《物理学基本教程》课后答案_第四章__刚体的转动

合集下载

大学物理第四章习题解

大学物理第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。

解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。

解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。

解:转动惯性大小,刚体的形状、质量分布及转轴的位置。

4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。

解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。

解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

大学物理基础教程答案ppt课件

大学物理基础教程答案ppt课件

F
相同
在质心参照系中: aF dLC dt
LC IC
15
IC为通过质心垂直于棒轴的转动惯量,已知: IC mk 2
(0) 0
mk2 (t) (0) aF t
(t )
aF mk 2
t
在L系中若要
vQ 0
vQ vC b
F aF m t mk2 t b 0
b k2 a
2
22
R
M 2m
4-8 有一线绕圆盘半径为R、质量为m在其重量作用下滚落,显
得上端固定在天花板上。求圆盘中心从静止下落h高度时的转动
动能和质心速度?
解: 质心运动定理
mg T ma C
质心系中的角动量定理
TR 1 mR 2 d
2
dt
6
角量、线量的关系张力的作用点是瞬时不动点
aC R
i
i 末
初 Fi外
drCO
末 T

drCO
(1 2
i
mv
2 C末
1 2
mv
2 C初
)
(ECp末
ECp初 )
(2)
两式相加
0
1 2
mv
2 C末
mgh C
1 2
IC2 末
7
在惯性系中绳张力不作功。
v
2 C末
R 2C2 末
v
2 C
R 2C2
4
vC
gh 3
E kC
1 2
I(
vC R
)2
1 3
mgh
解:以知 1=2n接合过程中,摩擦属内力,又
无其他外力矩,角动量守恒I1 = (I1+I2)

大学物理下答案第四章

大学物理下答案第四章

4-7 有一个半径为 R=0.2 米,质量 m1=2.5 千克的匀质圆盘状定滑轮,轴处摩擦可略, 当在圆盘边缘上绕一轻绳,绳上缀一个质量 m2=0.51 千克的物体。试计算施在圆盘 上的力矩从静止开始,在 2 秒之内所作的功和 2 秒时物体 m2 的动能。
分析:本题中的滑轮是定轴转动,从刚体定轴转动的角动量定理,及力矩做功的角度去
m,, v 0 l
4-12 质量为 m 长为 l 的匀质细杆,可绕端点 O 的固定水平轴转动,把杆抬平后无初速 地释放,当杆摆至竖直位置时刚好和光滑水平桌面上的小球相碰。小球的转动不 计,它的质量和杆相同,并且碰撞是完全弹性的,轴上摩擦也忽略不计,求碰后 小球的速度 v。 解:下摆(定轴转动)能量守恒,
I1 ω n= = n1 = 200 2π I1 + I 2
A
B
(转/分)
4-9 质量为 mA 和 mB, 半径为 RA 和 RB 的两个圆盘同心地粘在一起, 小圆盘边缘绕有绳 子, 上端固定在天花板上, 大圆盘也绕有绳子, 下端挂以质量为 m 的物体,如图所示. 求: (1) 要使圆盘向上加速、向下加速,静止或匀速运动的条件? (2) 在静止条件下两段绳中的张力。轴处摩擦和绳的质量忽略。绳与滑轮之间没有
分析:用隔离体法分别分析物体与滑轮所受的力。对每一个物体列动力学方程,然后求 解方程即可。
解: (1) 如图所示分为三个隔离体求解。
⎧ ⎪ m1g − T1 = m1a ⎪ T2 = m 2 a ⎨ ⎪ a ⎪(T1 − T2 )R = I R ⎩
⎧ I + m1 + m 2 ) ⎪a = m 1 g ( ⎪ R2 ⎪ I ⎪ + m1 + m 2 ) ⎨T2 = m1m 2 g ( ⎪ R2 ⎪ I I ⎪T1 = m1g( + m2 ) ( + m1 + m 2 ) 2 ⎪ R2 R ⎩

大学物理2-1第四章(刚体力学)习题答案

大学物理2-1第四章(刚体力学)习题答案

大学物理2-1第四章(刚体力学)习题答案习题四4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。

当重物下落时可使飞轮旋转起来。

若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。

试求飞轮在t 时刻的角速度和角加速度。

[解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则a txa 2d d 22t ==因为飞轮与绳子之间无相对滑动,所以βR a =t则 2t rad/s 0.220.222=?===R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200minrad,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。

又过了5s 后,飞轮停止转动。

若该飞轮总共转了100转,求共运转了多少时间 [解] 分三个阶段进行分析10 加速阶段。

由题意知111t βω= 和11212θβω= 得22111211t ωβωθ==20 匀速旋转阶段。

212t ωθ= 3制动阶段。

331t βω= 33212θβω= 22313213t ωβωθ== 由题意知100321=++θθθ 联立得到πωωω210022312111?=++t t t所以 s 1836020025602002660200210022=-??-=ππππt 因此转动的总时间 s 19418356321=++=++=t t t t4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。

设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。

(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大(2)齿轮边缘上一点的线速度和加速度是多大[解] (1) 齿轮由A 转到B 孔所需要的时间5103126005002?===ππωθt所以光速 s m 10310315002285=??==TL c(2) 齿轮边缘上一点的线速度s m 1088.1260010522?===-πωR v齿轮边缘上一点的加速度()25222s m 1010.71052600?===-πωR a4-4 刚体上一点随刚体绕定轴转动。

大学物理 第四章 刚体转动(三)

大学物理 第四章 刚体转动(三)
思考题
定轴转动刚体的角动量守恒定律
直线运动与定轴转动规律对照
质点的直线运动 d v d2 x dx a 2 v dt dt dt 1 P mv EK mv2 2 刚体的定轴转动 d d2 d 2 dt dt dt 1 L J EK J 2 2
F dA Fdx

d( J ) dL M dt dt
(2)力矩对给定轴的冲量矩和角动量定理
dL M dt
Mdt dL
Mdt
t
L0
t
t0
L
L0
dL L L0
L
分别为刚体在时刻t0和t的角动量,
Mdt
t0
为刚体在时间间隔t-t0内所受的冲量矩。
1、刚体定轴转动 的角动量

ri
mi
z
2 L mi ri
i
2
( mi ri )

O
vi
L J
i
2 、刚体定轴转动的角动量定理
(1)刚体定轴转动定理的另一种表述
质点mi受合力矩Mi(包括Miex、 Miin ) dLi d( J ) d 2 Mi (mi ri ) dt dt dt in 对定轴转动的刚体 M i 0 , 合外力矩 ex d M M i ( mi ri 2 ) d( J ) dt dt
力的时间累积效应:
冲量、动量、动量定理.
力矩的时间累积效应:
冲量矩、角动量、角动量定理.
一、质点的角动量定理和角动量守恒定律
1、质点的角动量 质量为 m 的质点以 在空间运动,某 速度 v ,质 时对 O 的位矢为 r 点对参考点O的角动量

