计量经济学-线性回归分析

合集下载

计量经济学【一元线性回归模型——回归分析概述】

计量经济学【一元线性回归模型——回归分析概述】

四、随机误差项的涵义
随机误差项是在模型设定中省略下来而又集体的
影响着被解释变量 Y 的全部变量的替代物。涵义如
下: 1、在解释变量中被忽略的因素的影响; 2、变量观测值观测误差的影响; 3、模型关系的设定误差的影响; 4、其它随机因素的影响。 设定随机误差项的主要原因: 1、理论的含糊性; 2、数据的欠缺; 3、节省的原则。
➢ 例如:
二、总体回归函数(方程)PRF Population regression function
由于变量间统计相关关系的随机性(非确定性),回归 分析关心的是根据解释变量的已知或给定值,考察被解 释变量的总体均值,即当解释变量取某个确定值时,与 之统计相关的被解释变量所有可能出现的对应值的平均 值。
样本回归函数的随机形式:
其中 为(样本)残差(Residual),可看成是随机误差项 的 的具体估计值。由于引入随机项,称为样本回归 模型。
总体回归线与样本回归线的基本关系
例2.1:一个假想的社区是由60户家庭组成的总体,要
研究该社区每月家庭消费支出Y 与每月家庭可支配收入 X 的关系;即知道了家庭的每月收入,预测该社区家庭
每月消费支出的 (总体) 平均水平。为达到此目的,将该 60户家庭划分为组内收入差不多的10组,以分析每一收 入组的家庭消费支出。
表2.1 某社区家庭每月收入与消费支出调查统计表
回归分析是研究因果相关,也就是有因果关系的相关关 系;既然回归分析是研究变量之间的因果关系,因此回归 分析对变量的处理方法存在不对称性,也就是说,回归分 析将变量区分为被解释变量和解释变量,其中被解释变量 是“结果”,解释变量是“原因”,并且回归分析方法认为作 为“原因”的解释变量属于非随机变量,作为“结果”的被解 释变量为随机变量;也就是说,作为“原因”的解释变量取 确定值时,作为“结果”的被解释变量取值是随机的。

计量经济学-多元线性回归分析;eviews6操作

计量经济学-多元线性回归分析;eviews6操作

E(i ) 0
V(a i)rE (i2)2
C( o i,v j) E (ij) 0
i j i,j 1 ,2 , ,n
假设5,解释变量与随机项不相关
Co(Xvji,i)0
j1,2 ,k
假设6,随机项满足正态分布
i ~N(0,2)
2021/6/4
7
上述假设的矩阵符号表示 式:
假设1,nk矩阵X是非随机的,且X的秩=k,即X满
五、样本容量问题
六、估计实例
2021/6/4
10
一、普通最小二乘估计
对于随机抽取的n组观测值 ( Y i,X j) ii , 1 , 2 , ,n ,j 0 , 1 , 2 , k
如果样本函数的参数估计值已经得到,则有:
Y ˆ i ˆ 1 ˆ 2 X 2 i ˆ 3 X 3 i ˆ k X kii=1,2…n
1、线性性
β ˆ(X X )1X Y CY
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行向量
2021/6/4
18
2、无偏性
E(βˆ) E((XX)1 XY) E((XX)1 X(Xβ μ)) β (XX)1 E(Xμ) β
这里利用了假设: E(X’)=0
3、有效性(最小方差性)
习惯上:把常数项看成为一虚变量的系数,该 虚变量的样本观测值始终取1。这样:
模型中解释变量的数目为(k)
2021/6/4
3
模 型 : Y t 1 2 t X 2 t k X k t u t
也被称为总体回归函数的随机表达形式。它 的
非随机表达式为: E ( Y i | X 2 i , X 3 i , X k ) i 1 2 X 2 i 3 X 3 i k X ki

