第八章二元一次方程组知识点及复习

合集下载

第8章 二元一次方程组 知识点梳理

 第8章 二元一次方程组 知识点梳理

-@>% )一二元一次方程组1.二元一次方程(1)二元一次方程:含有两个未知数,并且含有未知数的项的次数是1的方程叫二元一次方程.(2)一般形式:a x+b y+c=0(aʂ0,bʂ0).2.二元一次方程组(1)二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)二元一次方程组的解:二元一次方程组的两个方程的公共解,叫作二元一次方程组的解.二消元法——二元一次方程组的解法1.用代入消元法解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来.(2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.(3)解这个一元一次方程,求出x(或y)的值.(4)将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.(5)把求得的x㊁y的值用 { 联立起来,就是方程组的解.2.用加减消元法解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使其中一个未知数的系数互为相反数或相等.(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程.(3)解这个一元一次方程.(4)将求出的未知数的值代入原方程组的任意一个方程中(技巧:选择系数较简单的方程计算),求出另一个未知数,从而得到方程组的解.(5)把求得的x㊁y的值 { 联立起来,就是方程组的解.三实际问题与二元一次方程组列方程组解应用题的步骤:(1)审题 弄清题目中所给出的相等关系及已知量㊁未知量.(2)设好未知数 其方法通常有两种:①设直接未知数;②设间接未知数,并用含未知数的代数式表示涉及的量.3(3)找出能够包含未知数的等量关系 一般情况下,设几个未知数,就需找几个等量关系.(4)列方程组 根据给定的相等关系建立方程组.(5)解方程组.(6)检验并作答 所求方程组的解在正确的基础上还要符合实际意义,并写清单位名称或符号.四三元一次方程组的解法1.三元一次方程组含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫作三元一次方程组.2.解三元一次方程组的一般步骤(1)把方程组里的一个方程分别与另外两个方程组成两组,用代入法或加减法消去这两组中的同一个未知数,得到一个含有另外两个未知数的二元一次方程组.(2)解这个二元一次方程组.(3)将所求得的两个未知数的值代入原方程组中的任意一个方程中,求得第三个未知数的解,从而求出方程组的解.2。

第八章二元一次方程组解法复习课课件

第八章二元一次方程组解法复习课课件
当X=4,y=15 当X=7,y=24 15=4k+b 24=7x+b
k 3 解得: b 3
2.在y= ax bx c 中,当 x 0 时y的值是-7, x 1 时y的值是-9, x 1 时y的值是-3,求 a、b、c 的 值 当x=0 y=7 -7= c
2
当x=1 y=-9
x 1 x 2 x 3 y 16 y 12 y 8
x 4 y 4
1、方程x+2y=7在正整数范围内的解有( C ) A 1个 B 2个 C 3个 D 无数个
解后语:二元一次方程一般有无数个解,但它的解 若受到限制往往是有限个解。
y 1 z 17 y 2 z 14 y 3 z 11 y 4 z 8 y 5 z 5 y 6 z 2 y 1 z 7 y 2 z 1

3(09黑)13题一宾馆有二人间、三人间、四人间三种客房供游客租住, 某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满, x 2 x 3 C 租房方案有( ) x y z 7 y 4 y 2 z 2 A4种 B3种 C2种D1种 z 1 2 x 3 y 4 z 20
解:设新建1个地上停车位为x元,一个个地下停车位为y元
x y 0.5 3 x 2 y 1.1
x 0.1 解得: y 0.4
练习:
2 不是 1、 -1=3y 是不是二元一次方程?答: x
4、当方程组中两个方程的某个未知数 的系数相等或互为相反数时, 把方程的两边分别相减或相加来消去这个 未知数,得到一个一元一次方程。 当方程组中两个未知数系数的绝对值均不相 等,可以把两个方程的两边各自乘以一个适 当的数,使某一个未知数的绝对值相等。

第八章二元一次方程组知识点及复习

第八章二元一次方程组知识点及复习

二元一次方程组全章复习一.本章知识点(一)有关概念1.二元一次方程: 。

2.二元一次方程的一个解: 。

3.二元一次方程组和二元一次方程组的解(1)二元一次方程组: 。

(2)二元一次方程组的解: 。

(二)二元一次方程组的解法:二元一次方程组 方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.1.相同字母系数相等的 ,相反的 。

2.没有相等或相反利用等式的性质化 或 ,再 或 。

二. 本章知识点的运用(一)有关概念1.已知方程①2x +y =3;②x +2=1;③ y =5-x ; ④x -xy =10;⑤x +y +z =6中二元一次方程有_____________.(填序号)2.在方程3x -a y =8中,如果⎩⎨⎧==13y x 是它的一个解,则a 的值为________.3.下列是二元一次方程组的是( ).A .⎩⎨⎧=-=+523z y y xB .⎩⎨⎧-==+3634x y xC .⎩⎨⎧=-=+21xy y xD .⎩⎨⎧=-=+38232y x y x 4.方程组⎩⎨⎧=+=+523y x y x 的解为( ).A .⎩⎨⎧==21x y B.⎩⎨⎧==26x y C .⎩⎨⎧==35x y D .⎩⎨⎧==44x x 5.在3x +4y =9中,如果2y =6,那么x =_______.6.(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.(2)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________ 二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

(一)、代入消元法:1、直接代入 解方程组②①y x x y ⎩⎨⎧=--=.134,32 消元 转化跟踪训练:解方程组:(1)90152x y x y +=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法1、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=+=+17372y x y x (3)⎩⎨⎧=-=-322543y x y x (4).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3) ⎩⎨⎧=+=-1023724y x y x。