大学物理 第四章 刚体的转动 4-4 力矩的功 刚体绕定轴转动的动能定理

大学物理 第四章 刚体的转动 4-4 力矩的功 刚体绕定轴转动的动能定理
第四章 刚体的转动
6

物理学
第五版
4-4 力矩的功 刚体绕定轴转动的动能定理 -
W =∫
外力的功
θ2
θ1
1 1 2 2 M d θ = Jω 2 − Jω 1 2 2
刚体动能的改变 质点系的动能 定理在刚体中 的具体表现
刚体作为特殊的质点系, 刚体作为特殊的质点系, 满足质点系的动能定理: 满足质点系的动能定理:
方向: 方向:
dM
刚体的转动
14
物理学
第五版
4-4 力矩的功 刚体绕定轴转动的动能定理 -
2 µ mg 2 dM = r dr 2 R
整个唱片所受的摩 擦力矩为
R
v df
o
r
dl dr
M = ∫ dM
方向: 方向:
dM
M
2 µmg M = 2 R

R
0
2 r dr = µRmg 3
2
刚体的转动
第四章
非保守内力: 非保守内力:刚体内力 W
m v v
in 刚体
=0
∴W
ex
+W
in nc
=0
18
E = E0
第四章 刚体的转动
物理学
第五版
4-4 力矩的功 刚体绕定轴转动的动能定理 -
o
选初始位置为势能零点
30
o
a
1 1 2 2 2 ( m′l + ma )ω = 2 3
o
m v v
'
l ′g (1 − cos 30o ) mga(1 − cos 30 ) + m 2
v dr φ
o
刚体的转动

大学物理学(上册)第4章 刚体的转动_OK

大学物理学(上册)第4章 刚体的转动_OK

系统,其所受外力是两者的重力以及轴处轴对
l
杆的支持力,所有这些外力对轴的力矩为零,
因此系统对轴的角动量守恒.
m1
m10l
m11l
1 3
m2l 2
3m1(0 1) 25rad s-1
m2l
24
变为 ω2 ,积分可得:
t2 t1
Mdt
J2
J1
角动量定理积分形式
21
4.4.3 角动量守恒定律
定轴转动的角动量定理
M
dL dt
若 M 0 , L 常矢量
对于某一固定轴,当刚体所受合外力矩为零时,其角动量 保持不变。(惯性系)-----角动量守恒定律
讨论
守恒条件 M 0
若 J不变, 不变;
若 J 变, 也变,但
L J 不变.
22
内力矩不改变系统的角动量.
在冲击等问题中 M内 M外 L 常量
角动量守恒定律是自然界的一个基本定律.
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律
电荷守恒定律 质量守恒定律 宇称守恒定律等
23
例1 如图所示,一竖直悬挂的木杆,可绕杆端O处的水平
动惯量为Jz,轴与平面的交点为O,物体绕平面内通过0点 相互垂直的两轴的转动惯量分别为Jx和Jy,则有:
Z
Jz Jx Jy
XO Y
o

实心圆盘
16
例1. 求质量为m,长度为 L 的均质细棒的转动惯量。(转轴
oo´通过棒的一端并与棒垂直) 0
L
解:在距转轴x处,取质量元dm,
其长度为dx
0
x dx dm
J miri2 m1r12 m2r22 m3r32 i 1

chapt4答案-刚体的运动规律

chapt4答案-刚体的运动规律

A 以转速 n1=600 r/min 匀速转动,B 轮静止。 求 (1) 两轮接合后的转速; (2)结合过程中机械能的损耗。 分析:在整个过程中,AB 组成的系统部受外力矩。因此系统的角动量守恒。 解: (1) 已知ω1 =2πn,在结合过程中,摩擦属内力, 系统不受其他外力矩,角动量守恒, 有: I1ω1 = (I1+I2)ω, 所以合并后转速为:
解: 各面元上产生的压力 dN 为 产生的摩擦力 df 为:df =μdN, ,
可得到 。 4-6 如题 4-6来自图所示,两物体的质量分别为 m1 和 m2,滑轮的转动惯量为 I,半径为 R。 (1)如果 m2 与桌面之间为光滑接触,求系统的加速度 a 及绳中张力 FT1 和 FT2 ; (2) 如果 m2 与桌面之间的摩擦系数为μ,求系统的加速度和绳中张力 FT1 和 FT2 。设绳子 与滑轮间没有相对滑动。
方程联立,可解得:
4-11 一根长为 l、质量为 m 的均匀细杆可绕其一端的水平轴 O 自由摆动。当被一发质量为 m的子弹在离 O 点的 a 处水平方向击中后, 子弹埋入杆内, 杆的最大偏转角为θ, 如题 4-11 图所示,求子弹的初速度。
分析:要从空间(或时间)上对问题进行分割,不同的空间(时间)区间物体的运动遵循 不同的规律。从子弹击杆至子弹与杆具有相同速度的这个时间段,是个瞬态过程,对转轴 O 有角动量守恒规律。由于这个过程时间极短(可以认为是无穷小) ,尽管有速度,但是无位 移(位移无穷小) 。第二个过程是两个物体一起做定轴转动,受重力作用达到最大偏转,这
解:OA 和 OB 绕 O 点的转动惯量都是 ml 2/3, 对于绕 AB 中点垂直于 AB 的转轴,转动惯量为 ml2/12,则 AB 对于过 O 点的垂直于三角形 平面的转轴,有:

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

大学物理第四章习题及答案

大学物理第四章习题及答案

第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。

(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。

(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。

4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。

解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。

《物理学基本教程》课后答案_第四章__刚体的转动

《物理学基本教程》课后答案_第四章__刚体的转动

第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。

普通物理学第五版第4章刚体转动答案

普通物理学第五版第4章刚体转动答案

( r A r B )m Cg > r B (mA+ mB)g ( r A r B )m Cg < r B (mA+ mB)g
若:下降 a 0< 0
T T 1 (mA+ mB)g = (mA+ mB)a 0 T 1r A T r B = ( J A+ J B )a = J a m Cg T 1 = m Ca ´ a 0 =rB a a ´=r Aa a 0 =r Aa r B a 静止时,a0=0,上述方程变为: T T 1 (mA+ mB)g = 0 T 1r A T r B = ( J A+ J B )a = J a m Cg T 1 = m Ca ´
(2)
a ´=r Aa
结束 目录
解得:
T T 1 (mA+ mB)g = 0 T 1r A T r B = ( J A+ J B )a = J a m Cg T 1 = m Ca ´ a ´=r Aa
m Cg J m C(mA+ mB) r A r B T1 = 2 m Cr A m Cr A r B + J T = T 1 + (mA+ mB)g
4-3 如图所示,两物体1和2的质量分别 为m1与m2,滑轮的转动惯量为J,半径为 r 。 (1)如物体2与桌面间的摩擦系数为μ, 求系统的加速度 a 及绳中的张力 T2 与 T2 (设绳子与滑轮间无相对猾动); (2)如物体2与桌面间为光滑接触,求系 统的加速度 a 及绳 T2 中的张力 T1与 T2。 m 2 T1
1.89×102 m/s = a n = R 2 = 0.15×(1.26×103)2 ω
2.38×105 m/s2 =