计量经济学讲义—— 线性回归模型的自相关问题

计量经济学讲义—— 线性回归模型的自相关问题

10.5 自相关的诊断-Durbin-Watson d检验法
Durbin-Watson d统计量可以用来诊断回归模型的自相关
n
d =

t=2
( e t − e t −1 ) 2
n

样本容量为n-1。
t =1
e t2
(10.3)
Durbin-Watson d检验量是诊断自相关常用的检验 工具,必须掌握。
10.2 自相关产生的原因
1. 经济时间序列的惯性(inertia)或迟缓性(sluggishness)特征。 2. 模型适定误差。有些自相关并不是由于连续观察值之间相 关产生的,而是因为回归模型不是适定性的“好”模型。 “不好模型”有多种原因。 3. 蛛网现象(the cobweb phenomenon)。一个变量对另一个变 量的反映不是同步的,时滞一定的时间。商品供给对价格 的反映: St = B1 + B2*Pt-1 + ut (10.2)

t=2 n
e t e t −1 e t2
ˆ ,− 1 ≤ ρ ≤ 1
(10.5)

t =1
如果d接近0,则存在正相关;d接近4,则存在负相关;d 接近2,表示不存在相关。
10.5 自相关的诊断-Durbin-Watson d检验法
d 统计量诊断自相关需要一定的假设条件,不是任意可用的: 1. 回归模型包括一个截距项。因此,d统计量无法判断通过原 点的回归模型的自相关问题。 2. 变量X是非随机变量,即在重复抽样中变量X的值是固定不 变的。 3. 扰动项ui的生成机制是:
4. 数据处理。在做季节因素的调整时,经常要做移动平均。 移动平均的处理可以消除季节波动的影响,但带来新的问 题则是产生了自相关。

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型
多元线性回归模型的表达式
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断

计量经济学第2章 一元线性回归模型

计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)

计量经济学讲义——线性回归模型的异方差问题1

计量经济学讲义——线性回归模型的异方差问题1
ndiv = 248 .8055 + 0 .206553 * Atprofits se = ( 31 .89255 )( 0 .049390 ) t = ( 7 .801368 )( 4 .182100 ) p = ( 0 . 00000 )( 0 .00060 ), R 2 = 0 .507103
Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)

