2014孝感中考数学试题解析版
2014年全国中考数学试题分类汇编05 二元一次方程(含解析)
二元一次方程(组)及其应用一、选择题1.(2014•新疆,第8题5分)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()由题意得,.2.(2014•温州,第9题4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()B C D.3.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),4.(2014•襄阳,第8题3分)若方程mx+ny=6的两个解是,,则m,n的值为()解:将分别代入中,得:5.(2014•襄阳,第9题3分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()6.(2014•孝感,第5题3分)已知是二元一次方程组的解,则m﹣n的值是()代入方程组得:7.(2014·台湾,第6题3分)若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值.解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A .点评:此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.8.(2014•滨州,第12题3分)王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( )9.(2014年山东泰安,第7题3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8 分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D 点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二.填空题1. (2014•福建泉州,第11题4分)方程组的解是.,.故答案为:2.(2014•浙江湖州,第18题分)解方程组.分析:方程组利用加减消元法求出解即可.解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.3.(2014•滨州,第16题4分)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备34 元钱买门票.,,三.解答题1. (2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•广西贺州,第20题6分)已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将x=2,y=3代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可))=,4.(2014•舟山,第21题8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?.5.(2014•邵阳,第23题8分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?.6.(2014·云南昆明,第21题8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m (件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.7. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:8. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,=,即正方形的边长为9. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第3题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.10. (2014•泰州,第21题,10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.由题意得,解得:11. (2014•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?==1②根据题意得:;<≤,2≤<﹣;,得到,12.(2014•呼和浩特,第22题7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?由题意得,,13.(2014•滨州,第19题3分)(2)解方程组:.).。
2014年全国中考数学试题分类汇编25 矩形菱形与正方形(含解析)
矩形菱形与正方形一、选择题1. (2014•安徽省,第10题4分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A. 1 B. 2 C. 3 D. 4考点:正方形的性质.菁优网分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O 的距离小于是本题的关键.2. (2014•福建泉州,第5题3分)正方形的对称轴的条数为()3. (2014•珠海,第2题3分)边长为3cm的菱形的周长是()4.(2014•广西玉林市、防城港市,第6题3分)下列命题是假命题的是()5.(2014•毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H 为AD边中点,菱形ABCD的周长为28,则OH的长等于()AAB6.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()PE===7.(2014•孝感,第9题3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()8.(2014·台湾,第12题3分)如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为何?( )A .16B .24C .36D .54分析:由于△ADC =△AGC ﹣△ADG ,根据矩形的性质和三角形的面积公式计算即可求解. 解:△ADC =△AGC ﹣△ADG =12×AG ×BC ﹣12×AG ×BF=12×8×(6+9)﹣12×8×9=60﹣36=24. 故选:B .点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算. 9.(2014·台湾,第27题3分)如图,矩形ABCD 中,AD =3AB ,O 为AD 中点,是半圆.甲、乙两人想在上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下: (甲) 延长BO 交于P 点,则P 即为所求;(乙) 以A 为圆心,AB 长为半径画弧,交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得△PBC的面积等于矩形ABCD的面积,需P甲H=P乙K=2A B.故两人皆错误.故选:B.点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.10.(2014•浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()===511.(2014•浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是()..=,=3,===2,=AF=×2=.11.(2014•呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD 相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()=12. (2014•湘潭,第7题,3分)以下四个命题正确的是()13. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()14. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第3题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。
2014年武汉市中考数学试题(完美答案解析版)
2014年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,满分30分) 下列各题中均有四个备选答案中,其中有且只有一个是正确的 1.在实数-2、0、2、3中,最小的实数是( )A .-2B .0C .2D .32.若代数式3 x 在实数范围内有意义,则x 的取值范围是( )A .x ≥-3B .x >3C .x ≥3D .x ≤3 3.光速约为300 000千米/秒,将数字300 000用科学记数法表示为( ) A .3×104B .3×105C .3×106D .30×1044.在一次中学生田径运动会上,参加调高的15名运动员的成绩如下表所示:成绩(m ) 1。
50 1。
60 1.65 1.70 1.75 1.80 人数1 24 332 那么这些运动员跳高成绩的众数是( )A .4B .1.75C .1.70D .1。
65 5.下列代数运算正确的是( )A .(x 3)2=x 5B .(2x )2=2x 2C .x 3·x 2=x 5D .(x +1)2=x 2+16.如图,线段AB 两个端点的坐标分别为A (6,6)、B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( ) A .(3,3)B .(4,3)C .(3,1)D .(4,1)7.如图,由4个大小相同的正方体组合而成的几何体,其俯视图是( )8.为了解某一路口某一时刻的汽车流量,小明同学10天中在同一时段统计该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( ) A .9B .10C .12D .159.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( ) A .31B .46C .51D .66A BC D10.如图,PA 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E 交PA 、PB 于C 、D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A .13125B .512C .1353D .1332二、填空题(共6小题,每小题3分,满分18分) 11.计算:-2+(-3)=_______ 12.分解因式:a 3-a =_______________13.如图,一个转盘被分成7个相同的扇形,颜色分别为红黄绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图所示,则这次越野跑的全程为______米 15.如图,若双曲线xky =与边长为5的等边△AOB 的边OA 、AB 分别相交于C 、D 两点,且 OC =3BD ,则实数k 的值为______16.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为______ 三、解答题(共9小题,共72分) 17.解方程:xx 322=- 18.已知直线y =2x -b 经过点(1,-1),求关于x 的不等式2x -b ≥0的解集 19.如图,AC 和BD 相交于点O,OA =OC ,OB =OD ,求证:AB ∥CD20.如图,在直角坐标系中,A (0,4)、C(3,0)(1) ① 画出线段AC 关于y 轴对称线段AB② 将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD ,使得AD ∥x 轴,请画出线段CD(2) 若直线y =kx 平分(1)中四边形ABCD 的面积,请直接写出实数k 的值21.袋中装有大小相同的2个红球和2个绿球(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球①求第一次摸到绿球,第二次摸到红球的概率②求两次摸到的球中有1个绿球和1个红球的概率(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5(1) 如图(1),若点P是弧AB的中点,求PA的长(2)如图(2),若点P是弧BC的中点,求PA得长23.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果24.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接P Q(1)若△BP Q与△ABC相似,求t的值(2)连接A Q、CP,若A Q⊥CP,求t的值(3)试证明:P Q的中点在△ABC的一条中位线上25.如图,已知直线AB:y =kx +2k +4与抛物线y =21x 2交于A 、B 两点 (1) 直线AB 总经过一个定点C ,请直接写出点C 坐标(2) 当k =-21时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5 (3) 若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:错误!=0.4,∴估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为:30×0.4=12(天).故选C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9、考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10、考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义.分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=错误!r.利用Rt△BFP∽RT△OAF得出AF=错误!FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△BFP和Rt△OAF中,,∴Rt△BFP∽RT△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.11、考点:有理数的加法分析:根据有理数的加法法则求出即可.解答:解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12、考点:提公因式法与公式法的综合运用分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13、考点:概率公式分析:由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.解答:解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14、考点:一次函数的应用分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.解答:解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.点评:本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.15、考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=3x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.解答:解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=3x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=1,x2=0(舍去),故k=×12=.故答案为:.点评:本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16、考点:全等三角形的判定与性质;勾股定理;等腰直角三角形分析:根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.解答:解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:,∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.17、考点:解分式方程分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想",把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、考点:一次函数与一元一次不等式分析:把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.解答:解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3.解2x﹣3≥0得,x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19、考点:全等三角形的判定与性质;平行线的判定分析:根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC ∥AB.解答:证明:∵在△ODC和△OBA中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).点评:此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.20、考点:作图—旋转变换;作图-轴对称变换分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.21、考点:列表法与树状图法分析:(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,直接利用概率公式求解即可求得答案.解答:解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:=;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的为:=;(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率是:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、考点:相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理分析:(1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.解答:解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△ABC中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在RT△OPN中,有NP2=0P2﹣ON2=36在RT△ANP中有PA===3∴PA=3.点评:本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.23、考点:二次函数的应用分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.解答:解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+200,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当20≤x≤60时,每天销售利润不低于4800元.点评:本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.24、考点:相似形综合题分析:(1)分两种情况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣BM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得RC=DF,D在过R的中位线上,从而证PQ的中点在△ABC一条中位线上.解答:解:(1)①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,仍有PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC 于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.点评:此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.25、考点:二次函数综合题;解一元二次方程—因式分解法;根与系数的关系;勾股定理;相似三角形的判定与性质分析:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k 型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.解答:解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.∴直线AB:y=kx+2k+4必经过定点(﹣2,4).∴点C的坐标为(﹣2,4).(2)∵k=﹣,∴直线的解析式为y=﹣x+3.联立,解得:或.∴点A的坐标为(﹣3,),点B的坐标为(2,2).过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示.设点P的横坐标为a,则点Q的横坐标为a.∴y P=a2,y Q=﹣a+3.∵点P在直线AB下方,∴PQ=y Q﹣y P=﹣a+3﹣a2∵AM+NB=a﹣(﹣3)+2﹣a=5.∴S△APB=S△APQ+S△BPQ=PQ•AM+PQ•BN=PQ•(AM+BN)=(﹣a+3﹣a2)•5=5.整理得:a2+a﹣2=0.解得:a1=﹣2,a2=1.当a=﹣2时,y P=×(﹣2)2=2.此时点P的坐标为(﹣2,2).当a=1时,y P=×12=.此时点P的坐标为(1,).∴符合要求的点P的坐标为(﹣2,2)或(1,).(3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,作BF⊥EF,垂足为F,如图2.∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°﹣∠BDF=∠DBF.∵∠AED=∠BFD,∠ADE=∠DBF,∴△AED∽△DFB.∴.设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2.AE=y A﹣y E=m2﹣t2.BF=y B﹣y F=n2﹣t2.ED=x D﹣x E=t﹣m,DF=x F﹣x D=n﹣t.∵,∴=.化简得:mn+(m+n)t+t2+4=0.∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.∴m+n=2k,mn=﹣4k﹣8.∴﹣4k﹣8+2kt+t2+4=0,即t2+2kt﹣4k﹣4=0.即(t﹣2)(t+2k+2)=0.∴t1=2,t2=﹣2k﹣2(舍).∴定点D的坐标为(2,2).过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示.∵点C(﹣2,4),点D(2,2),∴CG=4﹣2=2,DG=2﹣(﹣2)=4.∵CG⊥DG,∴DC====2.过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时,点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2点评:本题考查了解方程组、解一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的性质与判定等知识,考查了通过解方程组求两函数交点坐标、用割补法表示三角形的面积等方法,综合性比较强.构造K型相似以及运用根与系数的关系是求出点D的坐标的关键,点C是定点又是求点D到直线AB的最大距离的突破口.。
【解析版】孝感市孝南区2014-2015学年八年级上月考数学试卷
)
A. 三角形的角平分线 B. 三角形的中线
C. 三角形的高 D. 三角形的中位线
考点: 三角形的角平分线、中线和高;三角形中位线定理. 专题: 运算题. 分析: 按照三角形的高、中线、角平分线的性质解答. 解答: 解:因为在三角形中, 它的中线、角平分线一定在三角形的内部, 而钝角三角形的高在三角形的外部. 故选 C. 点评: 本题考查了三角形的高、中线和角平分线,要熟悉它们的性质 方可解答.