大学物理习题答案解析第四章

大学物理习题答案解析第四章

第四章刚体的转动4-1有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的 (B) (1)、(2)是正确的(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C ). 4 -4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L 以及圆盘的角速度ω的变化情况为( ) (A ) L 不变,ω增大 (B ) 两者均不变 (C ) L 不变,ω减小 (D ) 两者均不确定分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即式中m v D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C ).4 -5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( ) (A ) 角动量守恒,动能守恒 (B ) 角动量守恒,机械能守恒 (C ) 角动量不守恒,机械能守恒 (D ) 角动量不守恒,动量也不守恒 (E) 角动量守恒,动量也守恒分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B ).4 -6 一汽车发动机曲轴的转速在12 s 内由1.2×103 r·min -1均匀的增加到2.7×103 r·min -1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?分析这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转ωJ ωJ d m d m =+-00vv动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义,在匀变速转动中角加速度为(2) 发动机曲轴转过的角度为在12 s 内曲轴转过的圈数为圈 4 -7 某种电动机启动后转速随时间变化的关系为,式中ω0=9.0 s -1 ,τ=2 s .求:(1) t =6.0 s 时的转速;(2) 角加速度随时间变化的规律;(3) 启动后6.0 s 内转过的圈数.分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t )出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数. 解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得(2) 角速度随时间变化的规律为(3) t =6.0 s 时转过的角度为则t =6.0 s 时电动机转过的圈数圈4 -8 水分子的形状如图所示,从光谱分析知水分子对AA ′ 轴的转动惯量J AA′=1.93 ×10-47 kg·m 2 ,对BB ′ 轴转动惯量J BB′=1.14 ×10-47 kg·m 2,试由此数据和各原子质量求出氢和氧原子的距离D 和夹角θ.假设各原子都可当质点处理.tωαd d =()200s rad 1.13π2-⋅=-=-=tn n t ωωα()0020π221n n t ωωt αt ωθ-=-=+=3902π20=+==t n n θN ()τt e ωω/01--=()10/0s 6.895.01--==-=ωe ωωτt ()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα()rad 9.36d 1d /6060=-==-⎰⎰t e ωt ωθτt 87.5π2/==θN分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′ 轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可. 解 由图可得此二式相加,可得 则由二式相比,可得 则 4 -9 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103 kg·m -3,求飞轮对轴的转动惯量.分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到. 解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得θd m J H A A 22sin 2='θd m J H B B 22cos 2='22d m J J H B B A A =+''m 1059.9211-''⨯=+=HB B A A m J J d θJ J B B A A 2tan /=''o 3.521.141.93arctan arctan===''B B A A J Jθ4 -10 如图(a )所示,圆盘的质量为m ,半径为R .求:(1) 以O 为中心,将半径为R /2 的部分挖去,剩余部分对OO 轴的转动惯量;(2) 剩余部分对O ′O ′轴(即通过圆盘边缘且平行于盘中心轴)的转动惯量.分析 由于转动惯量的可加性,求解第一问可有两种方法:一是由定义式计算,式中d m 可取半径为r 、宽度为d r 窄圆环;二是用补偿法可将剩余部分的转动惯量看成是原大圆盘和挖去的小圆盘对同一轴的转动惯量的差值.至于第二问需用到平行轴定理. 解 挖去后的圆盘如图(b )所示. (1) 解1 由分析知解2 整个圆盘对OO 轴转动惯量为,挖去的小圆盘对OO 轴转动惯量,由分析知,剩余部分对OO 轴的转动惯量为(2) 由平行轴定理,剩余部分对O ′O ′轴的转动惯量为4 -11 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).2424122221121m kg 136.021π161 2212212⋅=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld ρd m d m J JJ m r J d 2⎰=22/3222/2203215d 2 d π2πd mR r r R m rr R mr m r J R R RR ====⎰⎰⎰2121mR J =2222232122ππ21mR R R Rm J =⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛=22103215mR J J J =-=22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+='分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得.解1 设绳子的拉力为F T,对飞轮而言,根据转动定律,有(1)而对重物而言,由牛顿定律,有(2)由于绳子不可伸长,因此,有(3)重物作匀加速下落,则有(4) 由上述各式可解得飞轮的转动惯量为解2 根据系统的机械能守恒定律,有(1′)而线速度和角速度的关系为(2′)又根据重物作匀加速运动时,有(3′)(4′)由上述各式可得αJ R F T =ma F mg T =-αR a =221at h =⎪⎪⎭⎫⎝⎛-=1222h gt mR J 0212122=++-ωJ m mgh v ωR =v at =v ah 22=v ⎪⎪⎭⎫⎝⎛-=1222h gt mR J若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.4 -12 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×03N·m ,涡轮的转动惯量为25.0kg·m 2 .当轮的转速由2.80×103 r·min -1 增大到1.12×104 r·min -1时,所经历的时间t 为多少?分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解. 解1 在匀变速转动中,角加速度,由转动定律,可得飞轮所经历的时间 解2 飞轮在恒外力矩作用下,根据角动量定理,有则 4 -13 如图(a ) 所示,质量m 1 =16 kg 的实心圆柱体A ,其半径为r =15 cm ,可以绕其固定水平轴转动,阻力忽略不计.一条轻的柔绳绕在圆柱体上,其另一端系一个质量m 2 =8.0 kg 的物体B .求:(1) 物体B 由静止开始下降1.0 s 后的距离;(2) 绳的张力F T .