解直角三角形综合专题
中考数学专题复习:解直角三角形
![中考数学专题复习:解直角三角形](https://img.taocdn.com/s3/m/4c8c426790c69ec3d5bb7591.png)
中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。
专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编
![专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编](https://img.taocdn.com/s3/m/59237d1a326c1eb91a37f111f18583d049640ff9.png)
专题28解直角三角形(58题)一、单选题1.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米B .sin aθ千米C .cos a θ千米D .cos aθ千米2.(2024·天津·2cos451- 的值等于()A .0B .1C .212-D 213.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5B =,则BC 的长是()A .3B .6C .8D .94.(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A .(243m-B .(243m-C .(2463m-D .(243m-5.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米A .20B .15C .12D .10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A .10B .10C .13D .238.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A 5B 455C 355D 259.(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A .36B 33C 32D 310.(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是()A .2B .432-C .23D .411.(2024·四川泸州·512-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A 55B .12C .35D 25512.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sinNBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为m (结果保留根号).14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)16.(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=EFC .17.(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)18.(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为.19.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,C ,P 在同一平面内),那么大汶河此河段的宽AB 为米.(参考数据:3sin 405︒≈,9sin 63.610︒≈,6tan 505︒≈,tan 63.62︒≈)23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是.24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为.25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是cm .三、解答题27.(2024·内蒙古通辽·0322sin60(π)-+︒--.28.(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)29.(2024·北京·中考真题)计算:()0582sin 302π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84-+-︒-.31.(2024·广东深圳·中考真题)计算:()112cos 45 3.14124π-⎛⎫-⋅︒+-++ ⎪⎝⎭.32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)34.(2024·青海·018tan 452π︒+--.35.(2024·内蒙古呼伦贝尔·中考真题)计算:301tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭.36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)37.(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈.38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等活动过程模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).41.(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.42.(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.44.(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .(1)求证:四边形AFCD 为平行四边形;(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.45.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)46.(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,10,6,tan 1AB AD ACB ==∠=.(1)求BC 的长;(2)求sin DAE ∠的值.48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.50.(2024·四川广元·中考真题)计算:()2012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.52.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.56.(2024·广东广州·中考真题)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)57.(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).58.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。
浙江省台州市中考数学复习专题之解直角三角形综合题
![浙江省台州市中考数学复习专题之解直角三角形综合题](https://img.taocdn.com/s3/m/8d214976647d27284a73510f.png)
浙江省台州市中考数学复习专题之解直角三角形综合题姓名:________ 班级:________ 成绩:________一、浙教版2019中考数学复习专题之解直角三角形综合题解答题 (共39题;共60分)1. (1分)(2017·江西模拟) 太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)2. (1分) (2017八上·衡阳期末) 如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?3. (1分)(2016·娄底) 芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)4. (1分)(2017·江西模拟) 保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)5. (1分)(2018·白银) 随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)6. (1分)水务部门为加强防汛工作,决定对某水库大坝进行加固.原大坝的横截面是梯形ABCD,如图所示,已知迎水面AB的长为10米,∠B=60°,背水面DC的长度为米,加固后大坝的横截面是梯形ABED,CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号)。
2023年中考九年级数学高频考点二轮专题训练--解直角三角形的应用
![2023年中考九年级数学高频考点二轮专题训练--解直角三角形的应用](https://img.taocdn.com/s3/m/aaa8b2ff77eeaeaad1f34693daef5ef7ba0d12d0.png)