8 第八章二元一次方程组复习

8 第八章二元一次方程组复习

③- ④得: y 2
∴原方程组的解是 x 4

y

2
七年级 数学
多媒体课件
方程组
5x 2y 24 ①
ax by 14


ax by 10 ③ 2x 5y 18 ④
有相同的解,求a和b的值.
解:由① ④得 5x 2 y 24① 2x 5 y 18④
35y x 10 40( y 0.5) x
x 220

y

6
2.某中学组织初一学生春游,原计划租用 45座客车若干辆,但有15人没有座位;若 租用同样数量的60座客车,则多出了一辆 车,且其余客车恰好坐满.已知45座客车 日租金为每辆220元, 60座客车日租金为 每辆300元,试问:(1)初一年级的人数是多 少?原计划租用45座客车多少辆?(2)若租 用同一种车,要使每位同学都有座位,怎样 租用更合算?
你能列出方程(组)吗?
解:设牛x头,羊y只,依题意得:
5x 2 y 24 2x 5y 18
你会用两种方法解吗? (1)代入法; (2)加减法.
七年级 数学
多媒体课件
5x 2 y 24 ① 2x 5y 18 ②
解:由① 得: y 12 5 x ③
2
2.二元一次方程的解: 使二元一次方程两边的值相等的两个未知 数的值,叫做二元一次方程的解.
3.二元一次方程组: 由两个一次方程组成,共有两个未知数的方 程组,叫做二元一次方程组.
四、知识应用
1.二元一次方程 2m+3n=11 ( C ) A.任何一对有理数都是它的解. B.只有两组解. C.只有两组正整数解. D.有负整数解. m=1,n=3; m=4,n=1.

第八章 二元一次方程组 七年级数学下册单元复习(人教版)

第八章 二元一次方程组 七年级数学下册单元复习(人教版)

复习 重点
重难点:二元一次方程组的解法和用二元一次方程组解决实 际问题。
3 知识要点 知识点一 二元一次方程组及其解法
㈠二元一次方程组
1、二元一次方程的定义 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程 叫做二元一次方程. 注:二元一次方程需满足四个条件: ①首先是整式方程. ②方程中共含有两个未知数. ③所有未知项的次数都是一次. ④两个未知数系数都不为0.
人教版七年级下册
第八章 二元一次方程组
2 复习目标
复习 目标
1.了解二元一次方程组及其解的有关概念; 2.掌握消元法解二元一次方程组的方法;了解代入消元法和加减 消元法是两种不同的消元途径; 3.理解和掌握方程组与实际问题的联系以及方程组的解; 4.掌握二元一次方程组在解决实际问题中的简单应用; 5.通过对二元一次方程组的应用,培养应用数学的理念。
【典例讲解】精

例7
已知二元一次方程组
3x 2x
4y 2k 3 y 3k 4
的解的和是2,
求x、y、k的值.
解:方程组
3x 2x
4y 2k 3 y 3k 4
得:
x y
14k 13 11
5k 18 11
∵方程组的解的和为2
∴ 14k 13 5k 18 2 ,
11
11
知识点一 二元一次方程组及其解法
3、加减消元法 当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方 程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这 种方法叫做加减消元法,简称加减法 注意:(1)两个方程中,当同一个未知数的系数互为相反数时,两个方程相加 消元;当同一个未知数的系数相同时,两个方程相减消元. (2)两个方程中,如果同一个未知数的系数成整数倍,可以在系数绝对值较小 的方程两边同乘倍数,使之与另一个方程中同一未知数的系数的绝对值相等, 再将两个方程相加或相减,即可消元. (3)当两个方程中同一个未知数的系数均不成整数倍时,一般选择系数较简单 (或相对较小)的未知数消元,将两个方程中的同一个未知数的系数的绝对值 分别转化成它们的最小公倍数,然后加减消元.

第八章 二元一次方程组复习(培优训练)

第八章 二元一次方程组复习(培优训练)

3x 2 y 2 x y 2 x 5y 3.解方程组: 4 5 3
5(3x 2 y ) 4( 2 x y 2) 解 : 原方程组可化为 3(3x 2 y ) 4( x 5 y ) 7 x 6 y 8 即 13x 26 y 解之得 x 2 y 1
x( x y z ) 6 4 . 解方程组: y ( x y z ) 12 z ( x y z ) 18
解 : (1) (2) (3) (1) (4) 得 x 1 (2) (4) 得 y 2 (3) (4) 得 z 3 x 1 x 1 原方程组的解是 y 2 和 y 2 z 3 z 3 ( x y z ) 36
2
(1) ( 2) (3)
( 4)
x y z 6
• 某厂计划第一、二季度共生产产品420台, 结果第一季度实际完成计划的1.1倍,第二 季度超产15%,两季度实际共生产473台, 求两季度计划各生产多少台?
解:设第一季度共生产 x台,第二季度共 生产y台,由题意,得:
1.1x (1 15%) y 473, x y 420. x 200 解得: y 220
2 3
解:由方程①-②得: -x+y=-3,即 x-y=3; 由方程①+②得: 4009x+4009y=4009,即 x+y=1; ∴ x y 2 x y 3 12 33 28
Ax By 2 1、甲、乙两人同解方程 组 Cx 3 y 2, x 1 x 2 甲正确解得 ,乙抄错C,解得 , y 1 y 6 求A、B、C的值。

第8章二元一次方程组单元复习2022—2023学年人教版数学七年级下册

第8章二元一次方程组单元复习2022—2023学年人教版数学七年级下册

第8章 二元一次方程组 单元复习【知识网络】二元一次方程组{二元一次方程{定义:①方程中含有两个未知数;②含有未知数的项的次数是1;③方程两边是整式方程的解:使方程两边的值相等的未知数的值二元一次方程组{ 定义:①方程组中含有两个未知数;②每个方程中含未知数的项的次数都是1;③由两个方程组成方程组的解:两个方程的 解法:①代入消元法;② 应用:关键是找出题中的等量关系,根据等量关系列出方程(组)具体步骤:①审题;② ;③ ;④解方程组;⑤检验、作答*三元一次方程组{定义:①方程组中含有三个未知数;②每个方程中含未知数的项的次数都是1;③由三个方程组成解法:①代入消元法;②加减消元法 【知识梳理】1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