分析 该系统的运动包含圆柱体的转动和悬挂物的下落运动(平动).两种不同的运动形式应依据不同的动力学方程去求解,但是,两物体的运动由柔绳相联系,它们运动量之间的联系可由角量与线量的关系得到. 解 (1) 分别作两物体的受力分析,如图(b ).对实心圆柱体而言,由转动定律得t ωωα0-=αJ M =()s 8.10200=-=-=n n MJπJ M ωωt ()0d ωωJ t M t-=⎰()s 8.10π200=-=-=n n MJJ M ωωt对悬挂物体而言,依据牛顿定律,有且F T =F T′ .又由角量与线量之间的关系,得解上述方程组,可得物体下落的加速度在t =1.0 s 时,B 下落的距离为(2) 由式(2)可得绳中的张力为4 -14 质量为m 1 和m 2 的两物体A 、B 分别悬挂在图(a )所示的组合轮两端.设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1 和J 2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两αr m αJ r F T 2121==a m F g m F P T T 222='-='-αr a =21222m m gm a +=m 45.222121222=+==m m gt m at s ()N 2.3922121=+=-=g m m m m a g m FT力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.解 分别对两物体及组合轮作受力分析,如图(b ).根据质点的牛顿定律和刚体的转动定律,有(1) (2)(3) , (4)由角加速度和线加速度之间的关系,有(5) (6)解上述方程组,可得4 -15 如图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1 和m 2 的物体A 、B .A 置于倾角为θ 的斜面上,它和斜面间的摩擦因数为μ,若B 向下作加速运动时,求:(1) 其下落加速度的大小;(2) 滑轮两边绳子的张力.(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑.)分析 这是连接体的动力学问题,对于这类问题仍采用隔离体的方法,从受力分析着手,然后列出各物体在不同运动形式下的动力学方程.物体A 和B 可视为质点,则运用牛顿定律.由于绳与滑轮间无滑动,滑轮两边绳中的张力是不同的,滑轮在力矩作用下产生定轴转动,因此,对滑轮必须运用刚体的定轴转动定律.列出动力学方程,并考虑到角量与线量之间的关系,即能解出结果来.解 作A 、B 和滑轮的受力分析,如图(b ).其中A 是在张力F T1 、重力P 1 ,支持力F N 和摩擦力F f 的作用下运动,根据牛顿定律,沿斜面方向有(1)111111a m F g m F P T T =-='-222222a m g m F P F T T =-=-'()αJ J r F R F T T 2121+=-11T T F F ='22T T F F ='αR a =1αr a =2gR r m R m J J rm R m a 222121211+++-=gr rm R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=g m r m R m J J Rr m R m J J F T 2222121121212++++++=11111cos sin a m θg m μθg m F T =--而B 则是在张力F T2 和重力P 2 的作用下运动,有(2)由于绳子不能伸长、绳与轮之间无滑动,则有(3)对滑轮而言,根据定轴转动定律有(4) , (5)解上述各方程可得4 -16 如图(a )所示,飞轮的质量为60 kg ,直径为0.50 m ,转速为1.0 ×103 r·min -1 .现用闸瓦制动使其在5.0 s 内停止转动,求制动力F .设闸瓦与飞轮之间的摩擦因数 μ=0.40,飞轮的质量全部分布在轮缘上.2222a m F g m T =-αr a a ==21αJ r F r F T T ='-'1211T T F F ='22T T F F ='22111221cos sin rJm m θg m μθg m g m a a ++--==()()22121211//cos sin cos sin 1rJ m m r gJ m θμθθμθg m m F T ++++++=()22122212//cos sin 1rJ m m r gJ m θμθg m m F T +++++=分析 飞轮的制动是闸瓦对它的摩擦力矩作用的结果,因此,由飞轮的转动规律可确定制动时所需的摩擦力矩.但是,摩擦力矩的产生与大小,是由闸瓦与飞轮之间的正压力F N 决定的,而此力又是由制动力F 通过杠杆作用来实现的.所以,制动力可以通过杠杆的力矩平衡来求出.解 飞轮和闸杆的受力分析,如图(b )所示.根据闸杆的力矩平衡,有而,则闸瓦作用于轮的摩擦力矩为 (1) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动的运动规律,有(2) 因飞轮的质量集中于轮缘,它绕轴的转动惯量,根据转动定律,由式(1)、(2)可得制动力()0121='-+l F l l F NNN F F '=d μF l ll d μF d F M N 121f2212+===tnt ωt ωωαπ200==-=4/2md J =αJ M =4 -17 一半径为R 、质量为m 的匀质圆盘,以角速度ω绕其中心轴转动,现将它平放在一水平板上,盘与板表面的摩擦因数为μ.(1) 求圆盘所受的摩擦力矩.(2) 问经多少时间后,圆盘转动才能停止?分析 转动圆盘在平板上能逐渐停止下来是由于平板对其摩擦力矩作用的结果.由于圆盘各部分所受的摩擦力的力臂不同,总的摩擦力矩应是各部分摩擦力矩的积分.为此,可考虑将圆盘分割成许多同心圆环,取半径为r 、宽为d r 的圆环为面元,环所受摩擦力d F f =2πr μmg d r /πR 2 ,其方向均与环的半径垂直,因此,该圆环的摩擦力矩d M =r ×d F f ,其方向沿转动轴,则圆盘所受的总摩擦力矩M =∫ d M .这样,总的摩擦力矩的计算就可通过积分来完成.由于摩擦力矩是恒力矩,则由角动量定理M Δt =Δ(Jω),可求得圆盘停止前所经历的时间Δt .当然也可由转动定律求解得.解 (1) 由分析可知,圆盘上半径为r 、宽度为d r 的同心圆环所受的摩擦力矩为式中k 为轴向的单位矢量.圆盘所受的总摩擦力矩大小为(2) 由于摩擦力矩是一恒力矩,圆盘的转动惯量J =mR 2/2 .由角动量定理M Δt =Δ(Jω),可得圆盘停止的时间为4 -18 如图所示,一通风机的转动部分以初角速度ω0 绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量.若转动部分对其轴的转动惯量为J ,问:(1) 经过多少时间后其转动角速度减少为初角速度的一半?(2) 在此时间内共转过多少转?分析 由于空气的阻力矩与角速度成正比,由转动定律可知,在变力矩作用下,通风机叶片的转动是变角加速转动,因此,在讨论转动的运动学关系时,必须从角加速度和角速度的定义出发,通过积分的方法去解. 解 (1) 通风机叶片所受的阻力矩为M =-Cω,由转动定律M =Jα,可得叶片的角加速度为(1) 根据初始条件对式(1)积分,有()N 1014.32211⨯=+=tl l μnmdl πF ()k F r M 22f /d 2d R r mg μr d -=⨯=mgR μr R mg μr M M R32d 2d 022===⎰⎰gμR ωM ωJ t 43Δ==JωC t ωα-==d d t J C ωωt ωωd d 00⎰⎰-=由于C 和J 均为常量,得(2)当角速度由ω0 → 12 ω0 时,转动所需的时间为(2) 根据初始条件对式(2)积分,有即 在时间t 内所转过的圈数为4 -19 如图所示,一长为2l 的细棒AB ,其质量不计,它的两端牢固地联结着质量各为m 的小球,棒的中点O 焊接在竖直轴z 上,并且棒与z 轴夹角成α角.若棒在外力作用下绕z 轴(正向为竖直向上)以角直速度ω=ω0(1 -e -t) 转动,其中ω0 为常量.求(1)棒与两球构成的系统在时刻t 对z 轴的角动量;(2) 在t =0时系统所受外力对z 轴的合外力矩.