2023年中考九年级数学高频考点二轮专题训练--解直角三角形的应用一、综合题1.如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∠BP交半圆P于另一点D,BE∠AO交射线PD于点E,EF∠AO于点F,连结BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE= 512时,直接写出∠CDP与∠BDP面积比.2.已知,如图1图2,在等腰三角形ABC中,AB=AC.平面内任意一点D,连接AD,点E是AD 的中点.∠ABC的角平分线AP交BC于点P,点F是射线AP上的一个动点,且AF﹥AP.若G,H是射线BC上的两个动点(点G在点H的左侧),GH=AF,点M始终是GH的中点,连接G,F,H,D,四边形GFHD是平行四边形.(1)【感知探究一】如图1,当点D在线段AP上时,ME与GM的位置关系为,ME与GM的数量关系为(2)【感知探究二】如图2,当点D不在射线AP上时,连接ME,试问ME与GM的数量关系和位置关系怎样?请说明理由;(3)【应用升华】如图3,在∠ABP中,BC∠AP于点M,DC∠BC于点C,MC=AP,PM=DC,连接AD,点E是AD中点,连接ME,若ME=4,AB=2√6.∠ABC=60°,求DC的长.3.平面内,如图,在∠ABCD中,AB=10,AD=15,tanA= 43,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在∠ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)4.在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是∠ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(20 √3﹣20)cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2014秒,交点又在什么位置?请说明理由.5.如图,在四边形ABCD中,∠ABC=90°,DE∠AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.6.如图,ΔABC是⊙O的内接三角形,点D在BC⌢上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2−AC2=AB⋅AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB⋅AC的值最大?7.如图,在矩形ABCD中,E为AD上的点,连接EC,AB=m,BC=n,m>n 2.(1)若m=3,n=4,连接AC,CE平分∠ACD,求DE的长;(2)若E为AD中点,过点E作EF∠EC交AB于F点,连接FC,①补全图形并证明:EF平分∠AFC;②当∠AEF与∠BFC相似时,求mn的值.8.在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB 可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角,即望向屏幕中心P(AP=BP)的视线EP与水平线EA的夹角∠AEP=18°时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为30cm.(1)求眼睛E与显示屏顶端A的水平距离AE.(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,√2≈1.41,√3≈1.73)9.如图1,直线l:y=−34x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<165),以点A为圆心,AC长为半径作∠A交x轴于另一点D,交线段AB于点E,连结OE并延长交∠A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:∠OCE∠∠OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.10.如图是广场健身的三联漫步机,当然踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,漫步机踏板静止时,其侧面示意图可以抽象为如图,其中,AB=AC=120cm,BC=80cm,AE=90cm.(1)求点A到地面BC的高度;(2)如图,当踏板从点E旋转到E′处时,测得∠E′AE=37°,求此时点E′离地面BC的高度(结果精确到1cm).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41)11.如图1,在Rt∠ABC中,∠C=90°,边AC=6,BC=8,点M、N分别在线段AC、BC上,将∠ABC沿直线MN翻折,点C的对应点是点C′(1)当M、N分别是边AC、BC的中点时,求出CC′的长度;(2)若CN=2,点C′到线段AB的最短距离是;(3)如图2,当点C’在落在边AB上时,①点C′运动的路程长度是;②当AM=3611时,求出CN的长度.12.实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A′处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E 的直线折叠,点C恰好落在AD上的点C′处,点B落在点B′处,得到折痕EF,B′C′交AB 于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA′D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC′=4cm,求DN:EN的值.13.已知:矩形ABCD内接于∠O,连接BD,点E在∠O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,∠O上有一点N,连接CN分别交BD和AD于√10点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.14.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C 点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度15.在等腰直角∠ABC中,∠BAC=90°,点D、E分别在AB、AC上,且AD=AE,连接DC,点M、N分别为DE、BC的中点.(1)如图①,若点P为DC的中点,连接MN、PM、PN.①求证:PM=PN;②求证:∠ADE∠∠PNM;(2)如图②,若点D在BA的延长线上,点P为EC的中点,求MNMP的值.16.如图,梯形ABCD中,AD∠BC,AE∠BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与∠O相切;(2)若BF=24,OE=5,求tan∠ABC的值.答案解析部分1.【答案】(1)解:如图1,∵PA=PC=PD,∴∠PDC=∠PCD,∵CD//BP,∴∠BPA=∠PCD、∠BPD=∠PDC,∴∠BPA=∠BPD,∵BP=BP,∴△BAP∠ △BDP,∴∠BDP=∠BAP=90∘(2)解:∵∠BAO=90∘,BE//AO,∴∠ABE=∠BAO=90∘,∵EF⊥AO,∴∠EFA=90∘,∴四边形ABEF是矩形,设BE=AF=x,则PF=x−4,∵∠BDP=90∘,∴∠BDE=90∘=∠PFE,∵BE//AO,∴∠BED=∠EPF,∵△BAP∠ △BDP,∴BD=BA=EF=8,∴△BDE∠ △EFP,∴PE=BE=x,在Rt△PFE中,PF2+FE2=PE2,即(x−4)2+82=x2,解得: x =10 , ∴BE 的长为10(3)解: ① 如图1,当点C 在AF 的左侧时, ∵AF =3CF ,则 AC =2CF , ∴CF =AP =PC =m ,∴PF =2m , PE =BE =AF =3m ,在 Rt △PEF 中,由 PF 2+EF 2=PE 2 可得 (2m)2+82=(3m)2 ,解得: m =8√55( 负值舍去 ) ;如图2,当点C 在AF 的右侧时,∵AF =3CF , ∴AC =4CF ,∴CF =12AP =12PC =12m ,∴PF =m −12m =12m , PE =BE =AF =m +12m =32m ,在 Rt △PEF 中,由 PF 2+EF 2=PE 2 可得 (12m)2+82=(32m)2,解得: m =4√2( 负值舍去 ) ; 综上,m 的值为 8√55或 4√2 ;② 如图3,过点D 作 DG ⊥AC 于点G ,延长GD 交BE 于点H ,∵△BAP ∠ △BDP ,∴S△BDP=S△BAP=12AP⋅AB,又∵S△CDP=12PC⋅DG,且AP=PC,∴S△CDPS△BDP=12PC⋅DG12AP⋅AB=DGAB,当点D在矩形ABEF的内部时,由tan∠DBE=DHBH=512可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH−DH=8x,则S△CDPS△BDP=DGAB=8x13x=813;如图4,当点D在矩形ABEF的外部时,由tan∠DBE=DHBH=512可设DH=5x、BH=12x,则BD=BA=GH=13x,∴DG=GH+DH=18x,则S△CDPS△BDP=DGAB=18x13x=1813,综上,△CDP与△BDP面积比为813或1813.2.【答案】(1)ME∠GM;ME=GM(2)解:EM与GM相等且互相垂直,理由如下,如图2,连接DF,在平行四边形GFHD中,∵GM=MH , ∴M 是DF 的中点, 在∠DAF 中, ∵AE=ED∴EM=12AF ,EM ∥AF ,∵AF=GH , ∴EM=12GH=GM ,∵AB=AC ,AP 平分∠BAC , ∴AF∠BC , ∴EM∠GM ,∴ME∠GM ;ME=GM ;(3)解:连接PD 交MC 于点O ,连接EO ,MD ,∵BC ∠AP ,AB=2√6, ∠ABC=60°, ∴2√6=sin60°=√32, ∴AM=3√2,∵PM ∠ BC ,DC ∠BC , ∴PM// DC .∵ PM=DC ,∴四边形MPCD 是平行四边形, ∴PO=DO ,MO=12MC ,∵AE=ED ,∴ EO ∥AP ,EO =12AP ,∴EO∠MO .∵AP=MC ,EO =12MC=MO ,∴∠EOM 为等腰直角三角形, ∴∠EMO=45°,.在等腰Rt∠MOE 中,ME=4,∴EOME =sin45°,∴ EO=4×sin 45°=2√2, ∴AP=2EO=4√2,∴DC=PM=AP-AM=4√2−3√2=√2.3.【答案】(1)解:如图1中,①当点Q 在平行四边形ABCD 内时,∠AP′B=180°﹣∠Q′P′B ﹣∠Q′P′D=180°﹣90°﹣10°=80°, ②当点Q 在平行四边形ABCD 外时,∠APB=180°﹣(∠QPB ﹣∠QPD )=180°﹣(90°﹣10°)=100°,综上所述,当∠DPQ=10°时,∠APB 的值为80°或100° (2)解:如图2中,连接BQ ,作PE∠AB 于E .∵tan∠ABP:tanA=3:2,tanA= 4 3,∴tan∠ABP=2,在Rt∠APE中,tanA= PEAE=43,设PE=4k,则AE=3k,在Rt∠PBE中,tan∠ABP= PEEB=2,∴EB=2k,∴AB=5k=10,∴k=2,∴PE=8,EB=4,∴PB= √82+42=4 √5,∵∠BPQ是等腰直角三角形,∴BQ= √2PB=4 √10(3)解:①如图3中,当点Q落在直线BC上时,作BE∠AD于E,PF∠BC于F.则四边形BEPF 是矩形.在Rt∠AEB中,∵tanA= BEAE=43,∵AB=10,∴BE=8,AE=6,∴PF=BE=8,∵∠BPQ 是等腰直角三角形,PF∠BQ , ∴PF=BF=FQ=8, ∴PB=PQ=8 √2 ,∴PB 旋转到PQ 所扫过的面积= 90⋅π⋅(8√2)2360=32π.②如图4中,当点Q 落在CD 上时,作BE∠AD 于E ,QF∠AD 交AD 的延长线于F .