5.下列四个图案中,轴对称图形的个数是(
)
A. 1 B. 2 C. 3 D. 4
考点: 轴对称图形. 分析: 按照轴对称图形的定义 1 得出,图形沿一条直线对着,分成的 两部分完全重合及是轴对称图形,分不判定得出即可. 解答: 解:按照图象,以及轴对称图形的定义可得, 第 1,2,4 个图形是轴对称图形,第 3 个是中心对称图形, 故选: C. 点评: 此题要紧考查了轴对称图形的定义,按照定义判定出图形形状 是解决咨询题的关键.
故选 B. 点评: 此题要紧考查了三角形的三边关系,在运用三角形三边关系判 定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短 的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三 角形.
3.下列运算正确的是(
)
A. 2a3+a2=3a5 B. (3a)2=6a2 C. (a+b)2=a2+b2 D. 2a
(1)求证: BG=CF; (2)DE⊥ GF 交 AB 于点 E,连接 EF,试判定 BE+CF 与 EF 的大小, 并证明你的结论.
2014-2015 学年湖北省孝感市孝南区八年级(上)月考数学试卷( 12 月份)
参考答案与试题解析
一、选择题(每小题 3 分,共 30 分)
2014年孝感市中考数学试卷及答案解析
湖北省孝感市2014年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分•在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1. (3分)(2014?孝感)下列各数中,最大的数是()A . 3 B. 1 C. 0 D. - 5考点:有理数大小比较分析:根据正数都大于零,负数都小于零,正数大于负数,两个负数比较大小,绝对值大的数反而小,再进行比较,即可得出答案.解答:解:•.•- 5v 0v 1v 3,故最大的数为3, 故答案选A .点评:本题考查了实数的大小比较,掌握正数都大于零,负数都小于零,正数大于负数,两个负数比较大小,绝对值大的数反而小是本题的关键.2. (3分)(2014?孝感)如图是某个几何体的三视图,则该几何体的形状是(考点:由三视图判断几何体分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D .点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3. (3分)(2014?孝感)下列二次根式中,不能与•合并的是()A . 卩B .」C . . 1 ■:D .届V2考点:同类二次根式分析:根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得B、挖故B能与话:'■合并;A .长方体B.圆锥C.圆柱D.三棱柱解答: ,故A能与「合并;C ^二N/l ,故C 不能与血合并;D ^二朋,故D 能与逅合并; 故选:C .点评:本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式. 4. ( 3分)(2014?孝感)如图,直线I, I 2, I 3丄14,/仁44 °那么/ 2的度数(考点:平行线的性质;垂线.分析:根据两直线平行,内错角相等可得/3= /1,再根据直角三角形两锐角互余列式计算即可得解.解答:解:Tl i // I 2,•••/ 3= / 仁44 ° ••T3 丄 14,•••/ 2=90°-/ 3=90 °- 44 °=46 ° 故选A .C. 3考点:二元一次方程组的解. 专题:计算题.分析:将x 与y 的值代入方程组求出 m 与n 的值,即可确定出 m - n 的值. 解答: 「3+E 解:将x= - 1, y=2代入方程组得:* 厂-,解得:m=1 , n= - 3, 贝V m - n=1 -( - 3) =1+3=4 . 故选D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.44 °C . 36°D . 22°X= - 15. ( 3分)(2014?孝感)已知*是二元I 尸2次方程组『我尸;的解,贝y m - n 的值是L nx-y=lB . 点评:本题考查了平行线的性质,垂线的定义,熟记性质并准确识图是解题的关键.6. ( 3分)(2014?孝感)分式方程’ 的解为( )s - 1 3x - 3A . x=-'B .C .x=;D .5考点:解分式方程 专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:丿£解 :去分母得:3x=2, 解得:x==,3 经检验x=是分式方程的解.3故选B点评:J此题考查了解分式方程,解分式方程的基本思想是 转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7. ( 3分)(2014?孝感)为了解某社区居民的用电情况,随机对该社区 10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是54考点:方差;加权平均数;中位数;众数.分析:根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数 和方差,即可判断四个选项的正确与否.解答:解:A 、月用电量的中位数是 55度,正确;B 、 用电量的众数是 60度,正确;C 、 用电量的方差是 24.9度,错误;D 、 用电量的平均数是 54度,正确. 故选C .点评:考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大至切、)重新排列后,最中间的那个数(最中间两个数的平均数) ,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组 数据最中间的那个数当作中位数.& (3分)(2014?孝感)如图,在?ABCD中,对角线AC、BD相交成的锐角为a,若AC=a ,BD=b,则?ABCD的面积是()A .一•B. absin a C. abcos a D. 一」-absin a abcos a22考点:平行四边形的性质;解直角三角形.分析:过点C作CE丄DO于点E,进而得出EC的长,再利用三角形面积公式求出即可. 解答:解:过点C作CE丄DO于点E,•••在?ABCD中,对角线AC、BD相交成的锐角为a, AC=a, BD=b ,••• si n a但,CO• EC=COsi n a asin a,2--5△ BCD=—CE >BD=—x asin a 1b=-^absin a,2 2 24• ?ABCD 的面积是:2absin aX^absin a.4 2故选;A.点评:此题主要考查了平行四边形的性质以及解直角三角形,得出EC的长是解题关键.9. (3分)(2014?孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D (5, 3)在边AB上,以C为中心,把△ CDB旋转90°则旋转后点D的对应点D '的坐标A . (2, 10)B . (-2 , 0)C . (2 , 10)或(-2 , 0)D . (10 , 2)或(-2 ,0)考点:坐标与图形变化-旋转.分析:分顺时针旋转和逆时针旋转两种情况讨论解答即可. 解答:解:•••点D (5, 3)在边AB 上,••• BC=5 , BD=5 - 3=2 ,① 若顺时针旋转,则点 D 在x 轴上,0D '=2 , 所以,D ' (- 2, 0),② 若逆时针旋转,则点 D 到x 轴的距离为10,到y 轴的距离为2, 所以,D ' (2, 10), 综上所述,点 D '的坐标为(2, 10)或(-2, 0). 故选C .点评:本题考查了坐标与图形变化-旋转,正方形的性质,难点在于分情况讨论.10. (3分)(2014?孝感)如图,在半径为 6cm 的O 0中,点A 是劣弧'的中点,点D 是 优弧"上一点,且/ D=30。
孝感中考数学试题及答案
孝感中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x + 3 = 5x + 1C. 2x + 3 = 5x - 2D. 2x + 3 = 5x + 2答案:C2. 如果一个圆的半径是3厘米,那么它的周长是多少?A. 6π厘米B. 9π厘米C. 12π厘米D. 18π厘米答案:C3. 以下哪个是不等式3x - 7 > 2x + 1的解?A. x > -8B. x < -8C. x > 8D. x < 8答案:A4. 计算下列哪个表达式的值等于15?A. 3 × 5B. 5 × 3C. 3 + 5D. 5 + 3答案:B5. 一个三角形的两边长分别为4厘米和6厘米,第三边长x满足什么条件?A. 2 < x < 10B. 4 < x < 10C. 2 < x < 14D. 4 < x < 14答案:D6. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 8/12D. 5/7答案:D7. 一个数的平方等于36,这个数是什么?A. 6B. -6C. 6或-6D. 以上都不是答案:C8. 以下哪个选项表示一个正比例关系?A. 速度× 时间 = 距离(一定)B. 速度 + 时间 = 距离(一定)C. 速度÷ 时间 = 距离(一定)D. 速度 = 时间× 距离(一定)答案:A9. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是多少?A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:B10. 以下哪个选项是正确的?A. √16 = ±4B. √16 = 4C. √16 = -4D. √16 = 2答案:B二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
2014年全国中考数学试题分类汇编14 统计(含解析)
统计一、选择题1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.菁优网分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()360×=2523.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()8.(2014•毕节地区,第5题3分)下列叙述正确的是()9.(2014•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()10.(2014•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()11.(2014•襄阳,第6题3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()12.(2014•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()=1.513.(2014•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()14.(2014•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()D15.(2014·台湾,第25题3分)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34分析:先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选D.点评:此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(2014•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C.2D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17. (2014•株洲,第3题,3分)下列说法错误的是()=218. (2014•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是()19. (2014•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()20.(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是()21.(2014•滨州,第8题3分)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()22.