2.方程组:有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

3.二元一次方程组的解:二元一次方程的两个方程的公共解叫二元一次方程组的解二、消元二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。

【方法指导】如果这两个方程中有同一个未知数的系数相反或相等,可以直接对其两个方程相加减,消去其中的一个未知数;如果没有同一个未知数的系数相反或相等,则可以根据等式的性质对某一个方程进行变形,使得这两个方程中某个未知数的系数相反或相等.【方法指导】运用二元一次方程组这一数学模型解决方案设计问题,首先要准确分析实际问题中的数量关系,找出已知量和未知量,并能发现其中的几个等量关系,然后根据等量关系列出方程组,并解方程组.在此基础上,用方程组的解来解释问题.【考点突破】考点1:二元一次方程组及其解【例1】已知⎩⎨⎧ x =2y =1是方程组⎩⎨⎧ax +by =5bx +ay =1的解,则a +b 的值是( ) A .-1 B .2 C .3 D .4【针对训练1-1】在方程组①⎩⎨⎧2x -y =1,y =3z +1;②⎩⎨⎧x =2,3y -x =1;③⎩⎨⎧x +y =0,3x -y =5;④⎩⎨⎧xy =1,x +2y =3;⑤⎩⎪⎨⎪⎧1x +1y =1,x +y =1中,二元一次方程组有 ( ) A .2个 B .3个 C .4个 D .5个【针对训练1-2】若⎩⎨⎧x =2,y =1是关于x ,y 的方程kx -y =3的解,则k 的值是____ . 【针对训练1-3】若方程组{y -(a -1)x =5,y |a |+(b -5)xy =3是关于x ,y 的二元一次方程组,则代数式ab 的值是 .考点2:解二元一次方程组【例2】解二元一次方程组⎩⎨⎧ 2x -y =7 ①3x +2y =0 ②. 【针对训练2-1】利用加减消元法解方程组{2x +3y =-6, ①3x -2y =4, ②下列做法正确的是( ) A.①×2-②×3,消去yB.①×3+②×2,消去xC.①×2+②×(-3),消去yD.①×3-②×2,消去x【针对训练2-2】方程组⎩⎨⎧x -y =1,3x +y =7的解为__ __. 【针对训练2-3】已知{x =1,y =2是方程ax +by =3的解,则代数式2a +4b -5的值为 . 【针对训练2-4】已知关于x ,y 的二元一次方程组{2ax +by +4=0,ax -by -1=0的解为{x =-1,y =1,则a -2b = .【针对训练2-5】解方程组:(1)⎩⎨⎧x +2y =5,①3x -2y =-1;②(2)⎩⎪⎨⎪⎧x +4y =14,①x -34-y -33=112.②【针对训练2-6】已知关于x,y的方程组{x+ay=5,①bx-3y=4,②由于粗心,甲看错了方程①中的a,得到方程组的解为{x=-1,y=-2;乙看错了方程②中的b,得到方程组的解为{x=2,y=3.(1)试确定a,b的值;(2)请你求出原方程组的解.考点3:列方程组解应用题【例3】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元,该校计划在一年内拆除旧校舍与建造新校舍共7200m2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,拆除校舍则超过了计划的10%,结果恰好完成了原计划的拆、建的总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1m2需200元,那么在实际完成的拆、建工程中节余的资金大约可绿化多少平方米?【针对训练3-1】如图,面积为36的正方形ABCD,分成4个完全相同的小长方形和一个面积为4的小正方形,则小长方形的长和宽分别是()A.8,4B.4,2C.6,2D.3,1【针对训练3-2】某工厂向银行申请了甲、乙两种贷款共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,若设甲、乙两种贷款的数额分别为x 万元和y 万元,则 ( )A .x =15,y =20B .x =20,y =15C .x =12,y =23D .x =23,y =12【针对训练3-3】某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A .1种B .2种C .3种D .4种【针对训练3-4】李师傅加工1个甲种零件和1个乙种零件的时间都是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个零件共需____分钟.【针对训练3-5】2020年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只,李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,她将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是____次.【针对训练3-6】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店需付费用少?(3)在(2)的条件下,若装修完后,商店每天可盈利200元,现有如下三种方式装修:①甲组单独做;②乙组单独做;③甲、乙两组合作.你认为如何安排施工更有利于商店?考点4:三元一次方程组的解法及应用【例4】解方程组⎩⎨⎧ 2x +4y +3z =9 ①3x -2y +5z =11②5x -6y +7z =13③【针对训练4-1】若方程组⎩⎨⎧x +4=y ,2x -y =2z中的x 是y 的2倍,则z 的值为 ( )A .-9B .8C .-7D .-6【针对训练4-2】桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水,先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升,若过程中水没有溢出,则原本甲、乙两杯内的水量相差 ( )A .80毫升B .110毫升C .140毫升D .220毫升【综合练习】1.下列方程组中是二元一次方程组的是( )A.⎩⎨⎧ x +2y =1x 2+y 2=3 B .⎩⎨⎧ 2x -y =3z +y =8 C.⎩⎨⎧ x +2y =1xy =-6D .⎩⎨⎧x +2y =13x -5y =3 2.已知⎩⎨⎧ x =2y =1是二元一次方程组⎩⎨⎧ mx +ny =8nx -my =1的解,则2m -n 的算术平方根为( ) A .±2 B .2 C .4 D .2 3.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,求甲、乙两人每天各做多少个零件?若设甲、乙两人每天分别做x 、y 个零件,由题意可列出的方程组是( )A.⎩⎨⎧ 5+1x =5y 30+4x =4y +10 B .⎩⎨⎧ 1+5x =5y 30+4x =4y -10 C.⎩⎨⎧ 5+1x =5y 30+4x =4y -10 D .⎩⎨⎧1+5x =5y 30+4x =4y +104.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个 5.若关于x 、y 的二元一次方程组⎩⎨⎧x +y =5k x -y =9k的解也是二元一次方程2x +3y =-8的解,则k 的值为 . 6.将三元一次方程组⎩⎨⎧ 5x +4y +z =0①3x +y -4z =11②x +y +z =-2③,经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是 .7.解下列方程组: (1)⎩⎨⎧2x +3y =11,①y -2x =1;②(2)⎩⎨⎧4x +3y =14,①3x +2y =22.②8.根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可)①⎩⎨⎧ x +2y =32x +y =3的解为 ⎩⎨⎧ x =1y =1; ②⎩⎨⎧ 3x +2y =102x +3y =10的解为 ⎩⎨⎧ x =2y =2 ; ③⎩⎨⎧ 2x -y =4-x +2y =4的解为 ⎩⎨⎧x =4y =4. (2)以上每个方程组的解中,x 值与y 值的大小关系为 ;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.9.七(1)班的生活委员利用周末时间为班上买了4把扫帚和6把铲子共64元,到班长那儿报账时,班长拿出了他上个月购买的扫帚和铲子的账目:3把扫帚和5把铲子,共用55元。

