线性代数知识点归纳
线性代数知识点全归纳
![线性代数知识点全归纳](https://img.taocdn.com/s3/m/1c8d465fa9114431b90d6c85ec3a87c240288a96.png)
线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数的重点知识点总结
![线性代数的重点知识点总结](https://img.taocdn.com/s3/m/3c6d3663ae45b307e87101f69e3143323968f516.png)
线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。
在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。
本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。
1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。
向量可以表示为一个有序的数列,也可以表示为一个列矩阵。
矩阵是由多个向量按照一定规则排列而成的矩形阵列。
矩阵可以进行加法、减法和数乘等运算。
矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。
2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。
线性方程组的求解可以通过消元法、矩阵的逆等方法进行。
当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。
3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。
子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。
子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。
子空间的维度等于基向量的个数。
4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。
线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。
线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。
特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。
特征值和特征向量可以通过求解线性方程组来得到。
6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。
内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。
线性代数知识点总结大全
![线性代数知识点总结大全](https://img.taocdn.com/s3/m/c30932d35f0e7cd1842536d9.png)
求向量组秩、极大无关组,表示方式
将
向量组按列
1 2 m
排
放
初等行 变换
行阶梯 型矩阵
A11 A12 A1r
A22 A2r
Arr
i1
i2
ir
一个极大无关组
A1r 1
A2 r 1
A1m
A2m
r
Arr 1
Arm
i1 ,i2 ,,ir
原向量组一个极大无关组
第一等价链
1,
2,,
为正交向量组
m
1,
2,,
为线性无关向量组
m
1,
2,,
为线性无关向量组
m
Schmidt 正交化、单位化
单位正交向量组: 1,2,,m
与初始向量组等价
正交矩阵 定义:
若 n 阶方阵 A 满足 AAT E,则称矩阵A为 n阶正交矩阵.
正交矩阵的性质:
若A, B为n阶 正 交 矩 阵 , 则 有 : (1) A1 AT ; (2) A 1 或 1;
线性无关:对于向量组1,...,r下列条件等价 • 1,...,r线性无关
• 当c1,...,cr不全为0时,必有c11+...+crr0 • 当c11+...+crr=0时,必有c1=...=cr=0 • 1,...,r的秩数等于r • (1,...,r)是列满秩矩阵
24
极大无关组与秩数:
1.1,...,rS是S的一个极大无关组当且仅当 ① 1,...,r线性无关 ② S的每个向量都可由1,...,r线性表示
③
Ax=b的解的线性组合是
Ax=0的解,当系数和=0时; Ax=b的解,当系数和=1时.
线性代数知识点全面总结
![线性代数知识点全面总结](https://img.taocdn.com/s3/m/28fac45efbd6195f312b3169a45177232f60e41e.png)
线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。
它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。
下面将全面总结线性代数的知识点。
1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。
向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。
向量的加法、减法、数乘等运算满足一定的性质。