(2014•德州,第9题3分)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()中位数为:=2923.(2014•菏泽,第4题3分)2014年4月8日我市区县的可吸入颗粒物数值统计如下表:该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()24.(2014•济宁,第6题3分)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()25.(2014年山东泰安,第9题3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90 分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二.填空题1. (2014•福建泉州,第12题4分)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.2. (2014•广西玉林市、防城港市,第15题3分)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是9℃.3. (2014•广西贺州,第15题3分)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=22.考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.4.(2014年广东汕尾,第14题5分)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.分析:根据众数和平均数的概念求解.解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.(2014•孝感,第14题3分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃; ③掷一次骰子,向上一面的数字是2; ④度量四边形的内角和,结果是360°. 其中是随机事件的是 ①③ .(填序号)6.(2014·云南昆明,第11题3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).7.(2014•浙江湖州,第14题4分)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b 天,则a+b=.分析:根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案是:12.点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.(2014·浙江金华,第14题4分)小亮对60名同学进行节水方法的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是▲ .【答案】240°. 【解析】试题分析:根据扇形圆心角的计算方法,表示“一水多用”的扇形圆心角的度数是4036024040578⨯︒=+++︒.考点:扇形圆心角的计算.9.(2014•浙江宁波,第15题4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 150 支.10. (2014•湘潭,第11题,3分)未测试两种电子表的走时误差,做了如下统计则这两种电子表走时稳定的是甲.11. (2014•益阳,第11题,4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是2.16米.12. (2014•株洲,第12题,3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.等级所占的百分比为:13. (2014年江苏南京,第10题,2分)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.考点:众数、极差分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解答:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.14. (2014•扬州,第12题,3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.×15.(2014•呼和浩特,第12题3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.=)))∴这组数据的方差是[3×的平均数为[)))三.解答题1. (2014•福建泉州,第23题9分)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?1300×=5202. (2014•广东,第22题7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3. (2014•珠海,第14题6分)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.1000×4. (2014•广西贺州,第22题8分)学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16万人次到图书馆阅读,其中商人占百分比为12.5%;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据学生的人数除以占的百分比,求出总人数;求出商人占的百分比即可;(2)求出职工的人数,补全条形统计图即可;(3)由职工的百分比乘以28000即可得到结果.解答:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.5. (2014•广西玉林市、防城港市,第22题8分)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?0.12×=0.686.(2014年四川资阳,第18题8分)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.考点:条形统计图;列表法与树状图法.菁优网分析:(1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防知识“特别熟悉”的居民人数的百分比乘以900即可;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出树状图,再根据概率公式求解.解答:解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.7.(2014年天津市,第20题8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.菁优网专题:计算题.分析:(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.解答:解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.8.(2014•新疆,第18题8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?9.(2014年云南省,第18题9分)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E 五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可))=,11.(2014•舟山,第19题6分)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?=0.2512.(2014•毕节地区,第24题12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.则概率是:=13.(2014•襄阳,第20题7分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是6个;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率..14.(2014•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40×=54°3500×=.15.(2014•邵阳,第22题8分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.××=40016.(2014•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:。
【数学】2014-2015年湖北省孝感市孝南区七年级下学期期中数学试卷和答案解析PDF
2014-2015学年湖北省孝感市孝南区七年级(下)期中数学试卷一.精心选择,一锤定音(每小题3分,共30分,每小题只有一个选项是正确的)1.(3分)下列四幅图案中,能通过平移左图所示的图案得到的是()A.B.C.D.2.(3分)在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列实数是无理数的是()A.﹣1 B.0 C.D.4.(3分)点A在平面直角坐标系中的第二象限,且A点到x轴的距离为3,到y轴的距离为5,则A的坐标为()A.(﹣5,3)B.(﹣3,5)C.(5,﹣3)D.(3,﹣5)5.(3分)如图所示,已知直线a、b被直线c所截,以下结论:①∠1=∠2;②∠1=∠3;③∠2=∠3;④∠3+∠4=180°其中正确的个数有()A.1个 B.2个 C.3个 D.4个6.(3分)设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.87.(3分)下列说法错误的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的一个平方根D.﹣3是的一个平方根8.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2 C.∠C=∠3 D.∠A=∠19.(3分)将点P(﹣3,b)向下平移3个单位,再向右平移2个单位后得到Q (a,﹣1),则ab的值为()A.﹣2 B.2 C.4 D.﹣410.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|二.耐心填空,准确无误(每题3分,共计18分)11.(3分)把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.12.(3分)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.13.(3分)如图所示,三角形OAB的顶点B的坐标为(4,0),把三角形OAB 沿x轴向右平移得到三角形CDE,如果CB=1,那么OE的长为.14.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=度.15.(3分)若+|y+8|=0,则的平方根为.16.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三.用心做一做,显显你的能力(本大题共8小题,共72分)17.(10分)(1)×÷(2)若(x+2)3=﹣27,求x.18.(8分)如图,O是直线AB上的一点,且∠AOC=∠BOC.(1)求∠AOC的大小;(2)若OC平分∠AOD,试判断OD与AB的位置关系.19.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.20.(8分)已知P(3,m+8)和Q(2m+5,3m+1)且PQ∥y轴.(1)求m的值;(2)求PQ的长.21.(8分)如图,已知AB∥CD,∠1=∠2,求证:∠3=∠4.22.(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图,P为△ABC内一点,P的坐标为(a,b).(1)平移三角形ABC,使C点与原点重合,请画出平移后的三角形A′B′C′.(2)直接写出A、B、P的对应点A′、B′、P′的坐标:A′(,),B′(,),P′(,).23.(10分)小明在参加数学兴趣活动小组时,探究如图甲这一基本图形.【问题】:如图甲,AB∥CD,试探究∠B、∠E、∠D三者之间的数量关系,并说明理由;【拓展】:将图甲变为图乙、图丙(其中AB∥CD不变),请你直接写出相应的结论:图乙:;图丙:.