第6章 三角函数 6.2 正弦函数和余弦函数的图像与性质(2)
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
正弦、余弦函数的图像和性质PPT优质课件
作三角函数图象
描几点何法法:作查图三的角关函键数是表如得何三利角用函单数位值圆,描中点角(xx的,s正in弦x),线连,线巧. 妙地
如移:动x 到 直3 角查坐表标y系内s,i从n3而确0.8定对6应6的0点 (x,sinx).
y
描点 (3 ,0.866)0
1-
y
P
-Hale Waihona Puke 023 2
2
x
1 -
3
O M 1x
2020/12/10
9
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
2020/12/10
10
四川省天全中学数学组
2005.03
2020/12/10
11
余弦曲线
-
-
y-
1
-
6
4
2
o
-1
2
4
6
由于 ycox scosx)(sin [(x) ]sin x()
几何法:作三角函数线得三角函数值,描点(x,sinx),连线
如: x
3
作
3
的正弦线 MP ,
平移定点 (x, MP)
2020/12/10
5
函数 y six ,n x 0 ,2图象的几何作法
y
作法: (1) 等分
(2) 作正弦线
1-
P1
p
/ 1
(3) 平移 (4) 连线
6
o1
M -11A
o 6
3
正 弦 函 数、余 弦 函数的图象和性质
2020/12/10
1
正弦函数与余弦函数的图像PPT ppt课件
• 那么,在精确度要求不太高时,应该抓住 哪些关键点做出y=sinx x ∈ [0,2π]的图像呢。
• 观察可以发现,我们可以找到在一个周期 里找出最高点,最低点,以及三个平衡点, 也就是 (0,0), ( π /2, 1), (π,0) , (3 π/2,-1) , (2 π,0)找出这五个关键点,再 用光滑的曲线将它们连接起来,就得到函 数的简图,这就叫“五点作图法”,这在 以后我们的做题中是非常实用的。
正弦函数与余弦函数的图像PPT
我们通过平移正弦线来解决
正弦函数与余弦函数的图像PPT
• 这是y=sinx x ∈ [0,2π]的图像,那么, • 当x ∈ R时,如何画出y=sinx 其他范围的图
像呢? • 可以根据学过的诱导公式吗? • 请同学们讨论一下
正弦函数与余弦函数的图像PPT
• 因为终边相同的三角函数值相等,所以把 y=sinx 在[0,2π]的图像向左、向右平行移动, 每次平移2π个单位长度,就能得到y=sinx x ∈ R的图像
• 在作图之前,我们先来复习一下正弦线, 弦线的画法,大家还记得吗
正弦函数与余弦函数的图像PPT
• 设任意角α的终边与单位圆 • 交于点P,过点P做x轴的 • 垂线,垂足为M • 则有向线段MP叫做角α的正弦线, • 有向线段OM叫做角α的余弦线
正弦函数与余弦函数的图像PPT
• 下面作图,可是做函数图像最基本的方法 是描点法,通常描点要知道图像上点的坐 标,由于三角函数的特殊性,当X任取值时, 函数值不容易求出,怎样解决这个问题呢, 刚复习过,正弦线可以看做是正弦值的几 何表示,可否转换呢。请小组讨论一下, 如何画出y=sinx x ∈ [0,2π]的图像
正弦函数和余弦函数的图像与性质.ppt
, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(
x) 可知余弦函数
y
cos
6
x的图像可由
y
2 sin
x
的图像向左平移
2
4
个单位得到.
1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2
3 2
2
2 8
5
-10
正弦函数和余弦函数的图像与性质ppt课件
7π 2
4
-1
可编辑课件PPT
15
余弦函数的单调性
y
1
-3 5 -2 3
2
2
o - 2
2
-1
x -
…
2
…
cox -1
0
3 2
2
5 2
3
7 2
x
4
0… 2
…
1
0
-1
y=cosx (xR)
增区间为 [ +2k, 2k],kZ 其值从-1增至1
减区间为 [2k, 2k, + ], kZ 其值从 1减至-1
观察正弦函数图象
x
π 2
…
0
…
π 2
sinx -1
0
1
… 0
…
3π 2
-1
在闭区间 π2π2 ,2kπ2π ,π22kπ,kZ 上, 是增函数; 在闭区间 π2π2 2,k3π2π,32π2ykπ,kZ 上,是减函数.