第八章 二元一次方程组(复习课件)年级数学下册(人教版)

第八章 二元一次方程组(复习课件)年级数学下册(人教版)
(1)
(2)
3 + = 1②
3 − 2 = 3②
3 − 4 − 2 = 5①
(3)
解:(1)把①代入②,得3(1-y)+y=1.
(2)①×2+②,得11x=33.
− 2 = 1

解这个方程,得y=1.
解这个方程,得x=3.
把y=1代入①,得x=0.
把x=3代入①,得12+y=15,y=3.
的解为

=1
− = 1
a+2b的值.
2 + = 3
=1
解:把
代入

=1
− = 1

2 + = 3①
− =1 ②
由①-②,得a+2b=2.
高频考点
高频考点二 二元一次方程的特殊解
例2. 活动课上,王老师把班级里40名学生分成若干个小组,每个小组只能
是3人或4人,则分组方案共有( C )
=2
= −1
x=6.
把x=6代入①,得18+4y=16,
1
y=- .
2
=6
所以这个方程组的解为 = − 1
2
迁移应用
【3-4】解下列方程组:
− =3

(1)
3 − 8 = 14②
3 + 4 = 16 ①
(2)
5 − 6 = 33 ②
4 + = 5 ①
(3)整理,得
A.2种
B.3种
C.4种
D.5种
解析:设3人小组有x个,4人小组有y个.
4
根据题意,得3x+4y=40,所以y=10- x.

人教版七年级数学下册—第8章二元一次方程(组)单元总结复习

人教版七年级数学下册—第8章二元一次方程(组)单元总结复习

第八章 二元一次方程(组)知识框架⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧实际问题应用三元一次方程组的解二元一次方程的解二元一次方程组的概念二元一次方程组二元一次方程的解二元一次方程的概念二元一次方程二元一次方程(组) 知识梳理 1. 二元一次方程1. 二元一次方程的概念:含有两个未知数,并且未知项的次数都是1,像这样的方程叫做二元一次方程. (1)在方程中,“元”是指未知数,“二元”就是指方程中有且只有两个未知数; (2)“未知数的次数都是1”是指含有未知数的项的次数是1. (3)二元一次方程的左边和右边必须都是整式. 2. 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程组的解. 2. 二元一次方程组1. 二元一次方程组的概念:具有相同未知数的的两个二元一次方程合在一起,就组成了一个二元一次方程组. 判断二元一次方程组的方法:(1)看整个方程组里含有的未知数是不是两个; (2)看含有未知数的项的次数是不是1; (3)等式两边都是整式. 2. 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.检验一对数是否是某个二元一次方程组的解常用方法:将这组数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解;否则,就不是此方程组的解. 3. 二元一次方程组的整数解的求法:一般情况下,一个二元一次方程都有无数个整数解,解这类问题时,先用一个未知数的代数式表示另一个未4. 二元一次方程组的常用解法:①代入法;②消元法. 3. 三元一次方程组1. 三元一次方程组的概念:由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

2. 三元一次方程组求解的步骤:4. 实际应用 1. 和差倍分问题较大量=较小量+多余量,总量=倍数×倍量; 2. 产品配套问题 加工总量成比例; 3. 行程与航速问题行程问题和航速问题:路程=速度×时间(1)⎩⎨⎧==+初始距离慢速度追及问题:快速度初始距离慢速度相遇问题:快速度行程问题-(2)航速问题:①顺流(风):航速=静水(无风)中的速度+水(风)速; ②逆流(风):航速=静水(无风)中的速度-水(风)速; 4. 工程问题(1)工作量=工作效率×工作时间;(2)①工作总量已知;②工作总量未知时,一般设为“单位1”; 5. 利润问题利润=售价-进价;利润率=(售价-进价)/进价×100%; 6. 方案问题 7. 增长率问题原量×(1+增长率)n =增长后的量,原量×(1-增长率)n =减少后的量;(n 为时间) 8. 数字问题9. 几何问题解这类问题的基本关系式是有关几何图形的性质.周长.面积等计算公式; 10. 其他问题考点1:基础概念(二元一次方程(组)的概念、方程(组)的解的概念) 【典型例题】【针对练习】1. 下列方程中,属于二元一次方程的是( )A . 81xy -=B . 2131x y -=+C . 4535x y x y -=-D . 231x y-= 2. 下列方程组中,是二元一次方程组的是( )A . 30x y =⎧⎨=⎩B . 12235x y x y ⎧-=⎪⎨⎪-=⎩C .25xy x y =⎧⎨-=⎩ D . 2363x y y z -=⎧⎨-=⎩3. 已知3(53)40,x y a xy +--=当a = ,它是关于x 、y 的二元一次方程。