【应用】:如图丁,运用上面的结论解决问题:AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED的度数.24.(12分)如图所示,A、B、C三点的坐标分别为:A(﹣4,0)、B(2,0)、C(0,6)(1)求S△ABC;(2)过C点作直线l平行于x轴,M为l上任意一点,试猜想S△CAB 与S△MAB的关系?请用特值验证你的猜想;(3)试求坐标轴上找一点P,使S△ACP=S△ABC,请直接写出满足条件的P的坐标.2014-2015学年湖北省孝感市孝南区七年级(下)期中数学试卷参考答案与试题解析一.精心选择,一锤定音(每小题3分,共30分,每小题只有一个选项是正确的)1.(3分)下列四幅图案中,能通过平移左图所示的图案得到的是()A.B.C.D.【解答】解:观察图形可知,B图案能通过平移图案得到.故选:B.2.(3分)在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.3.(3分)下列实数是无理数的是()A.﹣1 B.0 C.D.【解答】解:A、﹣1是有理数,故A错误;B、0是有理数,故B错误;C、是无理数,故C正确;D、=3是有理数,故D错误;故选:C.4.(3分)点A在平面直角坐标系中的第二象限,且A点到x轴的距离为3,到y轴的距离为5,则A的坐标为()A.(﹣5,3)B.(﹣3,5)C.(5,﹣3)D.(3,﹣5)【解答】解:∵A点在第二象限,到x轴的距离为3,到y轴的距离为5,∴点A的横坐标是﹣5,纵坐标是3,∴A(﹣5,3).故选:A.5.(3分)如图所示,已知直线a、b被直线c所截,以下结论:①∠1=∠2;②∠1=∠3;③∠2=∠3;④∠3+∠4=180°其中正确的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:∵对顶角相等,∴∠1=∠2,故①正确;∵直线a、b被直线c所截,而a与b不平行,∴②③④错误;∴正确的个数为1个,故选:A.6.(3分)设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.8【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选:D.7.(3分)下列说法错误的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的一个平方根D.﹣3是的一个平方根【解答】解:A.1的平方根是±1,正确;B.﹣1的立方根是﹣1,正确;C.是2的一个平方根,正确;D.,3的平方根是±,故错误;故选:D.8.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2 C.∠C=∠3 D.∠A=∠1【解答】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.9.(3分)将点P(﹣3,b)向下平移3个单位,再向右平移2个单位后得到Q (a,﹣1),则ab的值为()A.﹣2 B.2 C.4 D.﹣4【解答】解:∵将点P(﹣3,b)向下平移3个单位,再向右平移2个单位后得到Q(a,﹣1),∴﹣3+2=a,b﹣3=﹣1,∴a=﹣1,b=2,∴ab=﹣1×2=﹣2.故选:A.10.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|【解答】解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.二.耐心填空,准确无误(每题3分,共计18分)11.(3分)把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.12.(3分)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).13.(3分)如图所示,三角形OAB的顶点B的坐标为(4,0),把三角形OAB 沿x轴向右平移得到三角形CDE,如果CB=1,那么OE的长为7.【解答】解:∵点B的坐标为(4,0),∴OB=4,∵CB=1,∴OC=OB﹣CB=4﹣1=3,∵△OAB沿x轴向右平移得到△CDE,∴BE=OC=3,∴OE=OB+BE=4+3=7.故答案为:7.14.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=58度.【解答】解:如图,∵AB∥CD,∴∠2=∠3,∵∠1+∠3=90°,∠1=32°,∴∠2=∠3=90°﹣32°=58°.15.(3分)若+|y+8|=0,则的平方根为±2.【解答】解:因为+|y+8|=0,所以=0,|y+8|=0,解得x=﹣2,y=﹣8,所以=4,所以的平方根为:.故答案为:±2.16.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n表示).【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),(2n,1).所以,点A4n+1故答案为:(2n,1).三.用心做一做,显显你的能力(本大题共8小题,共72分)17.(10分)(1)×÷(2)若(x+2)3=﹣27,求x.【解答】解:(1)原式=0.6××2=;(2)开立方得:x+2=﹣3,解得:x=﹣5.18.(8分)如图,O是直线AB上的一点,且∠AOC=∠BOC.(1)求∠AOC的大小;(2)若OC平分∠AOD,试判断OD与AB的位置关系.【解答】解:(1)∵OD⊥AB,∴∠AOD=∠BOD=90°,∵∠AOC=∠BOC,∴∠AOC=45°;(2)垂直,理由如下:∵OC平分∠AOD,∠AOC=∠BOC,∴∠AOC=45°,∴∠AOD=90°,∴OD⊥AB.19.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.20.(8分)已知P(3,m+8)和Q(2m+5,3m+1)且PQ∥y轴.(1)求m的值;(2)求PQ的长.【解答】解:(1)∵P(3,m+8)和Q(2m+5,3m+1)且PQ∥y轴,∴2m+5=3,解得:m=﹣1;(2)∵P(3,m+8)和Q(2m+5,3m+1),m=﹣1,∴p(3,7),Q(3,﹣2),∴PQ==9.21.(8分)如图,已知AB∥CD,∠1=∠2,求证:∠3=∠4.【解答】证明:延长BE交直线CD于M,∵AB∥CD,∴∠1=∠BMC,∵∠1=∠2,∴∠2=∠BMC,∴BE∥CF,∴∠3=∠4.22.(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图,P为△ABC内一点,P的坐标为(a,b).(1)平移三角形ABC,使C点与原点重合,请画出平移后的三角形A′B′C′.(2)直接写出A、B、P的对应点A′、B′、P′的坐标:A′(3,1),B′(1,﹣3),P′(a﹣1,b﹣2).【解答】解:(1)△A′B′C′如图所示;(2)∵点C(1,2)的对应点C′的坐标为(0,0),∴平移规律是:先向左平移1个单位长度,再向下平移2个单位长度,∴A′(3,1),B′(1,﹣3),P′(a﹣1,b﹣2).故答案为3,1,1,﹣3,a﹣1,b﹣2.23.(10分)小明在参加数学兴趣活动小组时,探究如图甲这一基本图形.【问题】:如图甲,AB∥CD,试探究∠B、∠E、∠D三者之间的数量关系,并说明理由;【拓展】:将图甲变为图乙、图丙(其中AB∥CD不变),请你直接写出相应的结论:图乙:∠B+∠E+∠D=360°;图丙:∠B+∠F+∠D=∠E+∠G.【应用】:如图丁,运用上面的结论解决问题:AB∥CD,BE平分∠ABF,DE平分∠CDF,∠BFD=120°,求∠BED的度数.【解答】解:【问题】∠E=∠B+∠D.理由:过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠E=∠B+∠D.【拓展】图乙:过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠ABE+∠BEF=180°,∠D+∠DEF=180°,∴∠B+∠BED+∠D=360°,即∠B+∠E+∠D=360°;图丙:分别过点E、F、G作EH∥AB,MF∥AB,GN∥CD,则AB∥EH∥MF∥GN∥CD,同(1)可得,∠B+∠MFE=∠BEF①,∠MFG+∠D=∠FGD②,①+②得,∠B+∠D+∠EFG=∠BEF+∠DGF,即∠B+∠F+∠D=∠E+∠G.故答案为:∠B+∠F+∠D=∠E+∠G;【应用】如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1;又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=120°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=(∠5+∠6)=∠BFD=×120°=60°.24.(12分)如图所示,A、B、C三点的坐标分别为:A(﹣4,0)、B(2,0)、C(0,6)(1)求S△ABC;(2)过C点作直线l平行于x轴,M为l上任意一点,试猜想S△CAB 与S△MAB的关系?请用特值验证你的猜想;(3)试求坐标轴上找一点P,使S△ACP=S△ABC,请直接写出满足条件的P的坐标.【解答】解:(1)由图可知:AB=6,OC=6,∴=18.(2)猜想:S△ABC=S△MAB如图1,连接MA,MB,设M(a,6),∵直线l平行于x轴,∴△ABC和△MAB的边AB上的高相等为6,∴△ABC和△MAB同底AB=6,等高为6,∴S△ABC=S△MAB.(3)P1(0,),P2(0,),P3(﹣7,0),P4(﹣1,0).赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。
2014-2015学年孝感市孝南区九年级上期中数学试卷及答案解析
价后,现售价为 3528 元/台,则平均每次降价的百分率为
.
17.(3 分)(2014 秋•杭州期末)如图,正方形 OABC 的两边 OA、OC 分别在 x 轴、y 轴上,
点 D(5,3)在边 AB 上,以 C 为中心,把△ CDB 旋转 90°,则旋3 分)(2014 秋•孝南区期中)如图,在同一直角坐标系中,抛物线 y1 =ax2 +bx+c 与两
A.3
B. 5
C.﹣3 和 5
D.3 和﹣5
5.(3 分)(2012•苏州)如图,将△ AOB 绕点 O 按逆时针方向旋转 45°后得到△ A′OB′,若 ∠AOB=15°,则∠AOB′的度数是(
)
A.25°
B. 30°
C.35°
D.40°
6.(3 分)(2014 秋•孝南区期中)将一元二次方程 x 2﹣2x﹣3=0 配方后所得的方程是( )
坐标轴分别交于 A(﹣1,0)、点 B(3,0)和点 C(0,﹣3),直线2y =mx+n 与抛物线交
于 B、C 两点.由图象可知:
(1)当 x 满足
时,ax2 +bx+c<0;
(2)当 x 满足 (3)当 x 满足
时,y1>y2 ; 时,y1•y2>0.
三、解答题(本大题共 7 小题,共 66 分) 19.(8 分)(2014 秋•孝南区期中)解下列方程: (1)x(x﹣3)+x﹣3=0 (2)x2 ﹣4x+1=0.
A.(x﹣2)2=4
B.(x﹣1)2=4
C.(x﹣1)2 =3
D.(x﹣2)2 =3
7.(3 分)(2014 秋•孝南区期中)抛物线 y=3x2 先向上平移 2 个单位,再向右平移 3 个单位, 所得的抛物线为( ) A.y=3(x+3)2 ﹣2 B. y=3(x+32) +2 C.y=3(x﹣3)2 ﹣2 D.y=3(x﹣3)2 +2
2014-2015学年湖北省孝感市孝南区九年级(上)期中数学试卷解析(pdf版)介绍
A. 25°
B. 30°
C. 35°
D.40°
考点: 旋转的性质. 分析: 根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即
菁优网 版 所 权 有
可. 解答: 解:∵将△ AOB 绕点 O 按逆时针方向旋转 45°后得到△ A′OB′, ∴∠A′OA=45°,∠AOB=∠ A′OB′=15°, ∴∠AOB′=∠A′OA﹣∠ A′OB′=45°﹣15°=30°, 故选:B. 点评: 此题主要考查了旋转的性质, 根据旋转的性质得出∠A′OA=45°, ∠AOB=∠ A′OB′=15° 是解题关键. 6. (3 分) (2014 秋•孝南区期中) 将一元二次方程 x2 ﹣2x﹣3=0 配方后所得的方程是 ( )
2014-2015 学年湖北省孝感市孝南区九年级(上)期中数学试卷
一、选择题(本题共 12 小题,每小题 3 分,共 36 分) 1. (3 分) (2013•烟台)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图 形的是( ) A. B. C. D.