2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。
向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。
向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。
3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。
矩阵可以表示线性方程组、线性变换等。
矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。
4.线性方程组线性方程组是由线性方程组成的方程组。
线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。
线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。
5.行列式行列式是一个包含数字的方阵。
行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。
6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。
特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。
通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。
7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。
8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。
最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。
9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。
正交变换是一种保持向量长度和夹角不变的线性变换。
线性代数知识点归纳,超详细
![线性代数知识点归纳,超详细](https://img.taocdn.com/s3/m/b803f678571252d380eb6294dd88d0d233d43cad.png)
线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数知识点汇总
![线性代数知识点汇总](https://img.taocdn.com/s3/m/f46a9826f68a6529647d27284b73f242336c31ee.png)
第一章矩阵矩阵的概念:A*(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)m n矩阵的运算:加法(同型矩阵)---------交换、结合律数乘kAA (ka ) ---------分配、结合律ij m*n乘法lA B (a ik ) b a b* A A A**( ) ( )m l kj l*n ik kj m*n1(一般 AB=BA,不满足消去律;由 AB=0,不能得 A=0 或 B=0)转置:(A T )T A A (A A B)T A A T A B T(kA)T A kA T (AB)T A B T A T方幂:A k1 A k2 A A k1 A k2(A k k A A kA k1 )(A k k AA k A k2 1 2逆矩阵:设 A 是N 阶方阵,若存在N 阶矩阵 B 的AB=BA=I 则称 A 是可逆的,且A A1 A B矩阵的逆矩阵满足的运算律:1、可逆矩阵 A 的逆矩阵也是可逆的,且(A A1)A1 A A1 112、可逆矩阵 A 的数乘矩阵 kA 也是可逆的,且kA)( A A A Ak3、可逆矩阵 A 的转置A T 也是可逆的,且(A T )A1 A (A A1)T4、两个可逆矩阵 A 与 B 的乘积 AB 也是可逆的,且)(AB A A B A A A,但是两个可逆矩1 1 1阵 A 与 B 的和 A+B 不一定可逆,即使可逆,但)(A A B A A A1 A B A。
A 为 N 阶方阵,若|A|=0,1则称 A 为奇异矩阵,否则为非奇异矩阵。
5、若 A 可逆,则 1 A1AA A A逆矩阵注:①AB=BA=I 则 A 与 B 一定是方阵②BA=AB=I 则 A 与 B 一定互逆;③不是所有的方阵都存在逆矩阵;④若 A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零 k 乘某一行(列)3、将某行(列)的 K 倍加到另一行(列)初等变换不改变矩阵的可逆性,初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的矩阵A I O AD A A r等价标准形矩阵AArA AO O第二章行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和A Aa ij ( 1) a a ...aA A ( j j .. j )1 2 n1 j2 j njn 1 2 nj j j1 2 n行列式的性质:①行列式行列互换,其值不变。
线性代数知识点总结
![线性代数知识点总结](https://img.taocdn.com/s3/m/e916be92f424ccbff121dd36a32d7375a417c612.png)