七年级数学下册《第八章二元一次方程组》知识点归纳

七年级数学下册《第八章二元一次方程组》知识点归纳

第八章二元一次方程组是七年级下册数学的章节之一,主要介绍了二元一次方程组的相关知识。

本章内容比较重要,是学习方程组的基础,也是解决实际问题的基础。

以下是对该章节重要知识点的归纳:一、二元一次方程及方程组:1. 二元一次方程:二元一次方程是指含有两个未知数的一次方程,形式一般为ax+by=c。

其中,a、b、c为已知数,a和b不全为零。

2.方程的解:给定一个二元一次方程,如果存在一对数(x,y),使得将这些数代入方程使等式成立,那么这对数(x,y)就是方程的解。

3.方程组:由两个或多个方程组成的集合称为方程组。

二元一次方程组是由两个二元一次方程组成的方程组。

二、解二元一次方程组的方法:1.消元法:a.加法消元法:通过给每个方程乘以适当的倍数,使得待消元的未知数的系数相同,然后将两个方程相加,消去这个未知数。

b.减法消元法:通过给其中一个方程乘以适当的倍数,使得待消元的未知数的系数相反,然后将两个方程相减,消去这个未知数。

2.代入法:将一个方程的一元表达式代入到另一个方程中,从而将二元一次方程组转化为一个一元二次方程。

三、方程组的解的情况:1.无解的情况:当方程组中的方程互相矛盾,即无法找到同时满足所有方程的解时,方程组无解。

2.有唯一解的情况:当方程组中的方程相互独立,且无论怎样组合方程,都只能得出一个解时,方程组有唯一解。

3.有无穷多解的情况:当方程组中的方程有冗余的情况,即两个或多个方程实际上是同一个方程的时候,方程组有无穷多解。

四、应用问题:1.运用二元一次方程组解决实际问题,如两个数字之和为一些数,两数之差为一些数等。

2.通过问题中给出的条件建立方程组,然后解方程组找到问题的解。

3.运用代入法解决更复杂的实际问题,如一个数以另一个数的几倍和为一些数等。

五、实战习题:1.练习整理方程组、解方程组的方法;2.挑战实际问题,在解决问题的过程中巩固知识点;3.深入思考不同的解法对于问题的实际意义,触类旁通。

第8章《二元一次方程组》复习资料【1】【含答案】

第8章《二元一次方程组》复习资料【1】【含答案】

第8章《二元一次方程组》复习资料【1】一.选择题(共10小题)1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C. D.2.已知是二元一次方程组的解,则的算术平方根为()A.±3 B.3 C.D.3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元4.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.45.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.36.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.7.已知二元一次方程组无解,则a的值是()A.a=2 B.a=6 C.a=﹣2 D.a=﹣68.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.9.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种10.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9二.填空题(共10小题)11.若是方程2x+y=0的解,则6a+3b+2=.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.13.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.14.已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=.15.方程x+5y+4=0,若用含有x的代数式表示y为;若用含有y的代数式表示x为.16.若方程组与的解相同,则a=,b=.17.已知是二元一次方程组的解,则m+3n的值为.18.已知方程租与有相同的解,则m+n=.19.若(a﹣2b+1)2与互为相反数,则a=,b=.20.清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有名同学.三.解答题(共10小题)21.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?22.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?23.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?24.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?25.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?26.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)27.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?28.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?29.从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?30.我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?第8章《二元一次方程组》复习资料【1】参考答案与试题解析一.选择题(共10小题)1.(2016•毕节市)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C. D.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A2.(2015•天桥区一模)已知是二元一次方程组的解,则的算术平方根为()A.±3 B.3 C.D.【解答】解:将x=2,y=1代入方程组得:,①+②×2得:5n=10,即n=2,将n=2代入②得:4﹣m=1,即m=3,∴m+3n=3+6=9,则=3,3的算术平方根为.故选C.3.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元【解答】解:设该商品的进价为x元,标价为y元,由题意得,解得:x=2500,y=3750.则3750×0.9﹣2500=875(元).故选:B.4.(2015春•莒县期中)二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.4【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.5.(2016•宁夏)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C6.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.7.(2014春•西安期末)已知二元一次方程组无解,则a的值是()A.a=2 B.a=6 C.a=﹣2 D.a=﹣6【解答】解:,由②得:y=2x﹣1③,把③代入①得:ax+3(2x﹣1)=2,∴(a+6)x=5,∵方程组无解,∴a+6=0,∴a=﹣6,故选D.8.(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.9.(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种【解答】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.10.(2015•江都市模拟)如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7故选C.二.填空题(共10小题)11.(2015•滨州模拟)若是方程2x+y=0的解,则6a+3b+2=2.【解答】解:把代入方程2x+y=0,得2a+b=0,∴6a+3b+2=3(2a+b)+2=2.故答案为:2.12.(2015•南充)已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.13.(2015•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.【解答】解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.14.(2015•宜春模拟)已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=﹣1.【解答】解:根据题意,得m﹣2014=1,n﹣1≠0,|n|=1解得m=2015,n=﹣1,n m=﹣1,故答案为:﹣115.(2015•重庆校级模拟)方程x+5y+4=0,若用含有x的代数式表示y为;若用含有y的代数式表示x为﹣5y﹣4.【解答】解:(1)x+5y+4=0,移项得5y=﹣x﹣4,y=;(2)x+5y+4=0,移项得x=﹣5y﹣4;故答案为,﹣5y﹣4.16.(2016•富顺县校级模拟)若方程组与的解相同,则a=33,b=.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.17.(2016•江宁区二模)已知是二元一次方程组的解,则m+3n的值为3.【解答】解:把代入得,①+②得m+3n=3,故答案为:3.18.(2013春•硚口区期末)已知方程租与有相同的解,则m+n=3.【解答】解:∵与有相同的解,∴解方程组得,∴解m、n的方程组得∴m+n=4﹣1=3.故答案为:3.19.(2016•富顺县校级模拟)若(a﹣2b+1)2与互为相反数,则a=3,b=2.【解答】解:∵(a﹣2b+1)2与互为相反数,∴(a﹣2b+1)2+=0,(a﹣2b+1)2=0且=0,即,解得:a=3,b=2故答案为:3,2.20.(2015•潜江)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有59名同学.【解答】解:设一共分为x个小组,该班共有y名同学,根据题意得,解得.答:该班共有59名同学.故答案为59.三.解答题(共10小题)21.(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【解答】解:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.22.(2015•佛山)某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解答】解:(1)一共支付1118元;可得人数大于90,只需花费816元,可知人数大于100的,设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得,解得:.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.23.(2014•聊城)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?【解答】解:(1)设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进30件;(2)由题意,得3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.24.(2014•铜仁地区)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【解答】解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.25.(2015•张家界)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.26.(2016春•丰都县期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【解答】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.27.(2015•徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?【解答】解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则打折前需要50×8+40×2=480(元),打折后比打折前少花480﹣364=116(元).答:打折后比打折前少花116元.28.(2015•福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?【解答】解:设批发的黄瓜是x千克,茄子是y千克,由题意得解得答:这天他批发的黄瓜15千克,茄子是25千克.29.(2014•呼伦贝尔)从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?【解答】解:设甲地到乙地上坡路x米,下坡路y米.根据题意,得,解得.答:甲地到乙地上坡路1000米,下坡路500米.30.(2016•富顺县校级模拟)我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?【解答】解:设小长方形的长、宽分别为xcm,ycm,则,解得:,经检验得出,符合题意.答:小伟裁剪的长方形的长、宽分别为10cm,6cm.。