设PE=x .易证∠PBE∠∠QPF , ∴PE=QF=x ,EB=PF=8, ∴DF=AE+PE+PF ﹣AD=x ﹣1, ∵CD∠AB , ∴∠FDQ=∠A ,∴tan∠FDQ=tanA= 43 = FQ DF,∴xx−1 = 43,∴x=4,∴PE=4, √42+82 =4 √5 ,在Rt∠PEB 中,PB=, √42+82 =4 √5 , ∴PB 旋转到PQ 所扫过的面积= 90⋅π⋅(4√5)2360 =20π③如图5中,当点Q落在AD上时,易知PB=PQ=8,∴PB旋转到PQ所扫过的面积= 90⋅π⋅82360=16π,综上所述,PB旋转到PQ所扫过的面积为32π或20π或16π4.【答案】(1)解:如图1,过A点作AD∠BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2tcm.在Rt∠ABD中,AD= 12AB=t,BD=√32AB= √3t.在Rt∠AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD﹣MD.即√3t﹣t=20 √3﹣20.解得t=20.∴AB=2×20=40cm.答:AB的长为40cm.(2)解:如图2,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt∠ABN中,BN=ABcos30∘= √32= 80√33.∴光线AP旋转6秒,与BC的交点N距点B 80√33cm处.如图3,设光线AP旋转2014秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2014=125×16+14,即AP旋转2014秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN= 80√33,∵AB=AC,∠BAC=120°,∴BC=2ABcos30°=2×40× √32=40 √3,∴BQ=BC﹣CQ=40 √3﹣80√33= 40√33,∴光线AP旋转2014秒后,与BC的交点Q在距点B 40√33cm处.5.【答案】(1)解:∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12.∵DE∠AC,DE=5,∴在Rt∠ADE中,由勾股定理得AD= √AE2+DE2= √122+52=13(2)解:∵在Rt∠ABC中,∠CAB=30°,AC=AE+CE=24,∴BC=12,AB=AC•cos30°=12 √3,∵DE∠AC,AE=CE,∴AD=DC=13,∴四边形ABCD的周长为AB+BC+CD+AD=38+12 √36.【答案】(1)证明:∵四边形BDCE为菱形,∴CD=CE ,∠CBD=∠CBE , ∴CD=AC , ∴AC=CE .(2)证明:如图1,过点C 作CF∠AB 交于点F ,∵AC=CE ,∴AF=EF .在Rt∠BCF 和Rt∠ACF 中, BC 2=BF 2+CF 2,AC 2=AF 2+CF 2, ∴BC 2−AC 2=BF 2−AF 2=(BF +AF)(BF −AF)=AB ·BE , ∵四边形BDCE 是菱形,∴BE=CE=AC , ∴BC 2−AC 2=AB ⋅AC .(3)解:①∵AB AC =53 ,可设AB=5k ,BE=AC=3k ,则AE=AB-BE=2k ,AF=k .在Rt∠ACF 中,cos∠A= AF AC =k 3k =13.如图2,连接CO 并延长交∠O 与点G ,连接BG ,则∠G=∠A ,则cos∠G= 13,∵CG 是直径,∴∠BCG 是直角三角形, ∵CG=6,cos∠G= 13 ,∴BG=2,∴BC= √CG 2−BG 2=√36−4=4√2 .②如图2,设ABAC=m,其中m>1,AC=a,则AB=ma,AE=ma-a,AF= AE2=12(ma−a),在Rt∠AFC中,cos∠A= AFAC=12(ma−a)a=12(m−1),在Rt∠BCG中,CG=6,cos∠G=cos∠A= 12(m−1),∴BG=CG·cos∠G=6· 12(m−1)=3m-3,BC2= CG2−BG2=36−(3m−3)2,由(2)得BC2=AB·AC+AC2=ma2+a2,∴36−(3m−3)2=ma2+a2,∴9(m+1)(3−m)=a2(m+1),又∵m+1≠0,∴a2=9(3−m).∴AB·AC=ma2=9m(3−m)=−9m2+27m.当m= −272×(−9)=32时,−9m2+27m的值最大.∵0<BG<6,∴0<3(m-1)<6,∴1<m<3.∴当m= 32时,AB·AC的值最大,即ABAC=32时,AB·AC的值最大.7.【答案】(1)解:如图,过点E作EF⊥AC于点F,∵四边形ABCD是矩形,∴∠B=∠D=90°∵CE平分∠ACD∴DE=FE,CF=CD∵AB=m=3,BC=n=4∴AC=5∵CF=CD=AB=3∴AF=AC−CF=2∵AE=AD−DE=4−DE ∴Rt△AEF中,根据勾股定理得,(4−DE)2=22+DE2∴16−8DE+DE2=4+DE2∴DE=32;(2)解:①如图,延长FE和CD交于点G,∵E是AD的中点∴AE=DE∵∠A=∠GDE=90°,∠AEF=∠DEG∴△AEF≅△DEG(ASA)∴∠G=∠AFE,EF=EG∴E为FG的中点,∵CE⊥FG∴CE是FG的垂直平分线∴CF=CG∴∠G=∠CFE∴∠AFE=∠CFE∴EF平分∠AFC;②若∠AFE=∠BCF,则∠EFC=∠BCF∴FG//BC,这与题目相矛盾,即∠AFE≠∠BCF∴当∠AEF ∼∠BCF相似时,∴∠AFE=∠BFC,由①可知,∠AFE=∠CFE,∴∠AFE=∠CFE=∠BFC∴∠AFE=∠CFE=∠BFC=180°3=60°∴∠BCF=∠AEF=∠ECF=90°−60°=30°∴∠DEC=60°∴tan∠DEC=DC ED∴√3=DC ED∴DC2ED=√32∴DCAD=√32∴m n=√32.8.【答案】(1)解:由已知得AP=BP=12AB=15cm,在Rt△APE中,∵sin∠AEP=APAE,∴AE=APsin∠AEP=15sin18°≈150.31≈48cm,答:眼睛E与显示屏顶端A的水平距离AE约为48cm;(2)解:如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB⋅cos∠BAF=30×cos18°≈30×0.95≈28.5,BF=AB⋅sin∠BAF=30×sin18°≈30×0.31≈9.3,∵BF//CD,∴∠CBF=∠BCD=30°,∴CF=BF⋅tan∠CBF=9.3×tan30°=9.3×√33≈5.36,∴AC=AF+CF=28.5+5.36≈34cm.答:显示屏顶端A与底座C的距离AC约为34cm.9.【答案】(1)解:把A(4,0)代入y=−34x+b,得−34×4+b=0,解得b=3,∴直线l的函数表达式为y=−34x+3,∴B(0,3),∵AO∠BO,OA=4,BO=3,∴tan∠BAO= 3 4.(2)①证明:如图,连结AF,∵CE=EF,∴∠CAE=∠EAF,又∵AC=AE=AF,∴∠ACE=∠AEF,∴∠OCE=∠OEA,又∵∠COE=∠EOA,∴∠OCE∠∠OEA.②解:如图,过点E作EH∠x轴于点H,∵tan∠BAO= 3 4,∴设EH=3x,AH=4x,∴AE=AC=5x,OH=4-4x,∴OC=4-5x,∵∠OCE∠∠OEA,∴OEOA=OCOE,即OE2=OA·OC,∴(4-4x)2+(3x)2=4(4-5x),解得x1= 1225,x2=0(不合题意,舍去)∴E(5225,3625).(3)解:如图,过点A作AM∠OF于点M,过点O作ON∠AB于点N,∵tan∠BAO= 3 4,∴cos∠BAO= 4 5,∴AN=OA·cos∠BAO= 16 5,设AC=AE=r,∴EN= 165-r,∵ON∠AB,AM∠OF,∴∠ONE=∠AME=90°,EM= 12EF,又∵∠OEN=∠AEM,∴∠OEN∠∠AEM,∴OEAE=ENEM,即OE· 12EF=AE·EN,∴OE·EF=2AE·EN=2r·(165-r),∴OE·EF=-2r2+ 325r-2(r- 85)2+ 12825(0<r<165),∴当r= 85时,OE·EF有最大值,最大值为12825.10.【答案】(1)解:过A作AF⊥BC于F,∵AB=AC=120cm,BC=80 cm,∴BF =CF =40 cm∴AF =√1202−402=80√2 (cm )∴ A 到地面 BC 的高度是 80√2 cm.(2)解:过 E ′ 作 E ′H ⊥BC 于 H , E ′G ⊥AE 于 G∴四边形E’HFG 为矩形,在 RtΔAE ′G 中, AG =AE ′cos370=90×0.8=72 (cm ), ∴E ′H =AF −AG =80√2−72=40.8≈41 (cm ).∴E ′ 离地面高度约为41cm.11.【答案】(1)解:如图,设MN 交CC′于O ,∵AM =CM ,CN =BN ,∴MN∠AB ,∵MC=MC′,NC=NC′,∴MN 垂直平分线段CC′,∴CC′∠AB ,且点C′落在AB 上,在Rt∠ABC 中,AB =√AC 2+BC 2=10,∵12AB ×CC ′=12AC ×BC ,∴CC ′=6×810=245;(2)85(3)解:① 4②如下图,过点M 作ME∠AB 于E ,过点N 作NF∠AB 于F ,设CN=x ,则BN=8-x ,NF =35(8−x),BF =45(8−x), ∵∠A=∠A ,∠AEM=∠ACB=90°,∴∠MEA∠∠BCA ,∴AM AB =AE AC =EM BC, ∴361110=AE 6=EM 8, ∴ME =14455,AE =10855, ∵MC =MC ′=6−3611=3011, ∴EC ′=√MC ′2−ME 2=√(3011)2−(14455)2=4255, ∴C ′F =10−10855−4255−45(8−x)=8011−45(8−x), 由∠MEC′∠∠C′FN ,可得EM C ′F =EC ′FN , ∴144558011−45(8−x)=425535(8−x), 解得:x =6011, 经检验,x =6011是分式方程的解, ∴CN =6011. 12.【答案】(1)正方形(2)解: MC ′=ME理由如下:如图,连接 EC ′ ,由(1)知:AD=AE∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°由折叠知:B′C′=BC,∠B′=∠B∴AE=B′C′,∠EAC′=∠B′=90°又EC′=C′E,∴Rt△EC′A≌Rt△C′EB′∴∠C′EA=∠EC′B′∴MC′=ME(3)解:∵Rt△EC′A≌Rt△C′EB′,∴AC′=B′E 由折叠知:B′E=BE,∴AC′=BE∵AC′=2(cm),DC′=4(cm)∴AB=CD=2+4+2=8(cm)设DF=xcm,则FC′=FC=(8−x)cm在Rt△DC′F中,由勾股定理得:42+x2=(8−x)2解得:x=3,即DF=3(cm)如图,延长BA,FC′交于点G,则∠AC′G=∠DC′F∴tan∠AC′G=tan∠DC′F=AGAC′=DFDC′=34∴AG=32(cm)∴EG=32+6=152(cm)∵DF//EG,∴△DNF∽△ENG∴DN:EN=DF:EG=3:152=2513.