线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
线性代数知识点归纳
![线性代数知识点归纳](https://img.taocdn.com/s3/m/a1004d67443610661ed9ad51f01dc281e53a563a.png)
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
线性代数知识点总结
![线性代数知识点总结](https://img.taocdn.com/s3/m/438c51e4fbb069dc5022aaea998fcc22bdd14351.png)
线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。
线性代数知识点总结汇总
![线性代数知识点总结汇总](https://img.taocdn.com/s3/m/d1fd5c38aef8941ea66e05b9.png)
线性代数知识点总结1行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)—行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则★ 8对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开 9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等 于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素 的代数余子式乘积之和等于 0 (四)行列式公式 10、行列式七大公式: (1) |kA|=kn|A|1 1…ik £…益■y (v)」IT=n厲-号)klXn7、n 阶(n 》2)范德蒙德行列式数学归纳法证明(2) |AB|=|A| • |B|(3) |AT|=|A|(4) |A-1|=|A|-1(5) |A*|=|A|n-1(6) 若A的特征值入1、入2、……入n,贝y P(7) 若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )非齐次线性方程组的系数行列式不为0,那么方程为唯解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3 )若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0b2矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O2、转置的性质( 5 条)( 1)( A+B) T=AT+BT( 2)( kA) T=kAT( 3)( AB) T=BTAT( 4) |A|T=|A|( 5)( AT) T=A(二)矩阵的逆3、逆的定义:B=A-1 AB=E或 BA=E成立,称A可逆,B是A的逆矩阵,记为注:A可逆的充要条件是|A|工04、逆的性质:( 5 条)(1)( kA) - 1=1/k ・A-1 (k 工0)(2)(AB)-仁B- 1 ・A-1(3)|A-1|=|A|-1( 4)( AT) -1= ( A-1 ) T( 5)( A-1 ) -1=A5、逆的求法:( 1 ) A 为抽象矩阵:由定义或性质求解(2) A为数字矩阵:(A|E初等行变换E|A-1 )(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k 加到另一行(列)7、初等矩阵:单位矩阵E 经过一次初等变换得到的矩阵。
大学线性代数知识点总结
![大学线性代数知识点总结](https://img.taocdn.com/s3/m/afe3a61c777f5acfa1c7aa00b52acfc788eb9f19.png)
大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。
掌握线性代数的基本概念、理论和方法是解决实际问题的关键。
本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。
线性代数知识点总结
![线性代数知识点总结](https://img.taocdn.com/s3/m/aeb175311fb91a37f111f18583d049649a660e01.png)
线性代数知识点总结线性代数知识点总结1线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的20__年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。
下面,就将线代中重点内容和典型题型做了总结,希望对20__考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20__年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。
考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
《线性代数》知识点归纳整理
![《线性代数》知识点归纳整理](https://img.taocdn.com/s3/m/689e794691c69ec3d5bbfd0a79563c1ec5dad736.png)