计量经济学试题线性回归分析与

计量经济学试题线性回归分析与

计量经济学试题线性回归分析与计量经济学试题线性回归分析与应用一、简介线性回归分析是计量经济学中常用的统计方法之一,用于探究因变量和一个或多个自变量之间的关系。

本文将通过解答计量经济学试题来讨论线性回归分析的理论和应用。

二、理论基础1. 线性回归模型线性回归模型可表示为Y = α + βX + ε,其中Y是因变量,X是自变量,α和β是待估参数,ε是误差项。

线性回归模型的核心在于确定待估参数的估计值。

2. 估计参数通常使用最小二乘法估计回归模型中的参数。

最小二乘法的原理是最小化残差平方和,即使得观测值与模型估计值之间的差异最小。

三、实例分析假设一个研究者对某城市的住房价格进行研究,选取了以下两个自变量:房屋面积(X1)和楼层高度(X2)。

通过收集一定数量的样本数据,可以进行线性回归分析来探究自变量对住房价格的影响。

1. 数据收集首先,该研究者需要收集一定数量的样本数据,包括房屋面积、楼层高度和住房价格。

这些数据将用于构建线性回归模型。

2. 模型建立在收集到足够的样本数据后,可以通过最小二乘法估计线性回归模型中的参数。

假设模型为Y = α + β1X1 + β2X2 + ε,其中Y表示住房价格,X1表示房屋面积,X2表示楼层高度。

3. 参数估计利用最小二乘法估计模型中的参数α、β1和β2。

通过计算残差平方和最小化的方法,可以得到参数的估计值,并进一步进行假设检验和推断。

4. 模型评估在得到参数的估计值后,需要对模型进行评估。

常用的评估指标包括决定系数(R^2)、调整后的决定系数(adjusted R^2)、F统计量、t统计量等。

5. 假设检验通过进行显著性检验,判断自变量对因变量的影响是否显著。

常见的假设检验包括零假设(自变量对因变量无显著影响)和备择假设(自变量对因变量有显著影响)。

6. 拟合优度拟合优度是评价模型拟合程度的指标,通常用R方来表示。

R方越接近1,说明模型对样本数据的拟合程度越好。

四、应用案例1. 经济增长与教育投入关系分析通过线性回归分析,可以探究教育投入对于经济增长的影响。

计量经济学_三元线性回归模型案例分析

计量经济学_三元线性回归模型案例分析

选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。

由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。

所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。

计量经济学2.1 回归分析概述

计量经济学2.1 回归分析概述

(*)式称为总体回归函数(方程)PRF的随机设 定形式。表明被解释变量除了受解释变量的系统性影 响外,还受其他因素的随机性影响。 由于方程中引入了随机项,成为计量经济学模型, 因此也称为总体回归模型。
28
引入随机误差项的主要原因(1)
1)存在未知的影响被解释变量的因素
理论模糊性使得无法知道或确定所有影响因素
9
相关分析与回归分析的区别
对变量间统计依赖关系的考察有两种易混淆的分析方法: (1)相关分析(correlation analysis):测度两个变量之 间的线性关联力度。(可通过相关系数来判定)
(2)回归分析(regression analysis):考察一个变量如何 依赖于另一个变量而变化。从而试图根据一个变量的设定值来 估计或预测另一变量的平均值。
例2.1中,个别家庭的消费支出为:
(*) 即,给定收入水平Xi ,个别家庭的支出可表示为两部分之和: (1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为 系统性(systematic)或确定性(deterministic)部分。 (2)其他随机或非确定性(nonsystematic)部分i。
30
回归分析概念--样本回归函数(SRF)
总体的信息往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。
ห้องสมุดไป่ตู้
问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息? 例2.2:在例2.1的总体中有如下一个样本,
问:能否从该样本估计总体回归函数PRF?
表 2.1.3 家庭消费支出与可支配收入的一个随机样本 Y X 800 594 1100 638 1400 1122 1700 1155 2000 1408 2300 1595 2600 1969 2900 2078 3200 2585 3500 2530

计量经济学基础线性回归与OLS估计

计量经济学基础线性回归与OLS估计

计量经济学基础线性回归与OLS估计线性回归是计量经济学中重要的经济分析工具之一,它对观测数据的统计关系进行建模。

OLS(Ordinary Least Squares)估计是一种常见的线性回归参数估计方法,它通过最小化观测数据的残差平方和来获得参数的估计值。

一、线性回归模型线性回归模型基于以下假设:存在一个线性关系,将自变量X的线性组合与因变量Y联系起来。

该模型可以表示为:Y = β0 + β1X1 + β2X2 + … + βkXk + ε其中,Y是因变量,X1、X2、…、Xk是自变量,β0、β1、β2、…、βk是待估计的参数,ε是误差项。

二、最小二乘法OLS估计根据最小二乘法的原理,通过最小化残差平方和来获得参数的估计值。

残差定义为观测值与模型估计值之间的差异,残差平方和则是所有残差平方的总和。

最小二乘估计的目标是找到最优的参数估计值,使得残差平方和最小。

为了实现这一目标,我们需要计算出各个参数的最优估计值。

具体计算方法如下:1. 计算回归系数的估计值回归系数的估计值可以通过以下公式计算:β̂j = Σ(xi - x)(yi - ȳ) / Σ(xi - x)²其中,β̂j是第j个回归系数的估计值,xi是第i个自变量的观测值,x是自变量的均值,yi是因变量的观测值,ȳ是因变量的均值。

2. 计算截距项的估计值截距项的估计值可以通过以下公式计算:β̂0 = ȳ - β̂1x1 - β̂2x2 - … - β̂k x k其中,β̂0是截距项的估计值。

三、OLS估计的性质OLS估计具有以下几个重要性质:1. 无偏性在满足线性回归模型的假设下,OLS估计是无偏的,即估计值的期望等于真实参数值。

2. 有效性在满足线性回归模型的假设下,OLS估计是最佳线性无偏估计,其方差最小。

3. 一致性当样本容量趋向于无穷大时,OLS估计是一致的,即估计值趋近于真实参数值。

四、OLS估计的假设OLS估计依赖于一些重要的假设:1. 线性关系假设线性回归模型假设因变量与自变量之间存在线性关系。

计量经济学(2012B)(第二章多元线性回归)详解

计量经济学(2012B)(第二章多元线性回归)详解

2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2

n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受

0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551

EViews计量经济学实验报告-简单线性回归模型分析

EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国内生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。