【答案】(1)解:如图1,∵矩形ABCD∴AB∠CD,∠A=90°∴∠BDC=∠DBA,BD是∠O的直径∴∠BED=90°∵∠BFD=∠ABF+∠A,∠BFD=∠BDC+45°∴∠ABF+∠A=∠BDC+45°即∠ABF+90°=∠DBA+45°∴∠DBA-∠ABF=45°∴∠EBD=45°∴∠EBD=∠EDB(2)证明:如下图,在图2中,过点K作KS∠BE,垂足为R,交AB于点S.∵KG∠AB∴∠BGH=∠KRH=∠SRB=∠KGS=90°∴∠SBR=∠HKR∵∠RBK=∠RKB=45°∴BR=KR∵∠SRB=∠HRK=90°∴∠SRB∠∠HRK∴SB=HK∵SB=BG+SG,HK=BG+AF∴BG+SG=BG+AF∴SG=AF∵∠ABF=∠GKS,∠BAF=∠KGS=90°∴∠ABF∠∠GKS∴AB=KG(3)解:如下图,在图3中,过点O分别作AD和CN的垂线,垂足分别为Q和T,连接OC.∵∠APO=∠CPO∴OQ=OT∵OD=OC,∠OQD=∠OTC=90°∴∠OQD∠∠OTC∴DQ=CT∴AD=CN=BC连接ON∵OC=OC,ON=OB∴∠NOC∠∠BOC∴∠BCO=∠NCO设∠OBC=∠OCB=∠NCO=α∴∠MOC=2α过点M作MW∠OC,垂足为W在OC上取一点L,使WL=OW,连接ML∴MO=ML∴∠MOL=∠MLO=2α∴∠LCM=∠LMC=α∴ML=CL设OM=ML=LC=a则OD=a+8=OC,∴OL=8,OW=WL=4∵OM2-OW2=MW2=MC2-CW2∴a2+4a−45=0a1=-(9舍去),a2=5∴OM=5∴MW=3,WC=9,∴OB=OC=OD=13,BD=26∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW= 1 3∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW= 1 3∴CD=GK=AB =135√10在Rt∠GKB中,tan∠GKB= GB GK=13∴GB =1315√1014.【答案】(1)解:如图由题意得BD=a,CD=b,∠ACE=α∠B=∠D=∠CEB=90°∴四边形CDBE为矩形,则BE=CD=b,BD=CE=a,在Rt∆ACE 中,tanα=AE CE, 得AE=CE=CE×tanα=a tanα而AB=AE+BE ,故AB= a tanα+b答:灯杆AB 的高度为atanα+b 米(2)解:由题意可得,AB∠GC∠ED ,GC=ED=2,CH=1,DF=3,CD=1.8 由于AB∠ED ,∴∆ABF~∆EDF , 此时ED DF =AB BF即23=AB BC+1.8+3①, ∵AB∠GC∴∆ABH~∆GCH ,此时AB BH =GC CH, 21=AB BC+1② 联立①②得{AB BC+4.8=23AB BC+1=2, 解得:{AB =3.8BC =0.9答:灯杆AB 的高度为3.8米15.【答案】(1)①证明:∵点P ,N 分别是CD ,BC 的中点,∴PN//BD , PN =12BD , ∵点P ,M 分别是CD ,DE 的中点,∴PM//CE , PM =12CE , ∵AB =AC , AD =AE ,∴BD =CE ,∴PM =PN ;②证明:∵PN//BD ,∴∠DPN =∠ADC ,∵PM//CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴∠MPN=∠BAC=90°,又由①知PM=PN,∴△PMN为等腰直角三角形,又∵△ADE为等腰直角三角形,∴△ADE∠ △PNM(2)解:如图,连接BE,∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴△ABE∠ △ACD,∴BE=DC,∠ABE=∠ACD,∵点M、N、P分别为DE,BC,EC中点,∴PM//DC,MP=12DC,PN//BE,NP=12BE,∴MP=NP,∠NPA=∠BEA,∠MPA=∠DCA,∵∠BAC=90°,∴∠ABE+∠AEB=90°,∴∠NPM=∠NPA+∠APM=∠BEA+∠ACD=∠BEA+∠ABE=90°,∴△MPN为等腰直角三角形,∴cos∠NMP=cos45°=MPMN=√22,∴MNMP=√2.16.【答案】(1)解:过点O 作OG∠DC ,垂足为G .∵AD∠BC ,AE∠BC 于E ,∴OA∠AD .∴∠OAD=∠OGD=90°.在∠ADO 和∠GDO 中 {∠OAD =∠OGD ∠ADO =∠GDO OD =OD,∴∠ADO∠∠GDO .∴OA=OG .∴DC 是∠O 的切线(2)解:如图所示:连接OF .∵OA∠BC ,∴BE=EF= 12BF=12. 在Rt∠OEF 中,OE=5,EF=12,∴OF= √OE 2+EF 2 =13.∴AE=OA+OE=13+5=18.∴tan∠ABC= AE BE = 32。
专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)
![专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)](https://img.taocdn.com/s3/m/059aa313366baf1ffc4ffe4733687e21af45ffd3.png)
专题15.解直角三角形一、单选题1.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+2.(2021·浙江金华市·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 3.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( ) A .1米 B .1.5米 C .2米 D .2.5米4.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;②当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;③当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)tan30︒的值等于( )A B .2 C .1 D .27.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米8.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .809.(2021·山东泰安市·中考真题)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( )1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米10.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m11.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( ) A .163π B .643π C .16π D .64π12.(2020·柳州市柳林中学中考真题)如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B =BC AB=( )A .35B .45CD .3413.(2020·山东济南市·中考真题)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE 的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF//BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m14.(2020·贵州黔南布依族苗族自治州·中考真题)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角ADE∠为55°,测角仪CD的高度为1米,其底端C与旗杆底端B 之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.6tan551x︒=-B.1tan556x-︒=C.1sin556x-︒=D.1cos556x-︒=15.(2020·辽宁大连市·中考真题)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60︒方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.C.D.m316.(2020·内蒙古赤峰市·中考真题)如图,A经过平面直角坐标系的原点O,交x轴于点B(-4,0),交y 轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A.35B.34-C.34D.4517.(2020·江苏镇江市·中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD =y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A .25B .12C .35D .71018.(2020·吉林长春市·中考真题)比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B ,塔身中心线AB 与垂直中心线AC 的夹角为A ∠,过点B 向垂直中心线AC 引垂线,垂足为点D .通过测量可得AB 、BD 、AD 的长度,利用测量所得的数据计算A ∠的三角函数值,进而可求A ∠的大小.下列关系式正确的是( )A .sin BD A AB = B .cos AB A AD =C .tan AD A BD = D .sin AD A AB=19.(2020·山东威海市·中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38B .34CD .1520.(2020·广东深圳市·中考真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan 70︒米C .200sin70°米D . 200sin 70︒米 21.(2020·湖南娄底市·中考真题)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=⋅,阻力臂2cos L l β=⋅,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定22.