《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。
它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。
以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。
向量是矩阵的特殊情况,只有一个列的矩阵。
矩阵和向量可以进行加法和数乘运算。
2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。
3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。
行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。
4.向量空间:向量空间是一组向量的集合,满足一定的条件。
向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。
5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。
6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。
向量空间的维数是指基向量的个数。
7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。
秩表示矩阵中线性无关的方向个数。
8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。
9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。
对角化后的矩阵可以简化各种计算。
10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。
11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。
如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。
线性代数知识点全面总结
![线性代数知识点全面总结](https://img.taocdn.com/s3/m/3b49e71d76232f60ddccda38376baf1ffc4fe33d.png)
线性代数知识点全面总结线性代数是一门重要的数学学科,它研究的是向量空间、线性映射和线性方程组等基本概念及其相互关系。
线性代数在数学、物理、计算机科学、经济学等各个领域都有广泛的应用。
下面是线性代数的一些重要知识点的全面总结:1. 向量空间(Vector Space)向量空间由一组满足一些性质的向量组成。
向量空间的定义要求满足加法和数量乘法封闭性、零向量存在性、加法逆元存在性等性质。
在向量空间中,还可以定义线性组合、线性相关性、线性无关性等概念。
2. 矩阵(Matrix)矩阵是由一组数按照一个确定的规律排列成的矩形阵列。
矩阵的加法、数量乘法等运算满足线性运算的性质。
矩阵可以表示线性方程组、线性映射等。
3. 线性映射(Linear Mapping)线性映射是指将一个向量空间的元素映射到另一个向量空间的元素,并保持向量空间的加法和数量乘法运算。
线性映射可以用矩阵表示,并且具有一些重要的性质,比如保持零向量、保持加法和数量乘法等。
4. 线性方程组(Linear System)线性方程组是一组线性方程的集合。
线性方程组可以用矩阵和向量表示,形式为Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。
线性方程组的求解可以使用消元法、矩阵求逆等方法。
5. 特征值和特征向量(Eigenvalues and Eigenvectors)特征值和特征向量是线性映射中的重要概念。
对于一个线性映射,如果存在一个非零向量x,使得线性映射作用于x的结果等于x乘以一个常数λ(即f(x)=λx),那么λ就是这个线性映射的特征值,x就是对应的特征向量。
6. 内积空间(Inner Product Space)内积空间是向量空间中引入内积运算的概念。
内积可以用来度量向量的夹角和长度,并且可以定义向量的正交性、正交投影等概念。
内积空间可以是实数域或复数域上的。
7. 正交性和正交基(Orthogonality and Orthogonal Basis)正交性是指向量之间的夹角为直角。
线性代数知识点总结-最新
![线性代数知识点总结-最新](https://img.taocdn.com/s3/m/4323a2f5cf2f0066f5335a8102d276a20029601f.png)
线性代数⼀、⾏列式1. ⼆阶与三阶⾏列式对⼆元线性⽅程组有⼆阶段⾏列式若记则对个数组成的⾏列的数表有三阶⾏列式2.全排列和对换排列全排列:把个不同的元素排成⼀列,叫做这个元素的全排列排列。
逆序:对于个不同的元素先规定⼀个元素之间的标准次序在这个元素的任⼀排列中当某⼀对元素的先后顺序与标准次序不同时就说它构成⼀个逆序。
逆序数:⼀个排列中所有逆序的总数。
奇排列:逆序数为技术的排列偶排列:逆序数为偶数的排列排列的逆序数:对换:将排列中的任意两个元素对调,其余的元素不动的过程。
相邻对换:将相邻两个元素进⾏的对换。
定理:⼀个排列中的任意两个元素对换,排列改变奇偶性。
推论奇排列对换成标准排列的对换次数为奇数,偶数列对换成标准数列的对换次数为偶数。
