于直线(是常数,),常数的取值对于直线的位置各有什么影响?
3、组织学生分小组讨论,相互交流、相互补充,最后总结出规律:当一样,不一样时,直线方向相同(平行),但没有相同点;当不一样,一样时,都经过(0,
)点(相交),但直线方向不同.
4、巩固训练:
(1)在同一平面直角坐标系中画出下列函数的图象
教师提出问题:①画出图象,看看是否与上面的讨论结果一样;②你取的是哪几个点?和同学比较一下,怎样取比较简便?
(2)将直线向下平移2个单位,得到直线
_______________________.
将直线向上平移5个单位,得到直线_______________________.
(由学生到前板演).
5、对于教材中第42页例2处理,教师先用多媒体打出,并提出问题:平面直角坐标系中坐标轴上点的坐标有什么特征?在坐标轴上取点有什么好处?组织学生结合问题去分析,动手尝试,小组讨论交流,最后达成共识.对于教材第43页例3处理,教师可以提出以下几个问题讨论同学们讨论:①这里
取的数悬殊较大怎么办?②这个函数是不是一次函数?③这个函数中自变量
的取值范围是什么?函数的图象是什么?④在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他情形?你能不能找
出几个例子加以说明?
三、一次函数的性质
函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?
1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数
的图象),并回答:当一个点在直线上从左右移动时,它的位置
如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师
运用现代化的教学手段来演示点的移动情况,进一步促进了学生对
一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值
随自变量的增大而增大.(教师板书)
2、请同学们画出函数
的图象,然后教师可以提出问题:观察它们是否也有相应的性质,有什么不同你能否发现什么规律?让学生带着老师提出的问题进行分
组讨论,相互交流,最后归纳出一次函数如下性质:(1)当
时,随的增大而增大,这时函数的图象从左到右上升;(2)当时,随的增大而减小,这时函数的图象从左到右下降;
3、补充性质:(3)时,一次函数的图象经过一、二、三象限;(4)时,一次函数的图象经过一、三、四象限;(5)
时,一次函数的图象经过一、二、四象限;(6)时,一次函数的图象经过二、三、四象限.
4、对于教材中第45页做一做处理,可以作为例题,引导学生动手操作,分组讨论,由学生自己得出结论,教师起着指导作用;对于
教材中第45页例4的处理,教师可以先组织学生审题分析找出题中
的己知量,并提示学生:要想求一次函数的关系式,关键是要确定
和的值,那么,结合题中所给的己知条件,又怎样来确定和
的值呢?组织学生讨论,结合学生得出的结论,教师再给出待定系数法的概念,这样学生马上就会理解,从而难点得以突破.在这里教师要提醒学生,注意实际问题有关函数的自变量的范围限制.
在学习了正比例函数的概念之后进行一次函数的概念学习,学生还是比较有信心学好的。

课例根据教材的安排,通过设计经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;通过思考题来不断细化教材,达到层层铺垫、分层递进的目的。

1.理解一次函数和正比例函数的概念;通过类比的方法学习一次函数,体会数学研究方法多样性。

2.根据实际问题列出简单的一次函数的表达式.找出问题中的变量并用字母表示是探求函数关系的第一步。

3.本节课重点讲授了运用函数的关系式来表达实际问题,通过引导分析,感觉学生收获比较大。

另外,写出函数的关系式,学生比较困难,本节课也存在可以不断提高完善的地方。

猜你感兴趣:。

相关文档
最新文档