机械制图 第5章 轴测图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章轴测图
工程上常用的图样是按照正投影法绘制的多面投影图,它能够完整而准确地表达出形体各个方向的形状和大小,而且作图方便。但在图5-1a所示的三面正投影图中,每个投影图只能反映形体长、宽、高三个向度中的两个,立体感不强,故缺乏投影知识的人不易看懂,因为看图时需运用正投影原理,对照几个投影,才能想象出形体的形状结构。当形体复杂时,其正投影就更难看懂。为了帮助看图,工程上常采用轴测投影图(简称轴测图),如图5-1b所示,来表达空间形体。
a)b)
图5-1 多面正投影图与轴测投影图
轴测图是一种富有立体感的投影图,因此也被称为立体图。它能在一个投影面上同时反映出空间形体三个方向上的形状结构,可以直观形象地表达客观存在或构想的三维物体,接近于人们的视觉习惯,一般人都能看懂。但由于它属于单面投影图,有时对形体的表达不够全面,而且其度量性差,作图较为复杂,因而它在应用上有一定的局限性,常作为工程设计和工业生产中的辅助图样,当然,由于其自身的特点,在某些行业中应用轴测图的机会逐渐增多。
5.1轴测投影的基本知识
5.1.1轴测投影图的形成
轴测投影属于平行投影的一种,它是用平行投影法沿某一特定方向(一般沿不平行于任一坐标面的方向),将空间形体连同其上的参考直角坐标系一起投射在选定的一个投影面上而形成的投影,如图5-2所示。这个选定的投影面(P)称为轴测投影面,S表示投射方向,用这种方法在轴测投影面上得到的图称为轴测投影图,简称轴测图。
轴测投影图
图5-2 轴测投影图的形成
5.1.2轴测投影的基本概念
1.轴测轴
如图5-2所示,表示空间物体长、宽、高三个方向的直角坐标轴OX、OY、OZ,在轴测投影面上的投影依然记为OX、OY、OZ,称为轴测轴。
2.轴间角
如图5-2所示,相邻两轴测轴之间的夹角∠XOZ、∠ZOY、∠YOX称为轴间角。三个轴间角之和为360°。
3.轴向伸缩系数
由平行投影法的特性我们知道,一条直线与投影面倾斜,该直线的投影必然缩短。在轴测投影中,空间物体的三个(或一个)坐标轴是与投影面倾斜的,其投影就比原来的长度短。为衡量其缩短的程度,我们把在轴测图中平行于轴测轴OX、OY、OZ 的线段,与对应的空间物体上平行于坐标轴OX、OY、OZ的线段的长度之比,即物体上线段的投影长度与其实长之比,称为轴向伸缩系数(或称轴向变形系数)。OX、OY、OZ三个方向上的轴向伸缩系数分别用p1、q1、r1来表示,但常用p、q、r来表示对应轴的简化的轴向伸缩系数(为简化作图,往往要规定其简化轴向伸缩系数,原来的叫实际轴向伸缩系数)。
在轴测投影中,由于确定空间物体的坐标轴以及投射方向与轴测投影面的相对位置不尽相同,因此轴测图可以有无限多种,得到的轴间角和轴向伸缩系数各不相同。所以,轴间角和轴向伸缩系数是轴测图绘制中的两个重要参数。
5.1.3轴测轴的设置
画物体的轴测图时,先要确定轴测轴,然后再根据该轴测轴作为基准来画轴测图。轴测图中的三根轴测轴应配置成便于作图的位置,OZ轴表示立体的高度方向,应始终处于铅垂的位置,以便符合人们观察物体的习惯。
轴测轴可以设置在物体之外,但一般常设在物体本身内,与主要棱线、对称中心线或轴线重合。绘图时,轴测轴随轴测图画出,也可省略不画。
轴测图中,规定用粗实线画出物体的可见轮廓。必要时,可用虚线画出物体的不可见轮廓。
5.1.4轴测投影的特点
轴测投影仍是平行投影,所以它具有平行投影的一切属性。
(1)物体上互相平行的两条线段在轴测投影中仍然平行,所以凡与坐标轴平行的线段,其轴测投影必然平行于相应的轴测轴。
(2)物体上与坐标轴平行的线段,其轴测投影具有与该相应轴测轴相同的轴向伸缩系数,其轴测投影的长度等于该线段与相应轴向伸缩系数的乘积。与坐标轴倾斜的线段(非轴向线段),其轴测投影就不能在图上直接度量其长度,求这种线段的轴测投影,应该根据线段两端点的坐标,分别求得其轴测投影,再连接成直线。
(3)沿轴测量性。轴测投影的最大特点就是:必须沿着轴测轴的方向进行长度的度量,这也是轴测图中的“轴测”两个字的含义。
5.1.5轴测投影图的分类
根据国家标准《技术制图—投影法》(GB/T14692—1993)中的介绍,轴测投影按投射方向是否与投影面垂直分为两大类,即:
如果投射方向S与投影面P垂直(既使用正投影法),则所得到的轴测图叫做正轴测投影图,简称正轴测图。
如果投射方向S与投影面P倾斜(既使用斜投影法),则所得到的轴测图叫做斜轴测投影图,简称斜轴测图。
每大类再根据轴向伸缩系数是否相同,又分为三种:
(1)若p1=q1=r1,即三个轴向伸缩系数相同,称正(或斜)等测轴测图,简称正(或斜)等测图。
(2)若有两个轴向伸缩系数相等,即p1=q1≠r1或p1≠q1=r1或r1=p1≠q1,称正(或斜)二等测轴测图,简称正(或斜)二测图。
(3)如果三个轴向伸缩系数都不等,即p1≠q1≠r1,称正(或斜)三等测轴测图,简称正(或斜)三测图。
国家标准中还推荐了三种作图比较简便的轴测图,即:正等测轴测图、正二等测轴测图、斜二等测轴测图三种标准轴测图。工程上用的较多的是正等测图和斜二测图,本章将重点介绍正等测图的作图方法,简要介绍斜二测图的作图方法。
5.2正等测轴测图
5.2.1正等测图的形成
由正等测图的概念可知,其三个轴的轴向伸缩系数相等,即p=q=r。因此,要想得到正等测轴测图,需将物体放置成使它的三个坐标轴与轴测投影面具有相同的夹角的位置,然后用正投影方法向轴测投影面投射,如图5-3所示,这样得到的物体的投影,就是其正等测轴测图,简称正等测图。
图5-3 正等测图的形成
5.2.2正等测图的参数
1.轴间角
因为物体放置的位置使得它的三个坐标轴与轴测投影面具有相同的夹角,所以正等测图的三个轴间角相等且∠XOZ、∠ZOY、∠YOX =120°。在画图时,要将OZ轴画成竖直位置,OX轴和OY轴与水平线的夹角都是30°,因此可直接用丁字尺和三角板作图,如图5-4a所示。
2.轴向伸缩系数
正等测图的三个轴的轴向伸缩系数都相等,即p1=q1=r1,所以在图5-3中的三个轴与轴测投影面的倾角也应相等。根据这些条件用解析法可以证明他们的轴向伸缩系数p1=q1=r1≈0.82,如图5-4b所示。
a)b)