第8章 二元一次方程组复习与小结 初中数学人教版七年级下册课件

第8章 二元一次方程组复习与小结 初中数学人教版七年级下册课件

三元一次 消元 二元一次 消元 一元一
方程组
方程组
次方程
课堂检测
1.已知x=1,y=-2是二元一次方程组 ax-2y=3 的解, x-by=4
求a,b的值.
解:把x=1,y=-2代入二元一次方程组得
a+4=3, 1+2b=4,
解得:a=-1,b=1.5.
课堂检测
2.用代入法消元法解方程组
3x-y=7, 5x+2y=8.
知识框架
实际问题
设未知数、列方程组
数学问题
(二元或三元一次方程组)
解 方
代入法
程 加减法
组 (消元)
实际问题 的答案
双检验
数学问题的解 (二元或三元一次方程组
的解)
知识梳理
知识点一 二元一次方程及二元一次方程的解
二元一次方程:每个方程都含有两个未知数(x和y),并且 未知数的项的次数都是1,像这样的方程叫 做二元一次方程.
把④分别代入①③得 2y+z=7 ⑤
3y-z=3 ⑥
解由⑤⑥组成的二元一次方程组,得y=2,z=3
把y=2代入④,得x=4 x=4
所以原方程的解是 y=2 z=3
知识梳理
知识点六 三元一次方程组及解三元一次方程组 从上面的分析可以看出.解三元一次方程组的基本思路是:
通过“代入”或“加减”进行 消元 ,把“三元”转化为“二元”, 使解三元一次方程组转化为解 二元一次方程组,进而再转化 为解 一元一次方程 .
知识梳理
知识点五 实际问题与二元一次方程组 列二元一次方程解决实际问题的步骤: ①审—审清题意; ②设—设未知数; ③找—找等量关系; ④列—列出二元一次方程组; ⑤解—解二元一次方程组; ⑥验—检验二元一次方程组解是否符合实际意义; ⑦答—作答.

人教版数学七年级下册知识重点与单元测-第八章8-6《二元一次方程组》章末复习(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-6《二元一次方程组》章末复习(能力提升)

第八章 二元一次方程(组)8.6 《二元一次方程组》章末复习(能力提升)【要点梳理】知识点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a ==y x 的形式. 3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念例1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩B . 1332x y x y +=⎧⎨+=-⎩C . 1334x y x y +=⎧⎨-=⎩D . 1333x y x y +=⎧⎨+=⎩ 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C.【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零), (1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c abc ==,方程组有无数组解; (3)当1222a a a b ≠,方程组有唯一解. 举一反三:【变式1】若关于x 、y 的方程()12m m x y++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14. 类型二、二元一次方程组的解法例2. 解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【答案与解析】解:由①×9得:6(x -y )+9y =45 ③②×4得:6(x -y )-10y =-12 ④③-④得:19y =57,解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩. 举一反三: 【变式】(换元思想)解方程组16105610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩ 【答案】 解:设6x y m +=,10x y n -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩. ∴ 119x y =-⎧⎨=⎩.例3.小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得, 解得:,则a+b+c=2+﹣5=3﹣5=﹣2.举一反三: 【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =, 则=-b a .【答案】11.类型三、实际问题与二元一次方程组例4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y+=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=.答:图中阴影部分的面积为82.例5. 甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

第八章 二元一次方程组专题复习(学生版)

第八章 二元一次方程组专题复习(学生版)

第八章 二元一次方程组专题复习(学生版)一.知识网络结构二.知识要点剖析知识点一:二元一次方程(组)有关概念1.(1)二元一次方程:含有_____未知数,且未知项的次数为___,这样的方程叫二元一次方程。

(2)二元一次方程的解:能使二元一次方程________的一对未知数的值叫做二元一次方程的解,通常用________的形式表示,任何一个二元一次方程都有________解。

2.(1)二元一次方程组:由_____或________且方程组中仅含有_______的未知数一次方程组成。

(2)二元一次方程组的解:二元一次方程组的两个方程的_______,叫做二元一次方程组的解。

3.三元一次方程组:由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

知识点二.二元一次方程(组)的基本解法:(1)_______消元法 (2)_______消元法 1.解二元一次方程组的思路:二元一次方程组____________一元一次方程。