(2020·江苏扬州市·中考真题)如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A .13BC .23D .3223.(2020·湖南湘西土家族苗族自治州·中考真题)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x24.(2019·浙江中考真题)如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( ) A .BDC α∠=∠ B .tan BC m a =⋅ C .2sin m AO α= D .cos m BD a= 25.(2019·山东中考真题)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣C .米D .(36﹣)米26.(2019·四川绵阳市·中考真题)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15BCD .9527.(2019·重庆中考真题)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( ) (参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米三、填空题28.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.29.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =. (1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)30.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).31.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile (3 1.73≈,结果用四舍五入法精确到0.1).32.(2021·四川乐山市·中考真题)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.33.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)34.(2021·浙江中考真题)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.35.(2021·浙江宁波市·中考真题)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.36.(2021·四川乐山市·中考真题)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.37.(2021·浙江杭州市·中考真题)sin30°的值为_____.38.(2020·贵州黔南布依族苗族自治州·中考真题)如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________. 39.(2020·辽宁阜新市·中考真题)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5m AB =,则这两棵树的水平距离约为_________m (结果精确到0.1m ,参考数据:sin200.342,cos200.940,tan200.364︒≈︒≈︒≈).40.(2020·湖北荆州市·中考真题)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90︒∠=C ,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km ,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了_______km .41.(2020·湖北省直辖县级行政单位·中考真题)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为________海里.42.(2020·湖北孝感市·中考真题)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为______m .(结果保留根号)三、解答题43.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).44.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)45.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)46.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D都在同一平面内.参考数据:tan 752︒=,tan152︒=.计算结果保留根号)47.(2021·四川资阳市·中考真题)资阳市为实现5G网络全覆盖,2020-2025年拟建设5G基站七千个.如图,在坡度为1:2.4i=的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45︒,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53︒(点A、B、C、D均在同一平面内)(参考数据:434sin53,cos53,tan53553︒≈︒≈︒≈)(1)求D处的竖直高度;(2)求基站塔AB的高.48.(2021·江苏宿迁市·中考真题)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,≈1.414≈=1.732).49.(2021·浙江嘉兴市·中考真题)一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ). (参考数据:sin360.59︒≈,cos360.81︒≈,tan360.73︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)50.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB 摆成如图1所示.已知 4.8m AB =,鱼竿尾端A 离岸边0.4m ,即0.4m AD =.海面与地面AD 平行且相距1.2m ,即 1.2m DH =.(1)如图1,在无鱼上钩时,海面上方的鱼线BC 与海面HC 的夹角37BCH ∠=︒,海面下方的鱼线CO 与海面HC 垂直,鱼竿AB 与地面AD 的夹角22BAD ∠=︒.求点O 到岸边DH 的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角53BAD ∠=︒,此时鱼线被拉直,鱼线 5.46m BO =,点O 恰好位于海面.求点O 到岸边DH 的距离.(参考数据:3sin 37cos535︒=︒≈,4cos37sin 535=︒︒≈,3tan 374︒≈,3sin 228︒≈,15cos2216︒≈,2tan 225︒≈)51.(2021·浙江绍兴市·中考真题)拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,高AB 为50cm ,连杆BC 长度为70cm ,手臂CD 长度为60cm .点B ,C 是转动点,且AB ,BC 与CD 始终在同一平面内,(1)转动连杆BC ,手臂CD ,使143ABC ∠=︒,//CD l ,如图2,求手臂端点D 离操作台l 的高度DE 的长(精确到1cm ,参考数据:sin530.8︒≈,cos530.6︒≈).(2)物品在操作台l 上,距离底座A 端110cm 的点M 处,转动连杆BC ,手臂CD ,手臂端点D 能否碰到点M ?请说明理由.52.(2021·四川达州市·中考真题)2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30的河床斜坡边,斜坡BC 长为48米,在点D 处测得桥墩最高点A 的仰角为35︒,CD 平行于水平线BM ,CD 长为AB 的高(结果保留1位小数).(sin350.57︒≈,cos350.82︒≈,tan350.70︒≈ 1.73≈)53.(2021·四川凉山彝族自治州·中考真题)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB 的高度,他在点C 处测得大树顶端A 的仰角为45︒,再从C 点出发沿斜坡走D 点,在点D 处测得树顶端A 的仰角为30︒,若斜坡CF 的坡比为1:3i =(点E C H ,,在同一水平线上).(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).54.(2021·四川广安市·中考真题)如图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB 与地面DE 平行,踏板CD 长为1.5m ,CD 与地面DE 的夹角15CDE ∠=︒,支架AC 长为1m ,75ACD ∠=︒,求跑步机手柄AB 所在直线与地面DE 之间的距离.(结果精确到0.1m .参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.73≈)55.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.56.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)57.(2021·四川眉山市·中考真题)计算:(1143tan 602-⎛⎫-︒--+ ⎪⎝⎭58.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.59.(2021·四川泸州市·中考真题)如图,A ,B 是海面上位于东西方向的两个观测点,有一艘海轮在C 点处遇险发出求救信号,此时测得C 点位于观测点A 的北偏东45°方向上,同时位于观测点B 的北偏西60°方向上,且测得C 点与观测点A 的距离为海里.(1)求观测点B 与C 点之间的距离;(2)有一艘救援船位于观测点B 的正南方向且与观测点B 相距30海里的D 点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C 点需要的最少时间.60.(2021·四川遂宁市·中考真题)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B 、C 处各有一棵被湖水隔开的银杏树,他在A 处测得B 在北偏西45°方向, C 在北偏东30°方向,他从A 处走了20米到达B 处,又在B 处测得 C 在北偏东60°方向.