分析 由于棒的质量不计,该系统对z 轴的角动量即为两小球对z 轴的角动量之和,首先可求出系统对z 轴的转动惯量(若考虑棒的质量,其转动惯量为多少,读者可自己想一想),系统所受合外力矩既可以运用角动量定理,也可用转动定律来求解.相比之下,前者对本题更直接.解 (1) 两小球对z 轴的转动惯量为,则系统对z 轴的角动量为此处也可先求出每个小球对z 轴的角动量后再求和. (2) 由角动量定理得J Ct e ωω/0-=2ln CJt =t e ωθJ Ct tθd d /000-⎰⎰=CωJ θ20=CωJ θN π4π20==()()222sin 2sin 22αl m αl m mr J ===()αe ωml mr ωJ L t 2022sin 122--===t =0时,合外力矩为此处也可先求解系统绕z 轴的角加速度表达式,即,再由M =Jα求得M . 4 -20 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少? 破裂后圆盘的角动量为多大?分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.解 (1) 碎块抛出时的初速度为由于碎块竖直上抛运动,它所能到达的高度为(2) 圆盘在裂开的过程中,其角动量守恒,故有式中为圆盘未碎时的角动量;为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则4 -21 在光滑的水平面上有一木杆,其质量m 1 =1.0 kg ,长l =40cm ,可绕通过其中点并与之垂直的轴转动.一质量为m 2 =10g 的子弹,以v =2.0×102 m · s -1 的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.()[]αe ωml tt L M t 202sin 12d d d d --==t e αωml -=202sin 2αωml M 202sin 2=t e ωtωα-==0dd R ω=0v gR ωg h 222220==v L L L '-=0ωR m L 221'=ωmR L 2='ωR m m L 221⎪⎭⎫⎝⎛-'=分析 子弹与杆相互作用的瞬间,可将子弹视为绕轴的转动.这样,子弹射入杆前的角速度可表示为ω,子弹陷入杆后,它们将一起以角速度ω′ 转动.若将子弹和杆视为系统,因系统不受外力矩作用,故系统的角动量守恒.由角动量守恒定律可解得杆的角速度. 解 根据角动量守恒定理式中为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.为杆绕轴的转动惯量.可得杆的角速度为4 -22 半径分别为r 1 、r 2 的两个薄伞形轮,它们各自对通过盘心且垂直盘面转轴的转动惯量为J 1 和J 2 .开始时轮Ⅰ以角速度ω0 转动,问与轮Ⅱ成正交啮合后(如图所示),两轮的角速度分别为多大?分析 两伞型轮在啮合过程中存在着相互作用力,这对力分别作用在两轮上,并各自产生不同方向的力矩,对转动的轮Ⅰ而言是阻力矩,而对原静止的轮Ⅱ则是启动力矩.由于相互作用的时间很短,虽然作用力的位置知道,但作用力大小无法得知,因此,力矩是未知的.但是,其作用的效果可从轮的转动状态的变化来分析.对两轮分别应用角动量定理,并考虑到啮合后它们有相同的线速度,这样,啮合后它们各自的角速度就能求出. 解 设相互作用力为F ,在啮合的短时间Δt 内,根据角动量定理,对轮Ⅰ、轮Ⅱ分别有(1)(2)两轮啮合后应有相同的线速度,故有(3)()ωJ J ωJ '+=212()2222/l m J =12/211l m J =()1212212s 1.2936-=+=+='m m m J J ωJ ωv()0111ΔωωJ t F r -=-222ΔωJ t F r =2211ωr ωr =由上述各式可解得啮合后两轮的角速度分别为4 -23 一质量为20.0 kg 的小孩,站在一半径为3.00 m 、转动惯量为450 kg· m 2 的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计.如果此小孩相对转台以1.00 m· s -1 的速率沿转台边缘行走,问转台的角速率有多大?分析 小孩与转台作为一定轴转动系统,人与转台之间的相互作用力为内力,沿竖直轴方向不受外力矩作用,故系统的角动量守恒.在应用角动量守恒时,必须注意人和转台的角速度ω、ω0 都是相对于地面而言的,而人相对于转台的角速度ω1 应满足相对角速度的关系式 . 解 由相对角速度的关系,人相对地面的角速度为由于系统初始是静止的,根据系统的角动量守恒定律,有式中J 0 、J 1 =mR 2 分别为转台、人对转台中心轴的转动惯量.由式(1)、(2)可得转台的角速度为式中负号表示转台转动的方向与人对地面的转动方向相反.4 -24 一转台绕其中心的竖直轴以角速度ω0 =πs -1 转动,转台对转轴的转动惯量为J 0 =4.0 ×10-3 kg· m 2 .今有砂粒以Q =2t g· s -1 的流量竖直落至转台,并粘附于台面形成一圆环,若环的半径为r =0.10 m ,求砂粒下落t =10 s 时,转台的角速度.分析 对转动系统而言,随着砂粒的下落,系统的转动惯量发生了改变.但是,砂粒下落对转台不产生力矩的作用,因此,系统在转动过程中的角动量是守恒的.在时间t 内落至台面的砂粒的质量,可由其流量求出,从而可算出它所引起的附加的转动惯量.这样,转台在不同时刻的角速度就可由角动量守恒定律求出. 解 在时间0→10 s 内落至台面的砂粒的质量为根据系统的角动量守恒定律,有则t =10 s 时,转台的角速度4 -25 为使运行中的飞船停止绕其中心轴的转动,可在飞船的侧面对称地安装两个切向控制喷管(如图所示),利用喷管高速喷射气体来制止旋转.若飞船绕其中心轴的转动惯量J =2.0 ×103kg· m 2 ,旋转的角速度ω=0.2 rad· s -1 ,喷口与轴线之间的距离r =1.5 m ;喷气以恒定的流量Q =1.0 kg· s -1和速率u =50 m· s -1 从喷口喷出,问为使该飞船停止旋转,喷气应喷射多长时间?分析 将飞船与喷出的气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(1) 由于喷气质量远小于飞船质量,喷气前、后系统的角动量近似为飞船的角动量J ω;(2) 喷气过210222122011r ωJ r J r ωJ ω+=10ωωω+=Rωωωωv+=+=010()010100=++ωωJ ωJ 122020s 1052.9--⨯-=+-=RmR J mR ωv kg 10.0Qd s100==⎰t m ()ωmr J ωJ 2000+=112000s π80.0-=+=J mrJ ωJ ω程中气流速率u 远大于飞船侧面的线速度ωr ,因此,整个喷气过程中,气流相对于空间的速率仍可近似看作是 u ,这样,排出气体的总角动量.经上述处理后,可使问题大大简化.解 取飞船和喷出的气体为系统,根据角动量守恒定律,有(1)因喷气的流量恒定,故有(2)由式(1)、(2)可得喷气的喷射时间为4 -26 一质量为m′、半径为R 的转台,以角速度ωA 转动,转轴的摩擦略去不计.(1) 有一质量为m 的蜘蛛垂直地落在转台边缘上.此时,转台的角速度ωB 为多少? (2) 若蜘蛛随后慢慢地爬向转台中心,当它离转台中心的距离为r 时,转台的角速度ωc 为多少? 设蜘蛛下落前距离转台很近.分析 对蜘蛛和转台所组成的转动系统而言,在蜘蛛下落至转台面以及慢慢向中心爬移过程中,均未受到外力矩的作用,故系统的角动量守恒.应该注意的是,蜘蛛爬行过程中,其转动惯量是在不断改变的.由系统的角动量守恒定律即可求解.解 (1) 蜘蛛垂直下落至转台边缘时,由系统的角动量守恒定律,有式中为转台对其中心轴的转动惯量,为蜘蛛刚落至台面边缘时,它对轴的转动惯量.于是可得(2) 在蜘蛛向中心轴处慢慢爬行的过程中,其转动惯量将随半径r 而改变, 即.在此过程中,由系统角动量守恒,有4 -27 一质量为1.12 kg ,长为1.0 m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100 N 的力打击它的下端点,打击时间为0.02 s .(1) 若打击前棒是静止的,求打击时其角动量的变化;(2) 棒的最大偏转角.()mur m r ωu m≈+⎰d 0=-mur ωJ Qt m 2=s 67.22==QurωJ t ()b a ωJ J ωJ 100+=2021R m J '=21mR J =a a b ωmm m ωJ J J ω2100+''=+=22mr J =()c a ωJ J ωJ 100+=。