3.n阶⾏列式对个数组成的⾏列的数表有阶⾏列式,记作4.⾏列式的性质⾏列⾏列式称为的转置⾏列式性质:⾏列式与它的转置⾏列式相等性质:对换⾏列式的两⾏列,⾏列式变号推论:如果⾏列式有两⾏列完全相同,则此⾏列式等于零性质:⾏列式的某⼀⾏列中所有的元素都乘同⼀数,等于⽤数乘此⾏列式性质:⾏列式中如果有两⾏(列)元素成⽐例,则此⾏列式等于零性质:若⾏列式的某⼀⾏的元素都是两数之和,则⾏列式可拆分为两个⾏列式相加性质:把⾏列式的某⼀⾏的个元素乘同义数然后加到另⼀⾏列对应的元素上去,⾏列式不变。
5.⾏列式按⾏(列)展开在阶⾏列式中把元所在的第⾏和第列划去后在阶⾏列式中把元所在的第⾏和第列划去后留下来的阶⾏列式叫做元的余⼦式记作记叫做元的代数余⼦式引理⼀个阶⾏列式如果其中第⾏所有元素除元外都为零那么这⾏列式等于与它的代数余⼦式的乘积即定理按⾏列展开法则⾏列式等于它的任⼀⾏列的各元素与其对应的代数余⼦式乘积之和即或例如四阶⾏列式中元的余⼦式和代数余⼦式分别为⼆、矩阵2.1 线性⽅程组、矩阵、矩阵的运算当常数项不全为零时有元⾮齐次线性⽅程组含有个末知数个⽅程的元⾮齐次线性⽅程组:其中是第个⽅程的第个末知数的系数是第个⽅程的常数项当全为零时有元齐次线性⽅程组:元齐次线性⽅程组⼀定有零解不⼀定有⾮零解即⼀组不全为零的解2.1.1 矩阵1、矩阵介绍对由个数排成的⾏列的数表称为⾏列矩阵矩阵:数位于矩阵的第⾏第列称为矩阵的元2、矩阵的种类矩阵的种类:其中称为系数矩阵称为末知数矩阵称为常数项矩阵称为增⼴矩阵⾏矩阵⾏向量:列矩阵列向量:实矩阵元素是实数的矩阵复矩阵元素是复数的矩阵除特别说明外都指实矩阵阶矩阵阶⽅阵:⾏数与列数都等于的矩阵同型矩阵⾏数、列数都相等的两个矩阵相等矩阵如果与是同型矩阵并且它们的对应元素相等即那么就称矩阵与矩阵相等记作零矩阵元素都是零的矩阵注意不同型的零矩阵是不同的对⾓矩阵对⾓阵:从左上⾓到右下⾓的直线叫做对⾓线以外的元素都是的阶⽅阵:特别当有阶单位矩阵单位阵:单位阵的元为:当当2.1.2 矩阵的运算1、矩阵的加法矩阵的加法:设有两个矩阵和那么矩阵与的和记作规定为只有当两个矩阵是同型矩阵时才能进⾏加法运算矩阵加法满⾜下列运算规律设都是矩阵设矩阵记称为矩阵的负矩阵由此规定矩阵的减法为2、矩阵数乘数与矩阵的乘积记作或规定为:数乘矩阵满⾜下列运算规律设、为矩阵、为数3、矩阵相乘矩阵相乘:对矩阵矩阵有矩阵记为其中按此定义⼀个⾏矩阵与⼀个列矩阵的乘积是⼀个阶⽅阵也就是⼀个数由此表明乘积矩阵的元就是的第⾏与的第列的乘积如:4、转置矩阵矩阵称为的转置矩阵:例如转置矩阵的运算规律:对称矩阵对称阵:元素以对⾓线为对称轴对应相等的阶矩阵如果阶⽅阵满⾜:即则为对称矩阵⽅阵的⾏列式:⽅阵的⾏列式或:由阶⽅阵的元素所构成的⾏列式各元素的位置不变伴随矩阵:⾏列式的各个元素的代数余⼦式所构成的矩阵称为矩阵的伴随矩阵有:注:2.2 逆矩阵、克拉默法则、矩阵分块法2.2.1 逆矩阵1、逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:对于阶矩阵如果有⼀个阶矩阵使则矩阵是可逆的的逆矩阵逆阵在矩阵的乘法中的作⽤与数类似如果矩阵是可逆的那么的逆矩阵是惟⼀的这是因为若、都是的逆矩阵则有所以的逆矩阵是惟⼀的定理若矩阵可逆,则定理若则矩阵可逆且其中为矩阵的伴随矩阵推论:若或,则故逆矩阵满⾜下述运算规律若可逆则亦可逆且若可逆数则可逆且若、为同阶矩阵且均可逆则亦可逆且2、逆矩阵的初步应⽤:逆矩阵的初步应⽤:设求矩阵使其满⾜解:若存在则⽤左乘上式右乘上式有即若⽽故知、都可逆且于是2.2.2 克拉默法则克拉默法则:含有个末知数的个线性⽅程的⽅程组:①它的解可以⽤阶⾏列式表⽰即有克拉默法则:如果线性⽅程组①的系数矩阵的⾏列式不等于零即:那么⽅程组①有惟⼀解其中是把系数矩阵中第列的元素⽤⽅程组右端的常数项代替后所得到的阶矩阵即2.2.3 分块矩阵1、分块矩阵分块矩阵:以⼦块为元素的形式上的矩阵将矩阵⽤若⼲条纵线和横线分成许多个⼩矩阵每⼀个⼩矩阵称为的⼦块例如将矩阵分成⼦块的分法很多下⾯举出三种分块形式,,分法可记为其中即为的⼦块⽽形式上成为以这些⼦块为元的分块矩阵2、分块矩阵的运算分块矩阵的运算与普通矩阵的运算相类似:分块矩阵的运算与普通矩阵的运算相类似:设矩阵与的⾏数相同、列数相同采⽤相同的分块法有:其中与的⾏数相同、列数相同那么:设为数那么:设为矩阵为矩阵分块成:其中的列数分别等于的⾏数那么:其中设则设为阶⽅阵若的分块矩阵只有在对⾓线上有⾮零⼦块其余⼦块都为零矩阵且在对⾓线上的⼦块都是⽅阵即其中都是⽅阵那么称为分块对⾓矩阵分块对⾓矩阵的⾏列式满⾜:由此性质可知若则并有:补充:。
线性代数知识点归纳
![线性代数知识点归纳](https://img.taocdn.com/s3/m/0f34d34953ea551810a6f524ccbff121dd36c523.png)
线性代数知识点归纳线性代数是现代数学中的一个重要分支,主要研究向量空间及其上的线性映射。
它在许多科学领域中都有广泛的应用,包括物理学、计算机科学、经济学等。
本文将对线性代数中的一些重要知识点进行归纳总结,以帮助读者更好地理解和掌握这门学科。
一、向量与矩阵1. 向量的定义与运算- 向量的表示:向量可以用有序数组表示,也可以用线段箭头表示。
- 向量的加法与减法:向量之间可以进行加法和减法运算,满足交换律和结合律。
- 向量的数乘:向量与实数之间可以进行数乘运算。
- 内积与外积:向量之间有内积和外积两种运算,分别表示向量的夹角和与之垂直的面积。