二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。

输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。

即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。

计量经济学实验报告回归分析

计量经济学实验报告回归分析

计量经济学实验报告回归分析计量经济学实验报告:回归分析一、实验目的本实验旨在通过运用计量经济学方法,对收集到的数据进行分析,研究自变量与因变量之间的关系,并估计回归模型中的参数。

通过回归分析,我们可以深入了解变量之间的关系,为预测和决策提供依据。

二、实验原理回归分析是一种常用的统计方法,用于研究自变量与因变量之间的线性或非线性关系。

在回归分析中,我们通过最小二乘法等估计方法,得到回归模型中未知参数的估计值。

根据估计的参数,我们可以对因变量进行预测,并分析自变量对因变量的影响程度。

三、实验步骤1.数据收集:收集包含自变量与因变量的数据集。

数据可以来自数据库、调查、实验等。

2.数据预处理:对收集到的数据进行清洗、整理和格式化,以确保数据的质量和适用性。

3.模型选择:根据问题的特点和数据的特性,选择合适的回归模型。

常见的回归模型包括线性回归模型、多元回归模型、岭回归模型等。

4.模型估计:运用最小二乘法等估计方法,对选择的回归模型进行估计,得到模型中未知参数的估计值。

5.模型检验:对估计后的模型进行检验,以确保模型的适用性和可靠性。

常见的检验方法包括残差分析、拟合优度检验等。

6.预测与分析:根据估计的模型参数,对因变量进行预测,并分析自变量对因变量的影响程度。

四、实验结果与分析1.数据收集与预处理本次实验选取了某网站的销售数据作为样本,数据包含了商品价格、销量、评价等指标。

在数据预处理阶段,我们剔除了缺失值和异常值,以确保数据的完整性和准确性。

2.模型选择与估计考虑到商品价格和销量之间的关系可能存在非线性关系,我们选择了多元回归模型进行建模。

采用最小二乘法进行模型估计,得到的估计结果如下:销量 = 100000 + 10000 * 价格 + 5000 * 评价 + 随机扰动项3.模型检验对估计后的模型进行残差分析,发现残差分布较为均匀,且均在合理范围内。

同时,拟合优度检验也表明模型对数据的拟合程度较高。

计量经济学实验简单线性回归模型

计量经济学实验简单线性回归模型

计量经济学实验简单线性回归模型引言计量经济学是经济学中的一个分支,致力于通过经验分析和实证方法来研究经济问题。

实验是计量经济学中的重要方法之一,能够帮助我们理解和解释经济现象。

简单线性回归模型是实验中常用的工具之一,它能够通过建立两个变量之间的数学关系,预测一个变量对另一个变量的影响。

本文将介绍计量经济学实验中的简单线性回归模型及其应用。

简单线性回归模型模型定义简单线性回归模型是一种用于描述自变量(X)与因变量(Y)之间关系的线性模型。

其数学表达式为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1为未知参数,ε表示误差项。

参数估计在实际应用中,我们需要通过数据来估计模型中的参数。

最常用的估计方法是最小二乘法(OLS)。

最小二乘法的目标是通过最小化观测值与拟合值之间的平方差来估计参数。

具体而言,我们需要求解以下两个方程来得到参数的估计值:∂(Y - β0 - β1X)^2 / ∂β0 = 0∂(Y - β0 - β1X)^2 / ∂β1 = 0解释变量与被解释变量在简单线性回归模型中,解释变量(X)用来解释或预测被解释变量(Y)。

例如,我们可以使用房屋的面积(X)来预测房屋的价格(Y)。

在实验中,我们可以根据收集到的数据来建立回归模型,并利用该模型进行预测和分析。

应用实例数据收集为了说明简单线性回归模型的应用,我们假设收集了一些关于学生学习时间与考试成绩的数据。

下面是收集到的数据:学习时间(小时)考试成绩(百分制)2 723 784 805 856 88模型建立根据收集到的数据,我们可以建立简单线性回归模型来分析学生学习时间与考试成绩之间的关系。