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。

设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。

02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。

03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。

04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。

刚体的转动课后习题答案

刚体的转动课后习题答案

第五章 刚体的转动5-1 在图5-21中,一钢缆绕过半径为0.4 m 的定滑轮吊着一个升降机,钢缆不打滑. 假设升降机以0.5 m/s 2的加速度向上提升.(1)求滑轮的角加速度.(2)如果滑轮转三周,问从静止开始的加速运动持续了多长时间?(3)求当t =2 s 时,轮缘上一点的瞬时加速度(切向和法向加速度).解:(1)由于钢缆与滑轮间无相对滑动,轮缘上各点的切向加速度与升降机的加速度相同,即a a t ==0.5m/s 2, 22rad/s25.1rad/s4.05.0===Ra t β(2)由于滑轮作匀角加速运动,角位移 20021t t βωθθ+=-已知rad 63220πππθθ=⨯==-n ,且00=ω,故s 5.5s 49.525.162)(20≈=⨯=-=s t πβθθ(3)由t βωω+=0,可知rad/s t 25.1==t βω,法向加速度2222222m/s625.0m/s4.0)25.1(t t R t R a n =⨯===βωt=2s 时,222m/s5.2m/s2625.0=⨯=n a又2m/s 5.0=t a ,∴ 总加速度为222222m/s55.2m/s 5.05.2=+=+=t n a a a︒====---4.63225.05.0111tgtga a tgnt αα为总加速度与法线方向的夹角.5-2轮A 半径r A =15cm ,轮B 半径r B =30cm ,两轮通过一皮带耦合,如图5-22所示. 轮A 从静止开始以恒定的角加速度1.2rad/s 2转动,问从开始运动30s 后轮B 的转速(min /rev )是多大?假定皮带不打滑. 解:由于皮带与两个轮的轮缘间无相对滑动,所以两轮轮缘上各点的切向加速度相等,设等于t a ,两轮的角加速度分别为A β和B β,由角量与线量的关系有B B A A t r r a ββ==22rad/s6rad/s123015=⨯==ABA B r r ββs 30=t 时rad/s 180rad/s 630=⨯==t B B βω而n B πω2=,故rev/min 17192601802=⨯==ππωBB n5-3一匀质园盘从静止开始以恒定的角加速度绕过盘心的竖直轴转动,某一时刻的转速为10rev/s.再转100转后,转速达20rev/s. 试求(1)园盘的角加速度;(2)从静止到转速为15rev/s 所需的时间;(3)在第(2)向的过程中园盘转了多少圈? 解:(1)由匀角加速运动的规律可知角加速度22222122rad/s42.9rad/s321002)210()220(2==⨯⨯⨯-⨯=-=ππππθωωβ(2)所需时间s 103215=⨯==ππβωt(3)由πθ2=n ,2022ωωθβ-= 及00=ω rev 75rev 35.22322)215(22122==⨯⨯⨯=⨯=πππβωπn5-4 6个质量均为m 的粒子与6根长度均为d 的轻杆组成一个正6边形的刚体,如图5-23所示. 计算该刚体关于如下转轴的转动惯量:(1)转轴通过任意相邻的粒子;(2)转轴通过任意粒子且与6边形的平面垂直.解:这是质量呈分立分布的刚体,由转动惯量的定义2i i r m I ∑∆=其中i r 为i m ∆到转轴的垂距,可计算如下:(1)221)3(2)23(2d m d m I +=225.7)343(2mdmd=+=(2)2222)2()3(22d m d m mdI ++=2212)42(md b md=++= 解5-4图5-5 三根长度均为l 的细杆组成一个等边三角形刚体ABC 如图5-24所示. 计算其关于中线的转动惯量. 假定杆的单位长度质量为λ.解:AB BC I I I 2+=已知BC 关于图中转轴的转动惯量为32212)(121121l ll mlI BC λλ===而⎰⎰==l r m r I AB d 22λ,其中r r dl d 260cos d =︒=∴ ⎰⎰=⋅==ll AB l r rl r I 02/032212d 2d λλλ∴3334122122l llI I I AB BC λλλ=⨯+=+=解5-5图5-6一个半径为R 的匀质半园环的质量为m ,计算其关于如图5-25中所示的轴的转动惯量. 解:这是质量连续分布的刚体,取如图质元l Rml m d d d πλ==θmRmRd d πθπ==m d 与转轴的垂距θsin R r =∴⎰⎰⋅==2/0222d sin2d πθπθmR m r I⎰=2/02d 22cos 2πθθπH mR解5-6图⎰⨯+=smRmR /0222d 222cos 2πθθπ22mR =5-7在图5-26中,一匀质园盘安装在固定的水平轴上,园盘半径R =20cm ,质量M =3kg.园盘边缘上绕着轻绳,轻绳下端悬挂着一个质量m =1.0kg 的物体.(1)求物体下落的加速度,园盘的角加速度以及绳中的张力;(2)物体下落3m 所需的时间. 解:(1)忽略轴处可能存在的摩擦,盘受的合外力矩M =TR ,对园盘用转动定理,对物体用牛顿第二定律,并注意到物体下落的加速及t a a =,列方程组如下βI TR =①ma T mg =-②R a a t β==③ 221MRI =④ 联立①②③④解5-7图解得22m/s92.3m/s1230.128.922=⨯+⨯⨯=+⋅==mM m g a a t角加速度 2rad/s 6.192.092.3===Ra t β张力N 88.5N 12338.90.12=⨯+⨯⨯=+⋅=mM Mmg T(2)由题意知,物体从静止下落,由于a 为恒量,由221ath =可得所求时间为s 24.192.3322=⨯==ah t5-8唱机的转盘由电机驱动,转盘以恒定的角加速度在 2.0秒内从零加速到min /rev 3133. 均质转盘质量为1.5kg ,半径1.2cm. 为驱动转盘所需的关于转轴的力矩多少?如果驱动轮的外缘与转盘相接触,如图5-27所示. 求驱动轮必须施予转盘的法向力是多大?假定两轮间的摩擦系数7.0=μ.解:由题意可知角速度rad/s 49.36023133=⨯=πω 角加速度2rad/s75.10.249.3==∆∆=t ωβ转动惯量2222kgm1008.1)2.0(5.12121-⨯=⨯⨯==MRI 解5-8图由转动定理可得驱动转盘所需的力矩为222kgm1089.1Nm 75.11008.1--⨯=⨯⨯==βI M产生这个力矩的力必在切向,如图所示N 158.0N 1075.1512.01089.122=⨯=⨯==--R M F t由切向力与正压力(沿法向指向园心)的关系N F t μ=知驱动轮必须施予转盘的法向力N 226.0N 7.0158.0===μtF N5-9两个质量为m 的物体悬挂在一刚性轻杆两端,杆长为l 1+l 2,其中l 2=3l 1,如图5-28所示,初始时使杆处于水平位置,杆与物体保持静止,然后释放.求两个物体刚开始运动时的加速度. 解:如图设轻杆两端的轻绳中张力分别为T 1和T 2,刚开始运动的瞬间两物体的加速度分别为a 1和a 2,由转动定理和牛顿第二定律,列方程组如下: 02211=-l T l T ① (轻杆转动惯量I ≈0) 22ma T mg =- ②11ma mg T =-③∵ r a a t β== ∴31212==l l a a ④从①得31221==l l T T ①′ 解5-9图将①′代入②得 2121ma T l l mg =-∴ )(2121a g m l l T -⋅=②′将②′和④代入③化简得22112122m/s88.5533/132)//()1/(==+=+-=g l l l l g l l a222211m/s96.1m/s88.531=⨯=⋅=a l l a5-10一长度为L 的匀质细杆最初垂直地立在地板上,如图5-29所示.如果此杆倾倒,试求杆撞击地板时的角速度是多大?假定杆与地板的接触端不发生滑动.解:设杆的质量为m ,则其对O 轴的转动惯量231mL I =,重力到O 轴的垂距为θsin 2L r =,故重力对O 的力矩为θθπSin L mgL mg M 2)sin(2=-⋅=沿顺时针方向,由转动定理βI M =我们有ββθ⋅==231sin 2mLI L mg∴θβsin 23Lg =又 td d ωβ=,t d d βω=,即ωθθθθθβωd sin 23d d d sin 23d d Lg t Lg t =⋅== 分离变量积分 ⎰⎰=πωθθωω0d sin 23d Lg可得L g /)cos 1(3θω-=解5-10图将杆倒地时的 ︒=90θ 代入上式,得 L g /3=ω5-11图5-30表示飞轮的制动装置包括一个制动杆和一个制动靴.飞轮质量为50 kg ,半径为0.5m ,以1200 rev/min 的速率旋转.当给制动杆末端施加100N 的制动力时,使飞轮停止转动所需多长时间?设飞轮与制动靴之间的摩擦系数5.0=μ.