2. (3 分) (2012•宿迁) 在平面直角坐标系中, 点 (3, ﹣2 ) 关于原点对称点的坐标是 ( A. (3,2) B. (﹣3,﹣2) C. (﹣3,2) D.(﹣3,﹣2) 3. (3 分) (2014 秋•孝南区期中) 把方程 3x (x﹣1) =5 (x+2) 化为一般形式正确的是 ( 2 2 2 2 A. 3x ﹣3x﹣10=0 B. 3x ﹣8x﹣10=0 C. 3x ﹣8x+10=0 D.x ﹣3x﹣10=0 4. (3 分) (2005•南充)二次函数 y=x2 +2x﹣7 的函数值是 8,那么对应的 x 的值是( A. 3 B. 5 C. ﹣3 和 5 D.3 和﹣5
2014年孝感市中考调研考试数学参考答案
数学答案第1页(共4页)数学答案第2页(共4页)数学答案第3页(共4页)数学答案第4页(共4页)数学答案第5页(共4页)数学答案第6页(共4页)数学答案第7页(共4页)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCBDACAABCCB二、填空题13.)1)(1(-+a a ab ; 14.31; 15.240; 16.120°;17.22)1(-+n n 或2n 2-2n +1;18.22.三、解答题19.解:原式=⎪⎪⎭⎫⎝⎛--÷--29232x x x x ………………………………………………2分 =)3)(3(223+--⨯--x x x x x =31+x………………………………………………4分 当32-=x 时,原式=223321=+-.………………………………………………6分20.(1)如图所示 …………3分 (2)如图所示 …………6分点P 是△ABC 的内心 ……8分21.解:(1)这个班共有学生数为:5010500=÷(名)………………2分(2)“了解较多”部分所对应的圆心角的度数为:︒=︒⨯1443605020……………4分 (第20题)数学答案第8页(共4页)(第23题)(3)该班A 组5名学生中有3男2女,从中随机抽取2名学生列表如下:(男生用A 表示,女生用B 表示)B 2 A 1B 2 A 2B 2 A 3B 2 B 1B 2 B 1 A 1B 1 A 2B 1 A 3B 1 B 2B 1 A 3 A 1A 3 A 2A 3 B 1A 3 B 2A 3 A 2 A 1A 2 A 3A 2 B 1A 2 B 2A 2 A 1 A 2A 1 A 3A 1 B 1A 1 B 2A 1 A 1A 2A 3B 1B 2…………………………………………………………………8分∴恰好是1男1女的概率是532012==P . …………………………………10分22.解:(1)∵ 每件涨价1元(售价不可以高于45元),那么每星期少卖出10件, ∴ )40)(10150(x x y +-=6000250102+--=x x y . ………………………………4分(2)设利润是W =(40-30+x )(150-10x ) =1500-100x +150x -10x 2W =-10x 2+50x +1500…………………………………6分当每星期的利润为1560元时,∴-10x 2+50x +1500=1560∴21=x ,32=x ,4240=+x 或4340=+x …………………………………8分∴当售价为42元或43元时,此时每星期的销售件数为:130件或120件……9分销量是546042130=⨯(元)或 516043120=⨯(元)故当售价为42元或43元时,才能使每星期的利润为1560元.此时每星期的销量是5460元或5160元.…………………………………10分23.解:(1)直线CD 与⊙O 相切.…………1分理由如下:数学答案第9页(共4页)∵∠A =30°,∴∠COB =2∠A =60°. 又∵OC =OB ,∴△OBC 是等边三角形, ∴∠OCB =60°.………………………3分∵∠BCD =30°,∴∠OCD =∠OCB +∠BCD =90°,即OC ⊥CD . 又∵OC 是半径,∴CD 是⊙O 的切线,即直线CD 与⊙O 相切.………………………5分(2)∵OC ⊥AB ,∴AC =BC =5.由(1)知,△OBC 是等边三角形, ∴OC =BC =5.………………………8分又由(1)知,∠OCD =90°,∠COD =60°,∴CD =OC •tan60°=35⨯=35,即线段CD 的长度是35.………………………10分 24.解:(1)若方程x 2 – ( k + 2 ) x +41k 2+1 = 0有两个不相等的实数根,则△>0. ∴0)141(4)2(22>+-+k k , ∴044422>--++k k k ,∴0>k ;当0>k 时,原方程有两个不相等的实数根.………………………4分(2)∵221+=+k x x ,0141221>+=⋅k x x 又0>k ,∴210x x <<,………………………6分∵4||21=+x x ,∴421=+x x ,∴42=+k , ∴2=k ,………………………8分当2=k 时,原方程可化为0242=+-x x ,解得:221-=x ,222+=x .………………………10分25.解:(1)∵二次函数c bx x y ++=221的图象经过点A (4,0)和点C (0,2).∴⎪⎩⎪⎨⎧=++⨯=c c b 2442102,解得⎪⎩⎪⎨⎧=-=225c b ,数学答案第10页(共4页)∴二次函数的解析式为:225212+-=x x y . ………………………2分∵89)25(212252122--=+-=x x x y 令0=y ,则0225212=+-x x ,解得11=x ,42=x ∴其对称轴为直线25=x ,顶点坐标为⎪⎭⎫⎝⎛-89 25,,1=OB . ……………………5分(2)①∵四边形OEAF 是以OA 为对角线的平行四边形,∴AEO OEAF S S ∆=2平行四边形 ……………………7分∴E E y OA y OA S ⋅=⋅⨯=212 ∴810222521422-+-=+-⨯=x x x x S ……………………9分∴S 与x 之间的函数解析式为:)41( 81022<<-+-=x x x S . ………10分②当点E 的坐标为)1 2(-,时,四边形OEAF 为菱形. …………………12分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第19题至第25题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
中考数学专题11方程、不等式和函数的应用综合(原卷板)
2014年中考数学试题分项版解析汇编(30套30专题)专题11:方程、不等式和函数的应用综合一、选择题目1.(遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是【】二、填空题目三、解答题1.(玉林、防城港)(12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.2.(毕节)(12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.3.(黔东南)(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.4.(遵义)(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是▲ km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?5.(河北)(本小题满分13分)某景区的环形路是边长为800米的正方形ABCD,如图,现有1号,2号两游览车分别从出口A和经典C同时出发,1号车顺时针,2号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200米/分.探究:设行驶时间为t分(1)当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内它与2号车相遇过的次数.发现:如图,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与D,A重合)时,刚好与2号车相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?6.(河南)(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
2014年全国中考数学试题分类汇编29 解直角三角形(含解析)
解直角三角形一、选择题1.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()absinαabcosα==CE×absinα的面积是:absinα2. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(),,(、底边上的高是=3. (2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()(第2题图)B﹣2∠AC,==2﹣)﹣=﹣===4.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()=,得到.×=10×=6=,.5.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()4米米中,∵=,==6二.填空题1.(2014•新疆,第13题5分)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)=,2.(2014•舟山,第12题4分)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).=3.(2014•浙江宁波,第17题4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17 个这样的停车位.(≈1.4)=2.2×≈1.54=5×≈3.5=2.2÷≈3.144. (2014•株洲,第13题,3分)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).(第1题图)=5. (2014•泰州,第16题,3分)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于1或2cm.(第2题图),即cm=cm AE=6.(2014•济宁,第12题3分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB 的长为3+.,,=..三.解答题1. (2014•安徽省,第18题8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.菁优网分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.2. (2014•广东,第20题7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.3. (2014•珠海,第17题7分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)=9090=90=60,÷20=34. (2014•广西贺州,第24题8分)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)考点:解直角三角形的应用-方向角问题.分析:(1)过C作AB的垂线,设垂足为D,则CD的长为海轮在航行过程中与灯塔C的最短距离;(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.解答:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.点评:本题考查了解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线.5.(2014年四川资阳,第19题8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.考点:解直角三角形的应用-方向角问题.菁优网分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.6.(2014年天津市,第22题10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).考点:解直角三角形的应用.菁优网专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.解答:解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.7.(2014年云南省,第21题6分)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.(2014•四川自贡,第18题8分)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)=0.9≈1.29.(2014·云南昆明,第20题6分)如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)64.1310.(2014•浙江宁波,第21题8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;第20题图(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)11. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),.=4×≈546.712. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第2题图),根据≠且≠•(﹣,最后根据x﹣+)=4×=2.,在=,,≠且≠,此时△),=PB=﹣x=x=x,x﹣)x+•(x)x)时,取得最小值x13. (2014•株洲,第17题,4分)计算:+(π﹣3)0﹣tan45°.14. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.=,在===m=,===15. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第5题图)==,×==×=的面积为===.===,,==的长度为16.(2014年江苏南京,第23题)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.17. (2014•泰州,第22题,10分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)18.(2014•呼和浩特,第18题6分)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)=.cos cos。