首先,我们需要确定自变量和因变量的符号。

在这个例子中,我们可以将学习时间作为自变量(X),考试成绩作为因变量(Y)。

然后,我们使用最小二乘法来估计模型中的参数。

通过计算,可以得到如下参数估计值:β0 = 69.85β1 = 2.95最终的回归方程为:Y = 69.85 + 2.95X预测与分析通过建立的回归模型,我们可以进行预测和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eviews软件




要求学生熟悉与掌握Eviews软件的基本操作,并能够利用Eviews软件对计量经济学中的简单线性回归模型进行分析。包括模型的建立、对模型进行参数估计、统计检验、模型的输出结果分析及预测等。







一、双变量回归分析
1. Eviews文件的建立;
2.以相应的经济理论知识为基础,利用所给数据做数据图,并据此建立回归模型;
t= (0.982520) (20.54026)
p= (0.3340) (0.0000) df=29
R-squared=0.93568
5.(1)t( )=0.982520<t0.25(29)=2.045
不能拒绝H0:β1=0
t( )=20.54026>t0.25(29)=2.045
拒绝H0:β2=0
R-squared0.93568Mean dependent var5982.47612
Adjusted R-squared0.9334667S.D. dependent var1601.76245
S.E. of regression413.159278Akaike info criterion14.947884
3.对模型进行参数估计(写出估计方法、使用的命令等);
4.写出模型的形式并对其进行解释和分析;
5.对模型进行参数检验、拟合优度检验及正态性检验;
6.利用模型进行预测。




(包括实验实施步骤、使用方法及相关命令、数据记录和处理等)
答:1.建立Work file(工作文件)
数据输入:建立新数据文件
2.在EViews命令框中直接输入“data X Y”回车;
成ቤተ መጻሕፍቲ ባይዱ



根据实验情况和实验报告质量作出写实性评价:
综合评分
指导教师签名:
时间:年月日
中央财经大学
实验报告
课程名称:计量经济学
实验项目名称:简单线性回归分析
*****
学号:**********
班级:金融-7
*******
2015年4月28日
中央财经大学实验报告
课程名称
计量经济学
实验类型
实验项目名称
简单线性回归分析
实验时数
2
学生姓名
王菲
专业
金融
同组学生姓名
实验地点
实验日期
年月日节课
主要仪器设备(实验软件)
Prob(F-statistic)0.00000
使用最小二乘法,在EViews命令框中直接输入“ls Y C X”回车
4.(1).参数估计结果如下:
=282.2434+0.7585113X说明城市居民人均年可支配收入每相差一元,可导致居民消费相差0.758511元
se= (287.2649) (0.036928)
Sum squared resid4950317.087Schwarz criterion15.0403996
Log likelihood-229.692206Hannan-Quinn criter.14.97804
F-statistic421.902301Durbin-Watson stat1.4814386
将Excel中准备好的数据复制粘贴到Eviews文件中即可。
作散点图:Graph(图表)Scatter(散点图)open→as group→view→graph
→scatter得如下图:
3.
Dependent Variable: Y
Method: Least Squares
Date: 05/03/14 Time: 21:00
城市人均可支配收入对人均年消费支出有显著影响
(2).拟合优度检验
=0.935685
(3).正态性检验如下
6.利用模型进行预测如下。
地区
城市居民人均年消费支出Y/元
城市居民人均年可支配收入X/元
全国
6029.88
7702.8
黑龙江
4462.08
6100.56
上海
10464.00
13249.80







从图中我们可以看出实验结果由于全国各个地区经济发展速度不同,居民消费有着明显差异。为了分析影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,我们可以建立相应的计量经济模型去研究。





学会使用Eviews软件建立模型,做出模型的参数估计,统计检验等,达到了实验的预期目的,将计量经济学知识用于生活实践当中。
Sample: 1 31
Included observations: 31
VariableCoefficientStd. Errort-StatisticProb.
C282.24343287.264870.98251980.3339703
X0.75851130.036928020.5402600.0000
相关文档
最新文档