(1)求∠C 的度数;(2)求两颗银杏树B 、C 之间的距离(结果保留根号).61.(2021·四川自贡市·中考真题)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan370.75︒≈,tan53 1.33︒≈ 1.73≈)62.(2020·四川广安市·中考真题)如图所示的是某品牌太阳能热水器的实物图和横断面示意图,己知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平线AE 垂直,AB=154cm ,∠A=30°,另一根辅助支架DE=78cm ,∠E=60°.(1)求CD 的长度.(结果保留根号)(2)求OD 的长度.(结≈1.414)63.(2020·山东日照市·中考真题)阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,其外接圆半径为R .根据锐角三角函数的定义:sin A =a c ,sin B =b c ,可得sin a A =sin b B =c =2R ,即:sin a A =sin bB =sin c C=2R ,(规定sin90°=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:sin aAsin bB sin c C(用>、=或<连接),并说明理由. 事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60°,∠B =45°,a =8,求b . 综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15°,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C的仰角为45°,求古塔CD 的高度(结果保留小数点后一位).,sin15°64.(2020·辽宁铁岭市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大A B C M在同一平面内)(1)求大桥主架在桥桥主架的水平距离CM为60米,且AB垂直于桥面.(点,,,面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)50.(2020·辽宁盘锦市·中考真题)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:︒=︒≈︒≈)(选择一sin670.92,cos670.39,tan67 2.36︒≈︒=︒=.sin220.37,cos220.93,tan220.40种方法解答即可)65.(2020·云南昆明市·中考真题)(材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=20.43dR(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)66.(2020·山东烟台市·中考真题)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)67.(2020·海南中考真题)为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图, 隧道AB 在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点P 处测得点A 的俯角为30,继续飞行1500米到达点Q 处,测得点B 的俯角为45︒.(1)填空:A ∠=__________度,B ∠=_________度;(2)求隧道AB 的长度(结果精确到1米).( 1.732≈≈)68.(2020·山西中考真题)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角28ABC DEF ∠=∠=︒,半径60BA ED cm ==,点A 与点D 在同一水平线上,且它们之间的距离为10cm .(1)求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈); (2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.69.(2020·江西中考真题)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)70.(2020·湖南衡阳市·中考真题)小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24cm OA OB ==,BC AC ⊥,30OAC ∠=︒.(1)求OC 的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB '与水平线的夹角仍保持120°,求点B '到AC 的距离.(结果保留根号)71.(2019·上海中考真题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米. (1)求点D 到BC 的距离;(2)求E 、E '两点的距离.72.(2019·江西中考真题)图1是一台实物投影仪,图2是它的示意图,折线B A O --表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: 6.8cm AO =,8cm CD =,30cm AB =,35cm BC =.(结果精确到0.1)(1)如图2,70ABC ︒∠=,//BC OE .①填空:BAO ∠=_________°;②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求ABC ∠的大小.(参考数据:sin 700.94︒≈,cos200.94︒≈,sin36.80.60︒≈,cos53.20.60︒≈)。
【解直角三角形】专题复习(知识点+考点+测试)
![【解直角三角形】专题复习(知识点+考点+测试)](https://img.taocdn.com/s3/m/3a8ad763011ca300a6c390c1.png)
《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。
解直角三角形专题
![解直角三角形专题](https://img.taocdn.com/s3/m/4af1bd0ca6c30c2259019efc.png)
解直角三角形一、锐角三角函数:1、直角三角形三边的名称,对边 邻边 斜边2、锐角三角函数的定义:sinA= cosA= tanA= (3)、几个特殊的公式: sin 2A+ cos 2A =1 sinA= cosB sinB= cosA tanA=sinA/cosA (4)、特殊角三角函数值:用三角形与函数定义求得:(5)、典型题目: (1)、网格图求函数值 (2)、相等角求函数值二、解直角三角形:1、 直角三角形中边角之间的关系:(1)、边关系:勾股定理 (2)、角关系:两角互余 (3)、边角关系:函数的定义 2、 典型题目的解法:(1)、一边一角: (2)、两边:3、如图,在△ABC 中,已知AC=6,∠C=75°, ∠B=45°,求△ABC 的面积。
4、外国船只,除特许外,不得进入我国海洋100海里以内的区域。
如图,设A 、B 是我们的观察站,A 和B 之间的距离为160海里,海岸线是过A 、B 的一条直线。
一外国船只在P 点,在A 点测得∠BAP=450,同时在B 点测得∠ABP=600,问此时是否要向外国船只发出警告,令其退出我国海域.5、以申办2010年冬奥会,需改变哈尔滨市的交通状况,在大直街拓宽工程中, 要伐掉一棵树A B,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处测得树的顶点A 的仰角为60°,树的底部B 点的俯角为30°, 如图所示,问距离B 点8米远的保护物是否在危险区内?图1 AB BC ABACACBC222c b a =+090=∠+∠BA B30︒DA60︒C E6、《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.7、山顶上有一旗杆,在地面上一点A处测得杆顶B的俯角α=600,杆底C的俯角β=450,已知旗杆高BC=20米,求山高CD。
专题21 解直角三角形专项训练(原卷版)
![专题21 解直角三角形专项训练(原卷版)](https://img.taocdn.com/s3/m/6bd3d040dd88d0d232d46a08.png)
专题21 解直角三角形专项训练
1.(2020·上海九年级一模)某次台风来袭时,一棵笔直大树树干AB(假定树干AB垂直于水平地面)被刮倾斜7°(即∠BAB′=7°)后折断倒在地上,树的顶部恰好接触到地面D 处,测得∠CDA=37°,AD=5米,求这棵大树AB的高度.(结果保留根号)(参考数据:sin37≈0.6,cos37=0.8,tan37≈0.75)
2.(2020·上海大学附属学校九年级三模)已知:如图,楼顶有一根天线,为了测量楼的高度,在地面上取成一条直线的三点E、D、C,在点C处测得天线顶端A的仰角为60°,从点C走到点D,CD=6米,从点D处测得天线下端B的仰角为45°.又知A、B、E在一条线上,AB=25米,求楼高BE.
1/ 11。
解直角三角形的应用(专题训练)
![解直角三角形的应用(专题训练)](https://img.taocdn.com/s3/m/8061d40c581b6bd97f19ea94.png)
12mm
l
200mm
B D C
3.某段公路,每前进100m,路面就上升4m,
则路面的坡度为( D )
1 A. 50
1 B. 25
C. 22°
39 D. 156
4.如图所示,是某市的一块三角形空地, 准备在上面种植某种草皮以美化环境, 已知这种草皮每平方米售价为a元,则购 买这种草皮至少需要( )C A. 450a元 B. 225a元 C. 150a元 D. 300a元
5.如图所示, 水坝的横断面是等腰梯形, 斜坡AB的坡度i=1:3, 斜坡AB的水平宽度 BE=3 3 m, AD=2m, 求∠B, 坝高AE及坝 底宽BC.
1, 2 3 2
6.(09吉林)小鹏学完解直角三角形知识后,给 同桌小艳出了一道题:“如图所示,把一张长 方形卡片放在每格宽度为12mm的横格纸中,恰 好四个顶点都在横格线上,已知=360,求长方 形卡片的周长.”请你帮小艳解答这道题.(精 确到1mm)(参考数据:sin360≈0.60, cos360≈0.80, tan360≈0.75)
4.如图所示,某地下车库的入口处有斜 坡AB, 其坡度i=1:1.5, 且AB=
13 m.