解:本题涉及两个刚体,一个是飞轮,另一个是制动杆,由题意知,合外力矩使飞轮产生角加速而制动,而作用在杆上的力矩则保持平衡,设杆受到的正压力为N ′,轮受到的正压力为N ,根据转动定理M = I β,我们有摩擦力μf 对飞轮的定轴O ,的力矩ββμ221mR I R f ==-① N f μμ=②对制动杆的定轴A ,F 和N '的力矩平衡0)(121=⨯'-+⨯l N l l F③ N N -='④由③得N 2501004.00.1)(121=⨯=⋅+='F l l l N ⑤解5-11图又由①可得 mRf μβ2-=⑥将N =250 N ,m =50 kg 代入②及⑥中可得22rad/s25rad/s2.0502505.0222-=⨯⨯⨯-='-=-=mRN mRf μβμ由于β为恒量,可由匀角加速运动公式t t βωω=-0,即βωω0-=t t其中0=t ω,n πω20=,将已知min /rev 1200=n 代入上式可得 s 5.03s )25(60120020≅-⨯⨯-=πt5-12一个倾角为ϕ的光滑斜面上安装着转动惯量为I 的定滑轮,斜面上质量为m 1的物体系在一绕在轮轴上的轻绳的一端,另一质量为m 2的物体则由缠绕在轮缘上的另一轻绳悬挂着,当m 2下降时,m 1则被拉上斜面,如图5-31所示.定滑轮的半径为R =0.3m 而其轴的半径为r =0.1m.试计算滑轮的角加速度 解:在图中标出了m 1,m 2和滑轮的受力情况,其中T 1、T 2分别为两轻绳中的张力,对轮及两质点分别应用转动定理和牛顿第二定律,可列如下方程βI r T R T ='-'12① 1111sin a m g m T =-ϕ ② 2222a m T g m =- ③ r a β=1④R a β=2⑤解5-12图'-=11T T , '-=22T T⑥ 由②及④可得 )sin (11ϕβg r m T -= ⑦ 由③及⑤可得)(22R g m T β-=⑧将⑦、⑧代入①得 βϕββI g r r m R g R m =---)sin ()(12 整理为)(sin 212212r m Rm I gr m gR m ++=⋅-βϕ解得 212212sin rm Rm I gr m gR m ++⋅-=ϕβ将m R 3.0=,m r 1.0=及2m/s8.9=g 代入上式,得111201.009.0sin 98.094.2m m I m m ++-=ϕβ5-13计算习题5-8中,力矩在加速过程中所作的功和平均功率.解:由转动动能定理 2122122121ωωI I E E W k k -=-=,可得力矩的功为J 1058.6J )49.3(1008.1210212222--⨯≅⨯⨯⨯=-=ωI W平均功率 W 1029.30.21058.622--⨯=⨯==tW p5-14一蒸汽机飞轮的质量为200kg ,半径为1m ,如果当转速达150rev/min 时阀门被关闭,设作用于飞轮轴处的平均摩擦力矩是5m.N ,计算(1)飞轮停止转动前力矩所作的功;(2)关闭阀门后经多长时间飞轮即可停止转动. 解:(1)关闭阀门时飞轮的角速度为rad/s 7.1560/150220=⨯==ππωn由转动动能定理,2022121ωωI I W -=,其中0=ω,得飞轮停止转动前摩擦力矩作的功:J 12324J 7.15120021212102220-=⨯⨯⨯⨯-=-=ωI W(2)由于力矩是恒定的,平均角加速度也是恒定的,故有βω0=t ,其中 IM =β则有 min 2.5s 31461200217.15200≅=⨯⨯⨯===MI t ωβω5-15试用转动动能定理再解习题5-10. 解:根据转动动能定理和力矩的功的定义⎰-==022121d ωωθI I M W在解5-10图中,重力对水平轴O 的力矩为θsin 2l mg M =, 则有当杆的角位置为θ时,重力矩的功 ⎰-==θθθθ0)cos 1(21d sin 2mgl l mg W此时角速度为ωO I W -=221ω即 223121)cos 1(21ωθ⋅⨯=-mlmgl可得l g /)cos 1(3θω-=当杆倒地时,︒=90θ, 代入上式可得l g /3=ω由角加速度θθωωθθωωβsin 23d d d d d d d d lg tt ==⋅==当︒=90θ时 lg 23=β.5-16在图5-32中,长为1.0m 的匀质杆最初静止于竖直位置,然后杆的下端获得一初始线速度0v ,使得杆绕水平固定轴O 开始旋转.试求为使杆至少完成一周的旋转,0v 的最小值是多大? 解:当杆通过πθ=的角位置时角速度0≥ω,即可至少完成一周的旋转,设这过程中重力作的功为W ,即2021ωI O W -≥ ① 而重力的元功 θθd sin 21d ⋅⋅-=mg l Wmgl lmgW W =-==⎰⎰θθπd sin 21d 0②将②及231ml I =,l /00v =ω代入①可得7.67m/s m/s 18.9660=⨯⨯==gl v 解5-16图5-17明渠中的流水驱动着水车的叶轮,叶轮半径2.0m ,如图5-33所示.水流到达叶轮的速度是6.0m/s ,离开叶轮的速度是3.0m/s ,水流量为每秒300kg.(1)水流作用于叶轮的力矩有多大?(2)如果叶轮边缘的速度是3m/s ,传送给叶轮的功率是多大?解:(1)考虑水的一个小质元d m 沿切向速度以v 1冲向水平的叶片,离开时速率减为v 2,该质元对水车中心的角动量增量为0)(d )d ()d (1212<-=-R m R m R m v v v v ,这是因为叶片的反作用力矩所致,由合外力矩与角动量对时间变化率的关系,可知R tm tL M )(d d d d 12v v -==其中tm d d 是每单位时间流经水车的水质量,即水的流量.由作用反作用定律,水作用在水轮机叶片上的力矩为m N 101.8m N 2)0.30.6(300)(d d 321⋅⨯=⋅⨯-⨯=-=-='R tm M M v v(2)水流传递给叶轮的功率为 RMM tMtW P v ====ωθd d d dkW 7.2W 107.223108.133=⨯=⨯⨯=5-18一个人坐在可绕竖直轴自由转动的转椅上,开始时,人静止地坐在转椅上,用手握住一转盘的中心轴,转盘以4rev/s 的角速度旋转,其转轴在竖直位置,角动量i L 的方向向上,如图5-34所示.如果此人将转盘的轴倒置会发生什么现象?假定轮盘对其中心轴的转动惯量是1kg.m 2. 解:由于系统是孤立的,对竖直轴的外力矩为零,所以系统对该轴的总角动量守恒.==∑i L L 常量人将转盘轴倒置后,转盘的角动量变为i L -,设在相互作用过程中,系统获得的角动量为L ,则后来的总角动量为L -L i ,由于系统总角动量守恒,即i i L L L -=从而 L =2L i设系统对转椅轴共同的角速度为ω,则有ωI L = 即人将转盘轴倒置后,整个系统将绕转椅的竖直轴以角速度ω旋转rev/s 6.154122=⨯⨯===IL I L i ω其中转盘的初角动量11ωI L i =,21kgm 1=I ,rev/s 41=ω.5-19一质量为M ,半径为R 的匀质园盘以角速度ω绕过其中心的竖直轴旋转,如果盘缘质量为m ∆的一小块破裂并飞离园盘,如图5-35所示,(1)园盘的角动量在边缘破损后变成多大?(2)小块被抛出多远?假定园盘与地面的距离为h .解:在盘缘破损过程中,对轴的合外力矩为零,故总角动量守恒 =∑ωI 常量 设盘后来的转动惯量为I ′,角速度为ω′,则有ωωω2mR I I ∆+''=即ωωω2222)21(21mR mRMRMR ∆+'∆-=ωωω=∆-∆-='222221)21(mRMRmRMR园盘的角动量变为 ωω)21(22mRMRI L ∆-=''='(2)小块m ∆作平抛运动221gt h =,gh t 2=故m ∆被抛出的水平距离为gh RRt t S 20ωω===v5-20一质量为M ,半径为R 的匀质园台,可以绕过中心的竖直轴无摩擦地旋转.假定初始时一个人静止地站在台边缘处,然后沿园台边缘行走.(1)如果此人步行一周回到台面的初始位置,园台将转过多大角度?(2)如果此人回到相对于地面的初始位置,园台又将转过多大角度? 解:∵ 运动过程中对竖直轴的合外力矩 M =0,∴ 系统总角动量守恒=∑L 常量. (1)园台将沿相反方向相对地面旋转,设任意时刻人、台对地面的角速度分别为ω和Ω,∵ 0=∑i L ,∴ 任意时刻有 02122=Ω-MR mR ω①又设人对台的相对角速度为ω',由速度合成定理Ω-'=ωω ②将②代入①得 021)(22=Ω-Ω-'MR mRω解得ω'+=ΩmM m 21 ③设H 为台对地的角坐标,θ'为人对台的角坐标,则Ω=Θtd d ,ωθ'=td d④将④代入③,两边积分 ⎰⎰'+=ΘHm M m 020d 22d πθ得台转过的角度π222⋅+=ΘmM m(2)设人对地的角坐标为θ,则有人对地的角速度 td d θω=,将 td d θω=和 td d Θ=Ω代入①式,得Θ=d 21d 22MR mR θ 对两边积分得⎰⎰Θ=πθ2022d 21d HMRmR这次台对地转过的角度为π22⋅=ΘM m显然,第二种情况园台转过的角度大些. 5-21两个飞轮A 和B 可以通过轮轴上的摩擦离合器连接或分离,如图5-36所示.当两轮分离时,B 轮静止,而A 轮角度速度达600rev/min ,然后连接离合器,B 轮开始加速而A 轮减速,直到两轮具有相同的角速度240rev/min.当连接完成时,离合器片发出的热量是2000J ,分别求出两轮的转动惯量. 解:在连接过程中,合外力矩M=0(离合器片作用的摩擦力矩为内力矩)∴系统总角动量守恒f i L L ∑=∑. 即21)(ωωB A A I I I +=①由于相互作用是完全非弹性的,动能不守恒,由能量守恒与转化定律,动能的减少量即为摩擦产生的热量Q I I I E B A A k =+-=∆2221)(2121ωω②从①可得221)(ωωωB A I I =-B B B A I I I I 32240600240212=⋅-=⋅-=ωωω③把J Q E k 2000==∆和③代入②,得2000)123(21212221=+-ωωA A I I 解得2222kgm69.1kgm)42(25)102(4000=⨯⨯-⨯=ππA I其中用到 10rev/srev/min6001==ω, rev/s 42=ω.由③得2kgm53.223==A B I I。