2.解二元一次方程组的一般步骤:当方程组中有一个未知数的系数为1(或一1)或方程组中有1个方程的常数项为0时,选用_______消元法;当同一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用______消元法较简单。

知识点三.列一次方程组解应用题列二元一次方程组解应用题的一般步骤:概括为“______________________________”五步.三.考点典型例析考点1.等式变形1.如果2x-7y=8,那么用含y 的代数式表示x 正确的是( ) A.y=72-8x B.y=782+x C.x=278y + D.x=278y- 2.由方程组可得出x 与y 的关系是( )A.2x+y=4B.2x ﹣y=4C.2x+y=﹣4D.2x ﹣y=﹣4考点2.二元一次方程(组)的概念1.下列选项中,是二元一次方程的是( )A .xy +4x =7B .π+x =6C .x -y =1D .7x +3=5y +7z2.下列方程组:①⎩⎪⎨⎪⎧2x +y =0,x +y =2;②⎩⎪⎨⎪⎧3x -y =0,y =1;③⎩⎪⎨⎪⎧x -y =0,2x +3z =-2;④⎩⎪⎨⎪⎧x =1,y =2. 其中是二元一次方程组的有____________.(填序号即可)3.若一个二元一次方程组的解为,则这个方程组可以是 (只要求写出一个)4.若x|2m -3|+(m -2)y =6是关于x ,y 的二元一次方程,则m 的值是( ) A .1B .任何数C .2D .1或25.已知关于x ,y 的方程x 2m ﹣n ﹣2+4ym +n +1=6是二元一次方程,则m ,n 的值为_______.6.下列说法正确的是( ) A.是方程的一个解 B.是二元一次方程组C.方程可化为D.当a 、b 是已知数时,方程的解是考点3.二元一次方程(组)的解1.写出方程x +2y =5的正整数解___________.2.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +ay =5,y -x =1有正整数解,则正整数a 为( )A .1,2B .2,5C .1,5D .1,2,53.如果⎩⎨⎧==13-y x 是方程ax+(a ﹣2)y=0的一组解,则a 的值( )A. 1B. 2C. ﹣1D. ﹣2 4.不解方程组,观察下列方程组无解的一组是( )二元一次方程二元一次方程组的概念二元一次方程组的解法 二元一次方程组的应用三元一次方程组____消元法____消元法解一元一次方程组A.⎩⎨⎧-=+=+2212y x y x B.⎩⎨⎧-=+=-42412y x y x C.⎩⎨⎧=+=+224336y x y x D.⎩⎨⎧-=+-=-22412y x y x5.以方程组 的解为坐标的点(x ,y )在第_____象限.6.已知是方程组的解,则间的关系是( ).A.B.C.D.7.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为( )A .B .C .D .8.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为______. 9.已知是二元一次方程组的解,则的算术平方根为( )A .4B .2C .D . ±210.若二元一次方程组⎩⎨⎧=-=+ay x ay x 93的解是二元一次方程2x ﹣3y+12=0的一个解,则a 的值是( )A.43 B.-74 C.47 D.-34 11.若方程组与有相同的解,则a= ,b= .12.已知方程组的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .213.若方程组的解是则方程组的解为 .14.解方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一学生把c 看错而得⎩⎪⎨⎪⎧x =-2,y =2,而正确的解是⎩⎪⎨⎪⎧x =3,y =-2,那么a ,b ,c 的值是( )A .不能确定B .a =4,b =5,c =-2C .a ,b 不能确定,c =-2D .a =4,b =7,c =2 考点4.解二元一次方程组 1.解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =5,①3x -2y =-1;② (2)⎩⎨⎧=+=+2.54.22.35.12y x y x(3)⎩⎨⎧3(x +y )-4(x -y )=6,x +y 2-x -y 6=1. (4)⎩⎪⎨⎪⎧2x +y =3,3x -z =7,x -y +3z =02.用代入法解方程组有以下步骤:①:由(1),得y =(3);②:由(3)代入(1),得7x ﹣2×=3;③:整理得3=3;④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A .① B .② C .③ D .④ 3.有加减法解方程3210415x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( )A .①×4﹣②×3,消去xB .①×4+②×3,消去xC .②×2+①,消去yD .②×2﹣①,消去y 4.已知,则.5.若与的和是单项式,则( ).A. B.C. D.6.已知代数式x 2+bx+c ,当x=1时,它的值是2;当x=-1时,它的值是8;则b= ,c= 。

人教版数学七年级下册第八章《二元一次方程组》知识点

人教版数学七年级下册第八章《二元一次方程组》知识点

人教版数学七年级下册第八章《二元一次方程组》知识点一、二元一次方程1、二元一次方程定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程,叫做二元一次方程.满足条件:(1)整式方程;(2)只含含有两个未知数.注意:(1)方程化简后两个未知数的系数都不能为0;(2)含有未知数的项的次数都是1.关于x,y的二元一次方程的一般形式:ax+by=c(a≠0,b≠0)2、二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.满足条件:(1)两个方程都是整式方程;(2)共含有两个未知数;(3)一共有两个方程,每个方程都是一次方程.注意:(1)二元一次方程组不一定都是由两个二元一次方程组成的,其中有的方程可以是一元一次方程;(2)二元一次方程组必须一共含有两个未知数.3、二元一次方程的解二元一次方程的解:一般地,使二元一次方程两边值相等的两个未知数的值,叫做二元一次方程的解。

判断一对数值是不是二元一次方程的解的方法:只需要将数值分别代入到方程的左右两边。

(1)若左边=右边,则这对数值是这个方程的解;(2)若左边≠右边,则这对数值不是这个方程的解.4、二元一次方程组的解二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解;判断一对数值是不是二元一次方程组的解的方法:将这对数值代入到每个方程中进行检验,若满足每个方程,这对数值就是这个方程组的解,只要其中一个不满足,就不是这个方程组的解.二、解二元一次方程1、消元思想二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化为一元一次方程。