2. 矩阵的定义与运算- 矩阵的表示:矩阵可以用二维数组表示,其中每个元素称为矩阵的一个元。
- 矩阵的加法与减法:矩阵之间可以进行加法和减法运算,要求矩阵的维度相同。
- 矩阵的数乘:矩阵与实数之间可以进行数乘运算。
- 矩阵乘法:矩阵乘法满足结合律,但不满足交换律。
二、线性方程组与矩阵运算1. 线性方程组- 线性方程组的定义:线性方程组由一组线性方程组成,其中每个方程都是线性的。
- 解的存在性与唯一性:线性方程组的解可能没有,可能有唯一解,也可能有无穷多解。
- 线性方程组的求解方法:高斯消元法、矩阵求逆、克拉默法则等。
2. 矩阵的逆与行列式- 矩阵的逆:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。
- 行列式:行列式是一个与矩阵相关的标量值,用于判断矩阵的可逆性和计算矩阵的特征值。
三、线性映射与特征值问题1. 线性映射- 线性映射的定义:线性映射是一个满足线性性质的函数,将一个向量空间映射到另一个向量空间。
- 线性映射的表示与运算:线性映射可以用矩阵表示,可以进行加法、减法和数乘。
- 线性映射的核与像:线性映射的核是所有映射到零向量的向量集合,像是所有映射到的向量集合。
2. 特征值与特征向量- 特征值与特征向量的定义:对于一个线性映射,若存在一个非零向量使得线性映射作用于该向量后相当于对该向量进行标量乘法,该向量称为特征向量,该标量称为特征值。
线性代数知识点及总结
![线性代数知识点及总结](https://img.taocdn.com/s3/m/4024052917fc700abb68a98271fe910ef12dae1b.png)
线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B22
AB
A11B11
A22 B22
,
An
A1n1
A2n2
○ ○ b. 用对角矩阵 左 乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的 行 向量;
a1 0
B
0
a2
0
0
0 b11 b12
0
b21
b22
am
bm1
bm2
b1n a1b11
b2n
a2b21
bmn
○ ○ 对 A 施行一次初等 行 变换得到的矩阵,等于用相应的初等矩阵 左 乘 A ; ○ ○ 对 A 施行一次初等 列 变换得到的矩阵,等于用相应的初等矩阵 右 乘 A .
注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.
5. 矩阵的秩 关于 A 矩阵秩的描述: ①、 r(A) r , A 中有 r 阶子式不为 0, r 1阶子式 (存在的话) 全部为 0; ②、 r(A) r , A 的 r 阶子式全部为 0; ③、 r(A) r , A 中存在 r 阶子式不为 0;
☻矩阵的秩的性质:
① A O r(A) ≥1; A O r(A) 0 ; 0 ≤ r( Amn ) ≤ min(m, n)
② r( A) r( AT ) r( AT A)
③ r(kA) r(A) 其中k 0
④
若Amn
,
Bns
,
若r
(
AB)
0
r(A) r(B) n B的列向量全部是Ax
初等列变换
B
X
(II)的解法:将等式两边转置化为AT X T BT, 用(I)的方法求出X T,再转置得X
第三部分 线性方程组
1. 向量组的线性表示
2. 向量组的线性相关性
3. 向量组的秩
4. 向量空间
5.线性方程组的解的判定
6. 线性方程组的解的结构(通解)
(1)齐次线性方程组的解的结构(基础解系与通解的关系)
(2)非齐次线性方程组的解的结构(通解)
1.线性表示:对于给定向量组 ,1,2 , ,n ,若存在一组数 k1, k2 , , kn 使得 k11 k22 knn ,
则称 是1,2 , ,n 的线性组合,或称称 可由1,2 , ,n 的线性表示.
线性表示的判别定理:
可由1,2 , ,n 的线性表示
a1n x1 b1
a2n
x2
b2
Ax
amn xm bm
x1
b1
an
x2
(全部按列分块,其中
b2
);
xn
bn
第 7 页 共 20 页
④、 a1x1 a2 x2 an xn (线性表出) ⑤、有解的充要条件: r(A) r(A, ) n ( n 为未知数的个数或维数)
0的解
⑤ r( AB) ≤ minr(A), r(B)
⑥ 若 P 、 Q 可逆,则 r(A) r(PA) r(AQ) r(PAQ) ; 即:可逆矩阵不影响矩阵的秩.
Ax 只有零解
⑦
若
r(
Amn
)
n
r(AB) r(B) A在矩阵乘法中有左消去律
AB O B O AB AC B C
4. 代数余子式和余子式的关系: Mij (1)i j Aij
第二部分 矩阵
1. 矩阵的运算性质
Aij (1)i j Mij
2. 矩阵求逆
3. 矩阵的秩的性质
4. 矩阵方程的求解
a11 a12
1.
矩阵的定义
由
m
n
个数排成的
m
行
n
列的表
A
a21
a22
am1 am2
记作: A aij mn 或 Amn
线性代数复习要点
第一部分 行列式
1. 排列的逆序数
2. 行列式按行(列)展开法则
3. 行列式的性质及行列式的计算
行列式的定义
1. 行列式的计算:
a11 a12 ① (定义法) Dn a21 a22
an1 an2
a1n
a2n
(1) a a ( j1 j2 jn ) 1 j1 2 j2
anjn
j1 j2 jn
;
若
r
(
Bns
)
n
r(AB) r(B) B在矩阵乘法中有右消去律.