大学物理第四章 刚体的转动(3课时)

大学物理第四章 刚体的转动(3课时)

O
ji
ri
Fi sin j i + f i cosq i
=
a i
=
ri

等式两边乘以 i 并对所有质元及其所受力矩求和
r
ri ri

M
=

4- 2
力矩 转动定律
转动惯量
(2)刚体
瞬时 角加速度
瞬时 角速度
M
=
称为

ri

Fi

qi
n
fi

刚体所获得的角加速度
合外力矩 的大小成正比, 与刚体的转动惯量 成反比。
4-1 刚体的定轴转动
dq π 2 t 由 dt 150 q π t 2 t dt 得 dq 0 150 0 π 3 q t rad 450
在 300 s 内转子转过的转数
π 3 4 N (300 ) 3 10 2π 2π 450
q
4-1 刚体的定轴转动 第一节
O
ji
ri
与刚体性质及质量分布有 关的物理量,用 J 表示
转动惯量
刚体的转动定律
的大小与刚体受到的
物理学
第五版
4-2
力矩
转动定律
转动惯量

转动惯量
J m j rj2 , J r 2dm
j
物理意义:转动惯性的量度.
转动惯性的计算方法
质量离散分布刚体的转动惯量
2 j j 2 11 j
复杂 的运动 与平动 的混合。

4-1 刚体的定轴转动 刚体转动的角速度和角加速度
刚体定轴转动 的运动方程 沿逆时针方向转动 q > 0 沿顺时针方向转动 q < 0 刚体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R 00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m /s 1.23m /s 15.017.811=⨯==r ωv222121n m /s 10.0m /s 15.017.8=⨯==r ωam /s .6130m /s 075.017.822=⨯==r ωv222222n m /s .015m /s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4 R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J R F F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωW J m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F =(1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωmR J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t 00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R 00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有 ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅=啮合后机械能为 2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅=则机械能损失为 1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略 A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。

相关文档
最新文档