5.如图所示, 一渔船上的渔民在A处看见 灯塔M在北偏东600方向, 这艘渔船以28 海里/时的速度向正东航行, 半小时至B处, 在B处看见灯塔M在北偏东150方向, 此时 灯塔M与渔船的距离是( A )海里 A. 72 B.142 C. 7 D. 14
6.如图所示,Rt△ABC是一防洪堤背水 坡的横截面图,斜坡AB的长为12m,它 的坡角为45°,为了提高该堤的防洪能 力,现将背水坡改造坡比为1∶1.5的斜 坡AD,求DB的长.(结果保留根号)
专题十二解直角三角形
![专题十二解直角三角形](https://img.taocdn.com/s3/m/1f7bb186a0116c175f0e48a9.png)
专题12 解直角三角形一.选择题1. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图10所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或1722.(2012年,潜江)如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=6cm ,CD⊥AB 于D ,以C 为圆心,CD 为半径画弧,交BC 于E ,则图中阴影部分的面积为( )﹣()﹣()二.填空题.3.(2012年,武汉)tan60°= .三.解答题4.(2012年,漳州)(满分10分)极具特色的“八卦楼”(又称“威镇阁”)是漳州的标志性建筑,它建立在一座平台上.为了测量“八卦楼”的高度AB ,小华在D 处用高1.1米的测角仪CD ,测得楼的顶端A 的仰角为22o ;再向前走63米到达F 处,又测得楼的顶端A 的仰角为39o (如图是他设计的平面示意图).已知平台的高度BH 约为13米,请你求出“八卦楼”的高度约多少米?(参考数据:sin22o ≈207,t an220≈52,sin39o ≈2516,tan39o ≈54)5.(2012年,河南)(9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅,如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定,小明为了测量此条幅的长度,他先在楼前D 处测得楼顶A 点的仰角为31°,再沿DB 方向前进16米到达E 处,测得点A 的仰角为45°,已知点C 到大厦的距离BC=7米,90ABD ∠=︒,请根据以上数据求条幅的长度(结果保留整数.参考数据:tan310.6,sin310.52,cos310.86︒≈︒≈︒≈)6.(2012年,遵义)(8分)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB.如图,在山外一点C 测得BC 距离为20m ,∠,540=CAB ∠,300=CBA 求隧道AB 的长.(参考数据: ,73.13,38.154tan ,59.054cos ,81.054sin 000≈≈≈≈精确到个位)7.(2012年,黄石)(本小题满分8分)如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=。
专题训练(八)解直角三角形常见的七种方法
![专题训练(八)解直角三角形常见的七种方法](https://img.taocdn.com/s3/m/070fa374ed630b1c58eeb53b.png)
专题训练(八) 解直角三角形常见的七种方法►方法一已知两边解直角三角形1.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下面的条件解直角三角形.(1)b=6,c=2 2;(2)a=4,b=4 3.2.如图8-ZT-1,已知AD为△BAC的角平分线,且AD=2,AC=3,∠C=90°,求BC的长及AB的长.图8-ZT-1►方法二已知一边和一个锐角解直角三角形3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下列条件解直角三角形.(1)∠A=60°,a=6;(2)∠A=30°,b=10 3.4.已知:如图8-ZT -2,在Rt △ABC 中,∠C =90°,AC =3,D 为BC 边上一点,且BD =2AD ,∠ADC =60°,求△ABC 的周长.(结果保留根号)图8-ZT -2► 方法三 已知一边和一锐角的三角函数值解直角三角形5.2018·自贡改编如图8-ZT -3,在△ABC 中,CH ⊥AB 于点H ,BC =12,tan A =34,∠B =30°;求AC 和AB 的长.图8-ZT -36.如图8-ZT -4,在△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 的中点,过点B 作直线CD 的垂线,垂足为E .(1)求线段CD 的长; (2)求cos ∠DBE 的值.图8-ZT -4►方法四“化斜为直法”解三角形7.如图8-ZT-5,在△ABC中,∠A=30°,∠B=45°,AC=2 3.求AB的长.图8-ZT-58.如图8-ZT-6,在△ABC中,CD是边AB上的中线,∠B是锐角,且sin B=22,tan A=12,AC=3 5.(1)求∠B的度数及AB的长;(2)求tan∠CDB的值.图8-ZT -6► 方法五 “参数法”解直角三角形9.2018·马鞍山一模如图8-ZT -7,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,E 是AB的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.图8-ZT -7► 方法六 “等角代换法”解直角三角形10.2018·当涂县六校联考如图8-ZT -8,在四边形ABCD 中,AC ,BD 是它的对角线,相交于点O ,∠ABC =∠ADC =90°,∠BCD 是锐角,BD =BC .求证:sin ∠BCD =BD AC.图8-ZT -8► 方法七 “等比代换法”解直角三角形11.如图8-ZT -9所示,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点B ,A ,与反比例函数的图象交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO =12,OB =4,OE =2.(1)求该反比例函数的表达式;(2)求直线AB对应的函数表达式.图8-ZT-9教师详解详析1.解:(1)在Rt △ABC 中,由勾股定理,得a =c 2-b 2=8-6= 2. ∵tan B =b a =62=3,∴∠B =60°,∴∠A =90°-∠B =30°.(2)∵在△ABC 中,∠C =90°,a =4,b =4 3, ∴c =a 2+b 2=8.∵sin A =a c =48=12,∴∠A =30°,∴∠B =90°-∠A =60°.2.解:∵AD =2,AC =3,∠C =90°, ∴cos ∠CAD =AC AD =32,∴∠CAD =30°.∵AD 为△BAC 的角平分线, ∴∠BAC =2∠CAD =60°,∴BC =AC ·tan ∠BAC =3×tan60°=3×3=3. ∵△ABC 是直角三角形,∴AB =BC 2+AC 2=9+3=2 3.3.解:(1)∠B =90°-∠A =90°-60°=30°. ∵sin A =a c ,∴c =6sin60°=632=4 3.∵sin B =bc,∴b =4 3×sin30°=4 3×12=2 3.(2)∠B =90°-∠A =90°-30°=60°. ∵tan A =ab,∴a =10 3×tan30°=10 3×33=10. ∵sin A =a c ,∴c =10sin30°=1012=20.4.解:在Rt △ADC 中,∵sin ∠ADC =ACAD ,∴AD =AC sin ∠ADC =3sin60°=2,∴BD =2AD =4. ∵tan ∠ADC =ACDC ,∴DC =AC tan ∠ADC =3tan60°=1,∴BC =BD +DC =5.在Rt △ABC 中,AB =AC 2+BC 2=2 7,∴△ABC 的周长=AB +BC +AC =2 7+5+ 3. 5.解:在Rt △BCH 中,∵BC =12,∠B =30°, ∴CH =12BC =6,BH =BC 2-CH 2=6 3.在Rt △ACH 中,tan A =34=CHAH ,∴AH =8,∴AC =AH 2+CH 2=10,6.解:(1)在△ABC 中,∵∠ACB =90°, ∴sin A =BC AB =45.又∵BC =8,∴AB =10.∵D 是AB 的中点,∴CD =12AB =5.(2)在Rt △ABC 中,∵AB =10,BC =8, ∴AC =AB 2-BC 2=6.∵D 是AB 的中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6×82×5=245.在Rt △BDE 中,cos ∠DBE =BE BD =2455=2425.7.解:过点C 作CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°. ∵∠B =45°, ∴∠BCD =∠B =45°, ∴CD =BD .∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3,答:AB 的长是3+ 3.8.解:(1)如图,过点C 作CE ⊥AB 于点E .设CE =x .在Rt △ACE 中,∵tan A =CE AE =12,∴AE =2x ,∴AC =x 2+(2x )2=5x , ∴5x =3 5,解得x =3,∴CE =3,AE =6.在Rt △BCE 中,∵sin B =22,∴∠B =45°, ∴△BCE 为等腰直角三角形, ∴BE =CE =3,∴AB =AE +BE =9. (2)∵CD 是边AB 上的中线, ∴BD =12AB =4.5,∴DE =BD -BE =4.5-3=1.5, ∴tan ∠CDE =CE DE =31.5=2,即tan ∠CDB 的值为2. 9.解:∵AC ⊥BD , ∴∠ACB =∠ACD =90°. ∵E 是AB 的中点,CE =1, ∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x . 在Rt △ACD 中,tan D =2, ∴ACCD=2, ∴AC =4x .在Rt △ACB 中,由勾股定理,得AB =AC 2+BC 2=5x , ∴sin ∠ECB =sin B =AC AB =45.由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=2 5x =2 5×25=4 55.10.证明:如图,过点B 作AD 的垂线BE 交DA 的延长线于点E ,延长CB 与DA 交于点F .∵∠ABC =∠ADC =90°,∴∠ADC +∠ABC =180°,∠FBA =∠FDC , ∴∠BCD +∠BAD =180°, ∠EAB =∠BCD .∵∠F =∠F ,∠FBA =∠FDC , ∴△FBA ∽△FDC ,∴FB FD =F AFC ,∴FB F A =FD FC. ∵∠F =∠F ,∴△FBD ∽△F AC ,∴∠FDB =∠BCA . ∵∠BED =∠ABC =90°, ∴△BED ∽△ABC ,∴BD AC =BEAB=sin ∠EAB =sin ∠BCD , 即sin ∠BCD =BDAC.11.解:(1)∵OB =4,OE =2, ∴EB =OB +OE =6. ∵tan ∠ABO =AO OB =12=CEEB ,∴CE =3,AO =2,∴A (0,2),B (4,0),C (-2,3). 设反比例函数的表达式为y =kx .∵点C 在反比例函数的图象上, ∴将点C (-2,3)代入,得k =-6, 即反比例函数的表达式为y =-6x.(2)设直线AB 对应的函数表达式为y =k 1x +b .将A (0,2),B (4,0)代入y =k 1x +b ,可得b =2,k 1=-12,∴直线AB 对应的函数表达式为y =-12x +2.。