2014-2015年湖北省孝感市孝南区八年级(上)数学期中试卷及参考答案
2014-2015学年湖北省孝感市孝南区八年级(上)期中数学试卷一.选择题1.(3分)以下是回收,绿色包装,节水,低碳四个标志,其中是轴对称图形的是()A.B. C.D.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2) B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)3.(3分)下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,84.(3分)画△ABC的BC边上的高,正确的是()A. B. C.D.5.(3分)如图,△ABC中,点D在AB边上,∠A=∠1,∠B=∠2,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定6.(3分)若一个正多边形的一个外角是36°,则这个正多边形的边数是()A.7 B.8 C.9 D.107.(3分)如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(3分)等腰三角形中有一个内角等于40゜,其余两个角的度数为()A.40゜,100゜B.70゜,70゜C.40゜,100゜或70゜,70゜D.60゜,80゜9.(3分)已知△ABC中,AB=AC,下列结论:①若AB=BC,则△ABC是等边三角形;②若∠A=60゜,则△ABC是等边三角形;③若∠B=60゜,则△ABC是等边三角形,其中正确的有()A.0个 B.1个 C.2个 D.3个10.(3分)如图,在△ABC中,BC⊥AC,点M,N分别在AB,AC上,MN是AC的垂直平分线,则下列判断:①AM=CM,②∠2=∠B,③AM=BM,其中错误个数是()A.0个 B.1个 C.2个 D.3个11.(3分)如图,在△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB,BD=2CD,DE=3,则BC的长为()A.7 B.8 C.9 D.1012.(3分)如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB,AC于F,E,以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④CE=,其中一定正确的有()A.1个 B.2个 C.3个 D.4个二.填空题13.(3分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).14.(3分)已知点P(a+1,2a﹣5)关于x轴对称点在第一象限,则符合条件a 的整数值为.15.(3分)如图,AD,CE是△ABC的高,已知AD=10,CE=9,AB=12,则BC=.16.(3分)如图,∠A=∠1=36°,∠C=72°,则图中共有个等腰三角形.17.(3分)如图,△ABC中,∠ACB=90゜,将△ABC的边BC沿∠ACB的平分线CD折叠到B′C,B′在AC上.若∠B′DA=20゜,则∠B=.18.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.三.解答题19.(6分)如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹)20.(8分)如图,△ABC中,点D是AC边上一点,若AB=BD=AC,∠DBC=30°,求∠BDC的度数.21.(10分)如图,六边形ABCDEF的内角都相等,∠1=60°.(1)求证:ED∥AB;(2)若去掉“∠1=60°”这个条件,其余不变,上述结论是否仍成立,请说明理由.22.(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示(顶点在格点上).现将△ABC沿某直线翻折,使点A变换为点A′,A点坐标为(﹣2,3),A′的坐标为(4,3).(1)指出其对称轴,画出翻折后的△A′B′C′,直接写出点B′,C′的坐标.对称轴是:,B′(,)C′(,)(2)若△ABC内部一点P的坐标(a,b),则点P的对称点P′的坐标是(,)(3)求△A′B′C′的面积.23.(10分)如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形?(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.24.(11分)已知△ABC与△ADE均为等边三角形,点A,E在BC的同侧.(1)如图甲,点D在BC上,求证:CE+CD=AC;(2)如图乙,若点D在BC的延长线上,其它条件不变,上述结论是否成立?若成立,请予以证明,若不成立,请说明理由.25.(11分)如图,已知点A(a,0),B(0,b),且(a+2)2+|b﹣4|=0,以B 点为直角顶点在第二象限作等腰直角△ABC.(1)填空:a=,b=;(2)求C点的坐标;(3)在坐标平面内是否存在点P(不与点C重合),使△PAB与△ABC全等?若存在,请直接写出满足条件的所有P点的坐标(不需要过程);若不存在,请说明理由.2014-2015学年湖北省孝感市孝南区八年级(上)期中数学试卷参考答案与试题解析一.选择题1.(3分)以下是回收,绿色包装,节水,低碳四个标志,其中是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2) B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.3.(3分)下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8【解答】解:A,∵3+4<8∴不能构成三角形;B,∵4+6>9∴能构成三角形;C,∵8+15>20∴能构成三角形;D,∵8+9>15∴能构成三角形.故选:A.4.(3分)画△ABC的BC边上的高,正确的是()A. B. C.D.【解答】解:画△ABC的BC边上的高,即过点A作BC边的垂线.故选:C.5.(3分)如图,△ABC中,点D在AB边上,∠A=∠1,∠B=∠2,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【解答】解:由三角形的内角和定理得,∠A+∠B+∠1+∠2=180°,∵∠A=∠1,∠B=∠2,∴2(∠1+∠2)=180°,∴∠1+∠2=90°,即∠ACB=90°,∴△ABC是直角三角形.故选:B.6.(3分)若一个正多边形的一个外角是36°,则这个正多边形的边数是()A.7 B.8 C.9 D.10【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选:D.7.(3分)如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【解答】解:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,故正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,故正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,故正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,故错误.故选:D.8.(3分)等腰三角形中有一个内角等于40゜,其余两个角的度数为()A.40゜,100゜B.70゜,70゜C.40゜,100゜或70゜,70゜D.60゜,80゜【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故另外两个内角的度数分别为:40°、100°或70°、70°.故选:C.9.(3分)已知△ABC中,AB=AC,下列结论:①若AB=BC,则△ABC是等边三角形;②若∠A=60゜,则△ABC是等边三角形;③若∠B=60゜,则△ABC是等边三角形,其中正确的有()A.0个 B.1个 C.2个 D.3个【解答】解:∵AB=AC,AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴①正确;∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴②正确;∵AB=AC,∠B=60°,∴△ABC是等边三角形,∴③正确;正确的有3个,故选:D.10.(3分)如图,在△ABC中,BC⊥AC,点M,N分别在AB,AC上,MN是AC的垂直平分线,则下列判断:①AM=CM,②∠2=∠B,③AM=BM,其中错误个数是()A.0个 B.1个 C.2个 D.3个【解答】解:∵NM是AC的垂直平分线,∴AM=CM,∴①正确;且∠1=∠A,∵BC⊥AC,∴∠1+∠2=∠A+∠B=90°,∴∠2=∠B,∴②正确;∴BM=CM,∴AM=BM,∴③正确;所以没有错误的结论,故选:A.11.(3分)如图,在△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB,BD=2CD,DE=3,则BC的长为()A.7 B.8 C.9 D.10【解答】解:∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=3,∵BD=2CD,∴BD=2×3=6,∴BC=BD+CD=6+3=9.故选:C.12.(3分)如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB,AC于F,E,以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④CE=,其中一定正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=180°=90°,故MB⊥BD,①成立;∵DM∥BC,∴,而AB=AC,∴BF=CE;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,FD=EC,②成立;∵∠DBM=90°,MF=DF,∴BF=DM,而CE=BF,∴CE=DM,④成立.故选:C.二.填空题13.(3分)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.14.(3分)已知点P(a+1,2a﹣5)关于x轴对称点在第一象限,则符合条件a 的整数值为0、1、2.【解答】解:∵点P(a+1,2a﹣5)关于x轴对称点在第一象限,∴点P在第四象限,∴,解不等式①得,a>﹣1,解不等式②得,a<,所以,a的取值范围是﹣1<a<,∵a是整数,∴a=0、1、2.故答案为:0、1、2.15.(3分)如图,AD,CE是△ABC的高,已知AD=10,CE=9,AB=12,则BC=.【解答】解:∴△ABC的面积=AB•CE=BC•AD,∴AB•CE=BC•AD,∵AD=10,CE=9,AB=12,∴BC===.故答案为.16.(3分)如图,∠A=∠1=36°,∠C=72°,则图中共有3个等腰三角形.【解答】解:∵∠1=36°,∠C=72°,∴∠BDC=180°﹣∠1﹣∠C=72°,∴BD=BC,∴△BDC为等腰三角形;∵∠A=36°,且∠A+∠ABD=∠BDC,∴∠ABD=∠BDC﹣∠A=72°﹣36°=36°,∴DA=DC,∴△ABD为等腰三角形;∵∠1=36°,∴∠ABC=∠ABD+∠1=72°=∠C,∴AB=AC,∴△ABC为等腰三角形,故答案为:3.17.(3分)如图,△ABC中,∠ACB=90゜,将△ABC的边BC沿∠ACB的平分线CD折叠到B′C,B′在AC上.若∠B′DA=20゜,则∠B=55゜.