先求出一个未知数,然后再求出另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.2、代入消元法定义:把二元一次方程组中一个方程的一个未知数用另一个未知数的式子表示出来,再代入到另一个方程,实现消元,进而求出这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.步骤:(1)变形:选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数;(2)代入:把y=ax+b(或x=ay+b)代入到另一个没有变形的方程中;(3)求解:解消元后的一元一次方程;(4)回代:把求得的未知数的值代入步骤一中变形后的方程中去;(5)写解:把两个未知数的值用大括号联立起来。

第8章-二元一次方程组复习

第8章-二元一次方程组复习

1.解二元一次方程组的基本思路是 消元 2x-5y=7① 2.用加减法解方程组{ 由①与② 2x+3y=2②
x _________ 直接消去_______.
3.用加减法解方程组{ 4x+5y=28① 由 6x-5y=12②
相减
y 相加 ①与②______,可直接消去_______.
4.
用加减法解方程组
6、下列属于二元一次方程组的是 ( A、 B
A

3 5 1 x y x y 0
C、
x+y=5
x2+y2=1
D
1 y x2 2 xy 1
3x+4y=16① 7)用加减法解方程组{ , 5x-6y=33② 若要消去Y,则应由 ①×?,②× ? 再 相加,从而消去y。
2x + 3y = 10 ax + by = 2 的解与 8.关于x、y的二元一次方程组 4x - 5y = -2 ax - by = 4
大显身手
ax + by = 2 解:根据题意,只要将方程组 2x + 3y = 10 的解代入方程组 ax - by = 4
,就可求出a,b的值 解方程组
4x - 5y = -2
的解相同,求a、b的值
2x + 3y = 10 得 4x - 5y = -2
x = 2 将 代入方程组 ax + by = 2 y = 2 ax - by = 4
1. 代入消元法
(1)有一个方程是:“用一个未知数的式子表示 另一个未知数”的形式.

y=2x-3
① ②
2x+4y=9
3x -y= -8
(2)方程组中某一未知数的系数是 1 或 -1.

第八章二元一次方程组复习

第八章二元一次方程组复习

列方程(组)解应用题的一般流程:
分析、处理数据
实际问题
数学问题
设未知数,找等量 关系,列方程组
数学模型 (二元一次方程组)
解方程组
检验
实际问题的解
数学问题的解
实际问题 列二元一次方程组解应用题的一般步骤:
设 用两个字母表示问题中的两个未知数 列 列出方程组
分析题意,找出两个等量关系 根据等量关系列出方程组
{ 4x+3y=1 5.如果方程组{ 2x+y=3-m 值为?
4.如果方程组
2x+3y=8的解,求a的值.
4x+3y=1 (1) 得解x和y得值相等,m的值为? 2x+y=3-m (2)
(1)
(2)
得解x+y的值是负数,m的取 变式:x 〉y
x y 9a 6、如果方程组 的解也是二元一次方程n=10
例4 已知4x-3y-6z=0,x+2y-7z=0,且x,y,z均不 2 x 2+3 y 2+6 z 2 为零,求 2 2 2 的值 。 x +5 y +7 z
解:由题设条件得
4x-3y=6z,①
x+2y=7z。②
②×④-①得
11y=22z,即y=2z。将y=2z代入入②得x=3z。将
无数组解 2 组正 练1.二元一次方程 x+y=3有_______ 个解;有___ x2 x 1 { { y 2 或 y 1 整数解,他们是_____________
x y 2 练2.方程组 的解的个数是 无数组解 . 2 x 2 y 4
练3.小明手上有一张10元的人民币,当路过商店门口时,他 想把10元换成2元或1元的零钱,请你仔细考虑一下,售货员 可有几种兑换方法?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组全章复习
一.本章知识点
(一)有关概念
1.二元一次方程: 。

2.二元一次方程的一个解: 。

3.二元一次方程组和二元一次方程组的解
(1)二元一次方程组: 。

(2)二元一次方程组的解: 。

(二)二元一次方程组的解法:
二元一次方程组 方程.
消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.
1.相同字母系数相等的 ,相反的 。

2.没有相等或相反利用等式的性质化 或 ,再 或 。

二. 本章知识点的运用
(一)有关概念
1.已知方程①2x +y =3;②x +2=1;③ y =5-x ; ④x -xy =10;⑤x +y +z =6中二元一次方程有_____________.(填序号)
2.在方程3x -a y =8中,如果⎩⎨⎧==1
3y x 是它的一个解,则a 的值为________.
3.下列是二元一次方程组的是( ).
A .⎩⎨⎧=-=+523z y y x
B .⎩⎨⎧-==+3634x y x
C .⎩⎨⎧=-=+21xy y x
D .⎩
⎨⎧=-=+38232y x y x 4.方程组⎩⎨⎧=+=+5
23y x y x 的解为( ).
A .⎩⎨⎧==21x y B.⎩⎨⎧==26x y C .⎩⎨⎧==3
5
x y D .⎩⎨⎧==44x x 5.在3x +4y =9中,如果2y =6,那么x =_______.
6.(1)若方程(2m -6)x |n |-1+(n +2)y 82
-m =1是二元一次方程,则m =_______,n =__________.
(2)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________ 二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

(一)、代入消元法:
1、直接代入 解方程组②
①y x x y ⎩⎨⎧=--=.134,32 消元 转化
跟踪训练:解方程组:
(1)90152x y x y +=⎧⎨=-⎩ (2)⎩⎨⎧-==+7
3825x y y x
2、变形代入 解方程组②①
y x y x ⎩⎨⎧=+=-.1043,95
跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①
77322y x y x
(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①
5231284y x y x
(二)、加减消元法
1、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=+=+17372y x y x (3)⎩⎨⎧
=-=-3
225
43y x y x (4).⎩⎨⎧=+=+.1034,
1353y x y x
跟踪训练:(1) (2) (3) ⎩⎨⎧=+=-1023724y x y x。

相关文档
最新文档