⑧
若r(
A)
r
A与唯一的
Er O
O O
等价,称
Er O
O O
为矩阵A的
等价标准型.
⑨ r(A B) ≤ r(A) r(B) , maxr(A), r(B) ≤ r(A, B) ≤ r(A) r(B)
⑩
r
A O
由 n 个未知数 m 个方程的方程组构成 n 元线性方程:
a11 x1 a12 x2
①、 a21 x1 a22 x2
am1 x1 am2 x2
a1n xn b1
a2n xn b2 有解
anm xn bn
a11 a12
②、
a21
a22
am1 am2
③、 a1 a2
ambm1
a1b12 a2b22
ambm2
a1b1n
a2b2n
ambmn
○ ○ c. 用对角矩阵 右 乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的 列 向量.
b11 b12
B
b21
b22
bm1 bm2
b1n a1 0
b2n
0
a2
bmn
0
0
0 a1b11
0
a1b21
O
B
O
B
A
1
B1
B
A1
A O 1 A1
O
C
B
B
1CA1
B
a1
④
a2
a3
1
1 a1
1 a2
,
1 a3
a3
a2
a1
1
1 a1
1 a2
1 a3
⑤ 配方法或者待定系数法 (逆矩阵的定义 AB BA E A1 B )
3. 行阶梯形矩阵 可画出一条阶梯线,线的下方全为 0 ;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖
a. 对称矩阵和反对称矩阵: A 是对称矩阵
A AT .
A 是反对称矩阵
A AT .
b.
分块矩阵的转置矩阵:
A C
B
T
AT
D
BT
CT
DT
A11 A21
⑥ 伴随矩阵:
A*
Aij
T
A12
A22
A1n
A2n
An1
An
2
,
Aij 为
A
中各个元素的代数余子式.
Ann
AA* A* A A E , A* A n1 , A1 A 1 .
使问题简化以例计算.
⑩ (数学归纳法)
n
2. 对于 n 阶行列式 A ,恒有: E A n (1)k Sknk ,其中 Sk 为 k 阶主子式; k 1
3. 证明 A 0 的方法:
第 2 页 共 20 页
①、 A A ; ②、反证法; ③、构造齐次方程组 Ax 0 ,证明其有非零解; ④、利用秩,证明 r(A) n ; ⑤、证明 0 是其特征值.
分块对角阵的伴随矩阵:
A
* BA*
B
AB*
B
A*
(1)mn
B A
(1)mn A B
第 4 页 共 20 页
矩阵转置的性质: ( AT )T A
( AB)T BT AT
AT A
( A1)T ( AT )1
( AT ) ( A )T
矩阵可逆的性质: ( A1)1 A
11 x1 x2 ⑥ 范德蒙德行列式: x12 x22
O an1
O
1
xn
xn2
xi x j
1 jin
x x n1
n1
1
2
xn1 n
abb
b
bab ⑦ a b 型公式: b b a
b
n1
b [a (n 1)b](a b)
bbb
a
⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.
线后面的第一个元素非零. 当非零行的第一个非零元为 1,且这些非零元所在列的其他元素都是 0 时,
称为行最简形矩阵
4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换
初等变换
初等矩阵
初等矩阵的逆
初等矩阵的行列式
ri rj ( ci c j ) ri k ( ci k ) ri rj k ( ci c j k )
( A)1
A A
( Ak ) ( A )k
Ak A k
AA AA A E (无条件恒成立)
①伴随矩阵法 A1 A A
○注 :
a
c
b 1
1 d
d
ad
bc
c
b
a
主 换位 副 变号
② 初等变换法 ( A E) 初等行变换(E A1)
③
分块矩阵的逆矩阵:
A
1
A1
B
B
1
A C 1 A1 A1CB1
( AB)1 B1 A1 A1 A 1 ( A1)k ( Ak )1 Ak
伴随矩阵的性质: ( A) A n2 A ( AB) B A
n
r
(
A
)
1
0
若r( A) n 若r( A) n 1 若r( A) n 1