【解答】解:∵将△ABC的边BC沿∠ACB的平分线CD折叠到B′C,B′在AC上,∴∠ACD=∠BCD,∠BDC=∠B′DC,∵∠ACB=90°,∠B′DA=20°,∠BCD=45°∴∠CDB=×(180°﹣20°)=80°,∠BCD=45°∴∠B=180°﹣45°﹣80°=55°,故答案为:55°.18.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是2+n.【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.三.解答题19.(6分)如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹)【解答】解:如图所示:P点即为所求.20.(8分)如图,△ABC中,点D是AC边上一点,若AB=BD=AC,∠DBC=30°,求∠BDC的度数.【解答】解:∵AB=BD=AC,∴∠ABC=∠DCB,∠A=∠ADB,设∠BDC=x°,则∠C=180°﹣∠BDC﹣∠DBC=180°﹣x°﹣30°=150°﹣x°,∴∠ABC=150°﹣x°,∴∠ABD=∠ABC﹣∠DBC=150°﹣x°﹣30°=120°﹣x°,在△ABD中,∠A=∠ADB=180°﹣∠BDC=180°﹣x°,∴∠ABD=180°﹣2(180°﹣x°)=2x°﹣180°,∴120﹣x=2x﹣180,解得x=100,即∠BDC=100°.21.(10分)如图,六边形ABCDEF的内角都相等,∠1=60°.(1)求证:ED∥AB;(2)若去掉“∠1=60°”这个条件,其余不变,上述结论是否仍成立,请说明理由.【解答】(1)证明:六边形的内角和为:(6﹣2)×180°=720°.∵六边形ABCDEF的内角都相等,∴每个内角的度数为:720°÷6=120°.又∵∠1=60°,四边形ABCD的内角和为360°,∴∠CDA=360°﹣∠DAB﹣∠B﹣∠C=360°﹣60°﹣120°﹣120°=60°,∴∠EDA=120°﹣∠CDA=120°﹣60°=60°,∴∠EDA=∠DAB=60°,∴AB∥DE(内错角相等,两直线平行).(2)成立;∵六边形ABCDEF的内角都相等,∴每个内角的度数为:720°÷6=120°.又∵四边形ABCD的内角和为360°,∴∠CDA+∠1=360°﹣120°﹣120°=120°,∵∠2+∠CDA=120°,∴∠1=∠2,∴AB∥DE(内错角相等,两直线平行).22.(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示(顶点在格点上).现将△ABC沿某直线翻折,使点A变换为点A′,A点坐标为(﹣2,3),A′的坐标为(4,3).(1)指出其对称轴,画出翻折后的△A′B′C′,直接写出点B′,C′的坐标.对称轴是:直线x=1,B′(3,﹣1)C′(0,2)(2)若△ABC内部一点P的坐标(a,b),则点P的对称点P′的坐标是(2﹣a,2﹣b)(3)求△A′B′C′的面积.【解答】解:(1)如图所示,对称轴是直线x=1,B′(3,﹣1)C′(0,2).故答案为:直线x=1;3,﹣1;0,2;(2)∵P的坐标(a,b),对称轴是直线x=1,∴P′的横坐标=2﹣a,纵坐标=2﹣b,∴P′(2﹣a,2﹣b).故答案为:2﹣a,2﹣b;=4×4﹣×1×4﹣×1×4﹣×3×3=16﹣2﹣2﹣=.(3)S△A′B′C′23.(10分)如图,在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形?(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形.【解答】解:(1)①③,①④,②③和②④;(2)以①④为条件,理由:∵OB=OC,∴∠OBC=∠OCB.又∵∠DBO=∠ECO,∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.24.(11分)已知△ABC与△ADE均为等边三角形,点A,E在BC的同侧.(1)如图甲,点D在BC上,求证:CE+CD=AC;(2)如图乙,若点D在BC的延长线上,其它条件不变,上述结论是否成立?若成立,请予以证明,若不成立,请说明理由.【解答】解:(1)证明:∵△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴CE+CD=BD+CD=BC=AC;(2)上述结论不成立,CE﹣CD=AC;∵△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴CE﹣CD=BD﹣CD=BC=AC.25.(11分)如图,已知点A(a,0),B(0,b),且(a+2)2+|b﹣4|=0,以B 点为直角顶点在第二象限作等腰直角△ABC.(1)填空:a=2,b=4;(2)求C点的坐标;(3)在坐标平面内是否存在点P(不与点C重合),使△PAB与△ABC全等?若存在,请直接写出满足条件的所有P点的坐标(不需要过程);若不存在,请说明理由.【解答】解:(1)∵(a+2)2+|b﹣4|=0,∴a+2=0,b﹣4=0,解得:a=﹣2,b=4;故答案为:﹣2,4;(2)如图1,过点C作CE⊥y轴于点E,∵∠ABC=90°,∴∠CBE+∠ABO=90°,∵∠ECB+∠CBE=90°,∴∠ECB=∠ABO,在△CBE和△BAO中,,∴△CBE≌△BAO(AAS),∴AO=BE,BO=EC,∵a=2,b=4,∴BO=CE=4,AO=BE=2,∴C(﹣4,6);(3)如图2,当P1A⊥AB,且AB=P1A,则△P1AB≌△ABC,故P1(﹣6,2),当P 2B⊥AB,且AB=P2B,则△P2BA≌△ABC,故P2(4,2),当P3A⊥AB,且AB=P3A,则△P3AB≌△ABC,故P3(2,﹣2).。
【数学】2014-2015年湖北省孝感市孝南区七年级上学期期中数学试卷与解析PDF
2014-2015学年湖北省孝感市孝南区七年级(上)期中数学试卷一、精心选择,一锤定音.(本题12小题,每小题3分,共36分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.(3分)某市2014年元旦的最高气温为4℃,最低气温为﹣7℃,那么,这天的最高气温比最低气温高()A.3°B.﹣3° C.11°D.﹣11°2.(3分)下列运算结果是负数的是()A.(﹣5)+(﹣5) B.(﹣5)﹣(﹣5)C.(﹣5)*(﹣5) D.(﹣5)÷(﹣5)3.(3分)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A.1.5×104美元B.1.5×105美元C.1.5×1012美元D.1.5×1013美元4.(3分)下列计算中,正确的是()A.﹣0.12=0.2 B.﹣|﹣2|2=4C.(﹣3)3=﹣6 D.﹣(﹣1)2n+1=1(n表示自然数)5.(3分)下列计算正确的是()A.2a2+3a2=5a5B.3a﹣a=2 C.3ba2﹣3a2b=0 D.3a+b=3ab6.(3分)计算:﹣3(1﹣x),正确的是()A.﹣3﹣x B.﹣3+2x C.﹣3+x D.﹣3﹣x7.(3分)下列说法正确的是()A.0不是单项式B.x没有系数C.是多项式D.﹣xy5是单项式8.(3分)某工厂第一年生产a件产品,第二年比第一年增产了40%,则两年共生产产品的件数为()A.0.4a B.a C.1.4a D.2.4a9.(3分)在数轴上表示数a的点到原点的距离是4个长度,则a+|a|的值为()A.0 B.8 C.0或8 D.410.(3分)一套住房的平面图如图所示,其中卫生间、厨房的面积和是()A.4xy B.3xy C.2xy D.xy11.(3分)已知a=2012x+2013,b=2014x+2015,c=2013x+2013,则(2c﹣a﹣b)2等于()A.﹣4 B.4 C.﹣8 D.812.(3分)小明利用计算机设计了一个计算程序,输入和输出的数据为下表:输入…12345…输出……那么,当输入数据是9时,输出的数据是()A.B.C.D.二、耐心填空,准确无误.(本题共6小题,每小题3分,共18分)13.(3分)﹣1的相反数是,倒数是,绝对值是.14.(3分)已知多项式﹣2m3n2﹣5中,含字母的项的系数为a,多项式的次数为b,常数为c,则a+b+c=.15.(3分)已知﹣2x m y6与是同类项x3y2n,则m n=.16.(3分)若|x+y+3|+(xy﹣2)2=0,则(4x﹣2xy+3)﹣(2xy﹣4y+1)的值为.17.(3分)有理数a,b在数轴上(如图),那么的值是(填“负数”或“正数”或“零”).18.(3分)如图是一组由深圳2011年世界大学生运动会吉祥物“UU笑脸”组成的有规律的图案,请你观察比较它们的组成规律:则第n个图案由个“UU笑脸”组成.三、解答题:用心做一做,显显自己的能力.(本小题共7小题,满分66分)19.(12分)计算下列各题(1)(﹣3)﹣(+14)+(﹣4)﹣(﹣8)(2)|﹣|×()2÷(3)﹣32÷3+(﹣)×12﹣23.20.(8分)先化简后求值:3x2y﹣[2xy2﹣2(yx﹣x2y)],其中x=5,y=.21.(8分)已知a为最小的正整数,b为a的相反数,c为绝对值最小的有理数,m的绝对值为3.(1)写出a,b,c,m的值;(2)计算:c÷(﹣b)×a+(a+b)﹣m3的值.22.(8分)如图所示,数轴上点A,B,C各表示有理数a,b,c.(1)试判断:b+c,b﹣a,a﹣c的符号;(2)化简:|b+c|﹣|b﹣a|﹣|a﹣c|.23.(8分)某市自来水厂对居民用水实行阶梯收费,每户每月用水量如果未超过10吨,收取12元的建设费,如果超过10吨,除收取12元的建设费用外,超过的部分按每吨1.8元收费.(1)若每月用水10吨为标准,低于的记作“﹣”,高于记作“+”.2014年张老师家1﹣10月份用水如下;+4,﹣3,﹣2,+3,+2,+6,﹣4,+5,+7,﹣1请求出张老师家今年1﹣10月份用水多少吨;(2)在(1)的前提下,请你求出张老师家1﹣10月份应向自来水厂交费多少元?24.(10分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示).(2)若x=25,通过计算说明此时按哪种方案购买较为合算?25.(12分)探索与思考:观察下列等式:1+3=1+2×2﹣1=4=221+3+5=1+3+2×3﹣1=9=321+3+5+7=1+3+5+2×4﹣1=16=42…(1)试一试:1+3+5+7+9+11=;(2)猜一猜:1+3+5++(2n﹣1)+(2n+1)=;(用含有n的式子表示)(3)用一用:请用上述规律求:41+43+45+…+77+79的值.2014-2015学年湖北省孝感市孝南区七年级(上)期中数学试卷参考答案与试题解析一、精心选择,一锤定音.(本题12小题,每小题3分,共36分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.(3分)某市2014年元旦的最高气温为4℃,最低气温为﹣7℃,那么,这天的最高气温比最低气温高()A.3°B.﹣3° C.11°D.﹣11°【解答】解:4﹣(﹣7)=4+7=11℃,故选:C.2.(3分)下列运算结果是负数的是()A.(﹣5)+(﹣5) B.(﹣5)﹣(﹣5)C.(﹣5)*(﹣5) D.(﹣5)÷(﹣5)【解答】解:A、原式=﹣10,符合题意;B、原式=﹣5+5=0,不合题意;C、原式=25,不合题意;D、原式=1,不合题意,故选:A.3.(3分)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A.1.5×104美元B.1.5×105美元C.1.5×1012美元D.1.5×1013美元【解答】解:将15000亿用科学记数法表示为:1.5×1012.故选:C.4.(3分)下列计算中,正确的是()A.﹣0.12=0.2 B.﹣|﹣2|2=4C.(﹣3)3=﹣6 D.﹣(﹣1)2n+1=1(n表示自然数)【解答】解:A、﹣0.12=﹣0.01,故本选项错误;B、﹣|﹣2|2=﹣4,故本选项错误;C、(﹣3)3=﹣27,故本选项错误;D、﹣(﹣1)2n+1=1(n表示自然数),故本选项正确;故选:D.5.(3分)下列计算正确的是()A.2a2+3a2=5a5B.3a﹣a=2 C.3ba2﹣3a2b=0 D.3a+b=3ab 【解答】解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C正确;D、不是同类项的不能合并,故D错误;故选:C.6.(3分)计算:﹣3(1﹣x),正确的是()A.﹣3﹣x B.﹣3+2x C.﹣3+x D.﹣3﹣x【解答】解:﹣3(1﹣x),=﹣3×1+(﹣3)×(﹣x),=﹣3+x.故选:C.7.(3分)下列说法正确的是()A.0不是单项式B.x没有系数C.是多项式D.﹣xy5是单项式【解答】解:A、0是单项式,故错误;B、x的系数是1,故错误;C、分母中含字母,不是多项式,故正确;D、符合单项式的定义,故正确.故选:D.8.(3分)某工厂第一年生产a件产品,第二年比第一年增产了40%,则两年共生产产品的件数为()A.0.4a B.a C.1.4a D.2.4a【解答】解:a+a+40%a=2.4a(件).故选:D.9.(3分)在数轴上表示数a的点到原点的距离是4个长度,则a+|a|的值为()A.0 B.8 C.0或8 D.4【解答】解:∵在数轴上表示数a的点到原点的距离是4个单位长度,∴a=±4;当a=4时,a+|a|=4+4=8;当a=﹣4时,a+|a|=﹣4+4=0.