1
x
o -3 5 π -2 3 π - π
2
2
2
π 2
3π 2
2
5π 2
3
-
(1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描y点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点)
1-
图象的最高点
(0,1) (2,1)
与x轴的交点
-1
o
6
-
2
3
2 3
5
7
6
6
4 3
3 5
2
3
11 6
2
x
(
2
,0)
正弦函数余弦函数的图像与性质
三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。
高一数学讲义 第六章 三角函数
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
正弦函数、余弦函数的性质 课件
(3)∵0≤x≤π2,∴-π4≤3x-π4≤54π,- 22≤sin3x-π4≤1. ∴当 sin3x-π4=1 时,ymin=-2;当 sin3x-π4=- 22时,ymax = 2.
(1)求三角函数的值域或最大值、最小值问 题主要是利用sin x与cos x的有界性,以及复合函数的有关性 质.
正弦函数、余弦函数的性质
函数y=sin x,y=cos x的性质
函数 定义域 值域 奇偶性 周期性
y=sin x R
[-1,1] 奇函数 最小正周期为2π
y=cos x R
[-1,1] 偶函数 最小正周期为2π
函数
y=sin x
y=cos x
单 增区间 2kπ-π2,2kπ+π2
调
(k∈Z)
性 减区间 2kπ+π2,2kπ+32π
4.已知函数f(x)=1+cos x,画出f(x)的图象,并解答下列 问题:
(1)求f(x)的值域; (2)判断f(x)的奇偶性; (3)求f(x)的周期; (4)求f(x)的单调区间.
【解析】f(x)的图象如图所示.
(1)∵-1≤cos x≤1,∴0≤1+cos x≤2,即0≤f(x)≤2,f(x) 的值域为[0,2].
(2)求函数最值或值域时,一定要注单调性
已知函数 f(x)=2sin-3x+π4: (1)求 f(x)的单调递增区间; (2)当 f(x)≥ 2时,求 x 的取值范围.
【思路分析】首先把x的系数变为正,再利用整体代换.
【规范解答】f(x)=-2sin3x-π4. (1)由 2kπ+π2≤3x-π4≤2kπ+32π,得23kπ+π4≤x≤23kπ+71π2(k ∈Z). ∴f(x)的单调递增区间为[23kπ+π4,23kπ+71π2] (k∈Z).
正弦函数、余弦函数的性质 课件
3
求的值。
课堂小结
1、周期函数的定义
注:①注意定义中“每一个值”的要求
② 周期函数的周期不唯一
③周期函数不一定存在最小正周期
④如果不作特别说明,教科书中提到的周 期,一般是指最小正周期。
2、正弦、余弦函数的最小正周期为2 3、求函数周期常用的方法是(1)公式法:
余弦函数y=cosx(x∈R)是周期函数,2kπ(k∈Z且
k≠0)都是它的周期。最小正周期是2π。
今后提到的三角函数的周期,如果不加特别 说明,一般是指它的最小正周期。
(1)对于函数y sin x, x R是否有sin( ) sin 成立?
42
4
如果成立,能否说 是y sin x的周期?
正弦函数、余弦函数的性质
今天星期几? 7天后星期几? 14天后呢? 100天后呢?
世界上有许多事物都呈现“周而复始”的 变化规律,如年有四季更替,月有阴晴圆. 这种现象在数学上称为周期性,在函数领域 里,周期性是函数的一个重要性质.
y
1、三角函数线的“周而复始”变化
P
1
2、三角函数图像的“周而复始”变化 o M1 x
f(x+T) =f(x)
Sin(x+2kπ)=sinx (k z)
对于一个周期函数f(x),如果在它所有的周期中 存在一个最小的正数,那么这个最小的正数就
叫做f(x)的最小正周期。
正弦函数、余弦函数的周期性
正弦函数y=sinx(x∈R)是周期函数,2kπ(k∈Z且k≠0) 都是它的周期。最小正周期是2π。
函数
y y
Asin(x ), x R
的周期
正弦函数、余弦函数的图象ppt课件
3.连线(用光滑的曲线从左到右顺次连接五个点)
说明:已经获得了正弦函数曲线的图像了,在精确
度要求不太高时,我们常常用“五点法”画函数的
简图.
余弦函数:如何由正弦函数图像得到余弦函数图像?
y
1
-4
-3
-2
o
-
3
2
4
5
-1
正弦曲线
正弦函数的图象
y=cosx=sin(x+ 2 ),
公式一说明,自变量每增加(减少),正弦函数值、余弦函
数值将重复出现.