故选:C.10.(3分)一套住房的平面图如图所示,其中卫生间、厨房的面积和是()A.4xy B.3xy C.2xy D.xy【解答】解:y(4x﹣x﹣2x)+x(4y﹣2y)=3xy.故选:B.11.(3分)已知a=2012x+2013,b=2014x+2015,c=2013x+2013,则(2c﹣a﹣b)2等于()A.﹣4 B.4 C.﹣8 D.8【解答】解:∵a=2012x+2013,b=2014x+2015,c=2013x+2013,∴c﹣a=x,c﹣b=﹣x﹣2,∴(2c﹣a﹣b)2=[(c﹣a)+(c﹣b)]2=[x+(﹣x﹣2)]2=(﹣2)2=4.故选:B.12.(3分)小明利用计算机设计了一个计算程序,输入和输出的数据为下表:输入…12345…输出……那么,当输入数据是9时,输出的数据是()A.B.C.D.【解答】解:由于每次输入的数即为分子,而分母为输入数的平方+1,则输入9时,可得到=.故选:C.二、耐心填空,准确无误.(本题共6小题,每小题3分,共18分)13.(3分)﹣1的相反数是,倒数是﹣,绝对值是.【解答】解:﹣1的相反数是,倒数是﹣,绝对值是,故答案为:,﹣,.14.(3分)已知多项式﹣2m3n2﹣5中,含字母的项的系数为a,多项式的次数为b,常数为c,则a+b+c=﹣2.【解答】解:∵多项式﹣2m3n2﹣5中,含字母的项的系数为a,多项式的次数为b,常数项为c,∴a=﹣2,b=5,c=﹣5,∴a+b+c=﹣2+5﹣5=﹣2,故答案为:﹣2.15.(3分)已知﹣2x m y6与是同类项x3y2n,则m n=27.【解答】解:∵﹣2x m y6与是同类项x3y2n,∴m=3,2n=6,解得:m=3,n=3,则m n=33=27.故答案为:27.16.(3分)若|x+y+3|+(xy﹣2)2=0,则(4x﹣2xy+3)﹣(2xy﹣4y+1)的值为﹣18.【解答】解:由|x+y+3|+(xy﹣2)2=0,得,解得.(4x﹣2xy+3)﹣(2xy﹣4y+1)=4x﹣2xy+3﹣2xy+4y﹣1=4(x+y)﹣4xy+2当x+y=﹣3,xy=2时,原式=4×(﹣3)﹣4×2+2=﹣12﹣8+2=﹣18.故答案为:﹣18.17.(3分)有理数a,b在数轴上(如图),那么的值是正数(填“负数”或“正数”或“零”).【解答】解:观察数轴可知,a<0<b,|a|>|b|,所以,a+b<0,ab<0,所以,>0,故答案为:正数.18.(3分)如图是一组由深圳2011年世界大学生运动会吉祥物“UU笑脸”组成的有规律的图案,请你观察比较它们的组成规律:则第n个图案由n(n+1)个“UU笑脸”组成.【解答】解:第一个图形“UU笑脸”的个数为:1×(1+1)÷2=1,第二个图形“UU笑脸”的个数为:2×(2+1)÷2=3,第三个图形“UU笑脸”的个数为:3×(3+1)÷2=6,第四个图形“UU笑脸”的个数为:4×(4+1)÷2=10,…,所以第n个图形“UU笑脸”的个数为:n(n+1).故答案为:n(n+1).三、解答题:用心做一做,显显自己的能力.(本小题共7小题,满分66分)19.(12分)计算下列各题(1)(﹣3)﹣(+14)+(﹣4)﹣(﹣8)(2)|﹣|×()2÷(3)﹣32÷3+(﹣)×12﹣23.【解答】解:(1)原式=﹣3﹣14﹣4+8=﹣21+8=﹣13;(2)原式=××=;(3)原式=﹣3+6﹣8﹣8=﹣13.20.(8分)先化简后求值:3x2y﹣[2xy2﹣2(yx﹣x2y)],其中x=5,y=.【解答】解:原式=3x2y﹣2xy2+2xy﹣x2y=x2y﹣2xy2+2xy,当x=5,y=﹣时,原式=﹣﹣﹣2=﹣9.9.21.(8分)已知a为最小的正整数,b为a的相反数,c为绝对值最小的有理数,m的绝对值为3.(1)写出a,b,c,m的值;(2)计算:c÷(﹣b)×a+(a+b)﹣m3的值.【解答】解:(1)∵a为最小的正整数,∴a=1,∵b为a的相反数,∴b=﹣1,∵c为绝对值最小的有理数,∴c=0,∵m的绝对值为3,∴m=±3,∴a=1,b=﹣1,c=0,m=±3;(2)当a=1,b=﹣1,c=0,m=3时,原式=0÷1×1+(1﹣1)﹣33=﹣27;当a=1,b=﹣1,c=0,m=﹣3时,原式=0÷1×1+(1﹣1)﹣(﹣3)3=27;22.(8分)如图所示,数轴上点A,B,C各表示有理数a,b,c.(1)试判断:b+c,b﹣a,a﹣c的符号;(2)化简:|b+c|﹣|b﹣a|﹣|a﹣c|.【解答】解:(1)根据题意得:c<b<0<a,∴b+c<0,b﹣a<0,a﹣c>0;(2)原式=﹣b﹣c+b﹣a﹣a+c=﹣2a.23.(8分)某市自来水厂对居民用水实行阶梯收费,每户每月用水量如果未超过10吨,收取12元的建设费,如果超过10吨,除收取12元的建设费用外,超过的部分按每吨1.8元收费.(1)若每月用水10吨为标准,低于的记作“﹣”,高于记作“+”.2014年张老师家1﹣10月份用水如下;+4,﹣3,﹣2,+3,+2,+6,﹣4,+5,+7,﹣1请求出张老师家今年1﹣10月份用水多少吨;(2)在(1)的前提下,请你求出张老师家1﹣10月份应向自来水厂交费多少元?【解答】解:(1)10×10+(4﹣3﹣2+3+2+6﹣4+5+7﹣1)=100+17=117吨答:张老师家今年1﹣10月份用水117吨;(2)12×10+(4+3+2+6+5+7)×1.8=120+48.6=168.6(元),答:张老师家1﹣10月份应向自来水厂交费168.6元.24.(10分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款40x+3200元(用含x的代数式表示);若该客户按方案②购买,需付款36x+3600元(用含x的代数式表示).(2)若x=25,通过计算说明此时按哪种方案购买较为合算?【解答】解:(1)方案①:200×20+40(x﹣20)=4000+40x﹣800=40x+3200(元).方案②:(200×20+40x)×90%=36x+3600(元)故答案是:40x+3200,36x+3600;(2)当x=25时:方案①:40x+3200=25×40+3200=4200(元)方案②:36x+3600=36×25+3600=4500(元)∵4200<4500∴选择方案①购买较为合算.25.(12分)探索与思考:观察下列等式:1+3=1+2×2﹣1=4=221+3+5=1+3+2×3﹣1=9=321+3+5+7=1+3+5+2×4﹣1=16=42…(1)试一试:1+3+5+7+9+11=36=62;(2)猜一猜:1+3+5++(2n﹣1)+(2n+1)=(n+1)2;(用含有n的式子表示)(3)用一用:请用上述规律求:41+43+45+…+77+79的值.【解答】解:(1)1+3+5+7+9+11=36=62,(2)∵2n+1是从1开始的第(n+1)个奇数,∴1+3+5+7+9+…+(2n﹣1)+(2n+1)=(n+1)2;(3)41+43+45+…+77+79=1+3+5+7+…+77+79﹣(1+3+5+7+9+…+37+39)=402﹣202=1600﹣400=1200.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省孝感市2014年中考数学试卷
一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)
2.(3分)(2014•孝感)如图是某个几何体的三视图,则该几何体的形状是()
B
,故合并;
,故能与
,故不能与
、能与
4.(3分)(2014•孝感)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()
5.(3分)(2014•孝感)已知是二元一次方程组的解,则m﹣n的值是
代入方程组得:
6.(3分)(2014•孝感)分式方程的解为()
﹣x=
x=
x=
7.(3分)(2014•孝感)为了解某社区居民的用电情况,随机对该社区10户居民进行了调
8.(3分)(2014•孝感)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()
absinαB
abcosα
=
=
CE×asin b=
absin absin
9.(3分)(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D (5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()
10.(3分)(2014•孝感)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:
①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.
其中正确结论的序号是()
是劣弧的中点,
是劣弧
×=3cm
cm
是劣弧
11.(3分)(2014•孝感)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()
12.(3分)(2014•孝感)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:
①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.
其中正确结论的个数为()
=1
﹣
﹣
二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)
13.(3分)(2014•孝感)函数的自变量x的取值范围为x≠1.
14.(3分)(2014•孝感)下列事件:
①随意翻到一本书的某页,这页的页码是奇数;
②测得某天的最高气温是100℃;
③掷一次骰子,向上一面的数字是2;
④度量四边形的内角和,结果是360°.
其中是随机事件的是①③.(填序号)
15.(3分)(2014•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.
16.(3分)(2014•孝感)如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E
处,连接DE、BE,若△ABE是等边三角形,则=.
=a MN=a
=a
MN=a
EM==
的面积是×EN=﹣a a
的面积是AB EM=×a
∴=
故答案为:.
17.(3分)(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=
经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.
S=
∴=
,
k
k=18
k=6
|k|
18.(3分)(2014•孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).
三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)
19.(6分)(2014•孝感)计算:(﹣)﹣2+﹣|1﹣|
20.(8分)(2014•孝感)如图,在Rt△ABC中,∠ACB=90°.
(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.
21.(10分)(2014•孝感)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是40;
(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;
(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.
(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.
)本次抽样测试的学生人数是:
×=54
×=700
=
22.(10分)(2014•孝感)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.
(1)求k的取值范围;
(2)试说明x1<0,x2<0;
(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.
∴
)∵,
∵
23.(10分)(2014•孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,
15吨.(1)求y与x之间的函数关系式;
(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.)依题意有:
24.(10分)(2014•孝感)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若tan∠ABC=,BE=7,求线段PC的长.
ABC=BE=7
∴=
∴
∴
ABC=∴
∴
25.(12分)(2014•孝感)如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.
(1)请直接写出下列各点的坐标:A(0,3),B(4,3),C(4,﹣1),D(0,﹣1);
(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.
①当线段PH=2GH时,求点P的坐标;
②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.
根据相似三角形的性质可得
∴
,
EF
∴
∴
.。