正弦函数
= , ∈
= , ∈ ,
缩小范围、以小见大,利用特性画出全部的图像
新知讲解
问题1 绘制函数图象,首先要准确绘制其上一点.对于正弦函数,在[,]
上任取一个值0 ,如何借助单位圆确定正弦函数值0 ,并画出点
正弦函数:= ,∈;(把点P的纵坐标叫做α的正弦函数)
余弦函数:= ,∈;(把点P的横坐标x叫做α的余弦函数)
正切函数:= ,≠/+(∈).
(把点P的纵坐标和横坐标的比值 叫做α的正切函数)
新课导入
回顾2 类比指数、对数函数的知识,我们是怎么研究它们的?
(0 , 0 ).
点T.gsp
新知讲解
问题3 我们学会绘制函数图象上的点,接下来,如何画函数= ,
∈[,]的图象?你能想到什么方法?
若把轴上从0到2π这一段分成12等份,使 的值分别为: , , , ⋅⋅⋅ ,2
6
3
2
正弦函数
引入新知 : 如何得到函数 y=sinx x∈R在[2π,4π]的图像
正弦函数、余弦函数的性质-PPT课件
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
最大值:当 x
2
时,有最大值 y 1
最小值:当x
2
时,有最小值y 1
探究:余弦函数的最大值和最小值
1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
最大值: 当 x 0
时,有最大值 y 1
最小值:当 x
时,有最小值y 1
例2.下列函数有最大、最小值吗?如果有,请写出取最大、最
(1)y cos x 1, x R;
(2)y 3sin 2x, x R.
解(:2)令t=2x,因为使函数y 3sin t,t R取最大值的t的集合是
{t | t 2k , k Z}
由
2x
t
2
2k
得
x k
2
4
所以使函数 y 3sin 2x, x R取最大值的x的集合是 {x | x k , k Z} 4
故 2k 1 x 2k ,
2
2 32
得 5 4k x 4k , k Z.
3
3
则函数y sin(1 x ),x R的单调递增区间是[ 5 4k, 4k]。
23
33
练习:求函数y sin( 1 x),x R的单调递增区间 32
得 5 4k x 11 4k , k Z.
2
2x k
32
解得:对称轴为 x k ,k Z
12 2
(2) y sin z 的对称中心为 (k ,0) , k Z
正弦余弦函数的图像性质(周期、对称、奇偶)经典课件25页PPT
一、正弦函数、余弦函数的图像及画法
正弦曲线
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
6
4
余弦曲线
y-
1
2
o-
-1
2
4
6
探索发现
二、正弦余弦函数的性质
y
-
1-
-
-
-
-
-
6
4
-
2
o
2
4
6
x
-1-
正弦函数y=sinx的图 象
每隔2 ,图象重复出现y
即 对 x , y 任 s( ix n 意 2 ) sixn 1-
-
4
-
6
-
4
4、正弦函数余弦函数的奇偶性
2
-
y
正弦函数y= si nx的图象
1-
o -1-
2
-
4
-
6
x
-
y
余弦函数y = c osx的图象
2
-
1-
o -1-
2
-
4
-
6
x
-
-
-
1)奇偶性 正弦函数y=sinx:奇函数;余弦函数y=cosx:偶函数 2)对称性: 正弦函数关于原点对称;余弦函数关于y轴对称。
正 正弦弦函数余.余弦弦函函数的数图象对和称性质性
-
-
-
6
4
2
对称轴:无数条
xk,kZ
2
-
-
-
6
4
2
对称轴:无数条 x=kπ,k∈Z
-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答题沪教版(上海) 高一第二学期 新高考辅导与训练 第6章 三角函数 6.2 正弦函数和余弦函数的图像与性
上海 高一 课时练习 2020-06-24 79次
1. 求下列函数的定义域:
(1)
; (2);
(3
)
.2. 求下列函数的值域:
(1)
; (2)
;(3
);
(4).
3.
已知函数
的最小值为.最大值为4,求a 和b 的值.
二、填空题4. 求下列函数取最大值和最小值时,x 的取值范围,并求出函数最大值和最小值.
(1)
;(2
).
5. 已知,函数
有最小值
,求的解析式.
6.
令.
(1)求t 的取值范围,并用t 表示;
(2)求函数
的值域.7.
已知函数,
.(1
)求
的最大值和最小值;(2
)若不等式在上恒成立,求实数的取值范围.
8. 函数的值域是_________.
9. 函数的定义域是________.
10. 函数的值域为__________.
11. 函数的定义域是______________.
12. 函数的值域为___________.
13. 函数的值域为_____________.
14. 若动直线与函数和的图象分别交于两点,则的最大值为__________.
15. 设,则函数的最小值是___________.。