解直角三角形与几何综合的两种考法(原卷版)(北师大版)
![解直角三角形与几何综合的两种考法(原卷版)(北师大版)](https://img.taocdn.com/s3/m/abf21566a7c30c22590102020740be1e640ecc04.png)
类型一、网格问题
例.将 BAC 放置在 4 4 的正方形网格中,顶点 A、B、C 在格点上.则 sin BAC 的值为
.
例 2.如图,方格纸中的每个小方格都是边长为 1 个单位长度的正方形,每个小正方形的顶点都在方格的格 点上,则 cosC =( )
A.
.
类型二、构造直角三角形问题 例 1.如图,在 ABC 中, A 30 , AC 2 3 , tan B 3 ,则 AB 的长为( )
2
A. 2 2 3
B. 3 3
C.4
D.5
例 2.如图,在四边形 ABCD 中,B D 90 ,BAD 60 ,AB 4 ,AD 5 .则 AC 的长的值为
1 3
ቤተ መጻሕፍቲ ባይዱ
B. 3 10 10
C. 2 5 5
D. 2 4
【变式训练 1】.如图,△ABC 的顶点是正方形的格点,则 sin∠BAC 的值为
【变式训练 2】.如图,在边长相同的小正方形网格中,点 A、B、C、D 都在这些小正方形的顶点上,AB,CD 相交于点 P,则 tan APD 的值为( )
A.3
B. 3 2
A. 6 6
B.12
C. 6 3
D.6
【变式训练 4】.如图,四边形 ABCD 的对角线 AC、BD 相交于 O,∠AOD=60°,AC=BD=2,则这个四 边形的面积是( )
A. 3 4
课后作业
B. 3 2
C. 3
D. 2 3
1.如图, ABC 的三个顶点分别在边长为 1 的正方形网格上,则 cosBAC 的值为
.
2.如图,在正方形网格中,点 A、B、O 都在格点上,那么 tan AOB 的值为
中考专题复习解直角三角形(含答案)
![中考专题复习解直角三角形(含答案)](https://img.taocdn.com/s3/m/69aee6c96e1aff00bed5b9f3f90f76c661374c9f.png)
中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。
2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。
4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。
5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。
7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。
第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。
依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。
2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。
(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。
⽤字母表⽰,即。
坡度⼀般写成的形式,如等。
把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。
【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。
2024年广东省中考数学总复习专题20:解直角三角形
![2024年广东省中考数学总复习专题20:解直角三角形](https://img.taocdn.com/s3/m/285b44125627a5e9856a561252d380eb62942315.png)
2024年广东省中考数学总复习专题20
解直角三角形一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b
,
正弦:sin A=∠的对边
=
斜边
A a
c;余弦:cos A=
∠的邻边
=
斜边
A b
c;正切:tan A=
∠的对边
=
邻边
A a
b.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
二、特殊角的三角函数值
三、解直角三角形
1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2;2)两锐角关系:∠
A+∠B=90°;3)边与角关系:sin A=cos B=a
c,cos A=sin B=
b
c,tan A=
a
b;4)sin
2A+cos2A=1.
3.科学选择解直角三角形的方法口诀:
第1页(共12页)。
【解直角三角形】专题复习
![【解直角三角形】专题复习](https://img.taocdn.com/s3/m/936f71e2856a561252d36f51.png)
【解直角三角形】专题复习考点一、直角三角形的性质 1、直角三角形的两个锐角互余∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°, ∠C=90° ⇒BC=21AB 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°,D 为AB 的中点⇒CD=21AB=BD=AD 4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、射影定理(可利用相似证明):在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项, 每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°CD ⊥AB ⇒ BD AD CD ∙=2 AB AD AC ∙=2 AB BD BC ∙=2 6、常用关系式:由三角形面积公式可得: AB ∙CD=AC ∙BC考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念:锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值三角函数 0° 30°45°60°90° sinα212223 1cos α 123 2221 0tan α 033 13不存在cot α 不存在31 33 04、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) ,tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA ∙tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦(或正切)值随着角度的增大(或减小)而增大(或减小) (2)余弦(或余切)值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形专题
例1、2013年4月20日,四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据≈1.41,≈1.73)
解:
例2、某居民小区为缓解“停车难”问题,小区物业部门拟建造一个新的地下停车库.设计师提供了该地下停车库设计图(如图).按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否驶入.为标明限高,请你根据该图计算CD的长(精确到0.1m)。
(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,cot20°≈2.75)解:
例3、如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
例4、如图,某工程队准备在山坡(山坡视为直线l)上修路,需要测量山坡的坡度,即tanα的值.测量员在
山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.
已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
解:
【课内精练】
1、我校体育馆有一部分看台的侧面如图,看台有五级高度相等的小台阶.已知看台高为2米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC(杆子的底部分别为D,C),且∠DAB=66.5°.(1)求点A与点C的高度差AH;
(2)求AB之间的水平距离H C(结果精确到0.1米);
(3)求所用不锈钢材料的总长度L(即AD+AB+BC,结果精确到0.1米).
(参考数据sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)
解:
2、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道。
为搞好工程预算,需测算出A,B间的距离:一小船在点P处测得A在正北方向,B位于南偏东24.5º方向,前行1200m,到达点Q处,测得A位于北偏西49º方向,B位于南偏西41º方向。
(1)线段BQ与PQ是否相等?请说明理由;
(2)求A,B间的距离。
(参考数据:cos41º≈0.75)
解:
3、如图,某校数学活动小组的同学去测量公园内一棵树DE 的高度,他们在树正前方一座楼亭前的台阶上A 点 处测得树顶D 的仰角为30°,朝着棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°. 已知A 点的 高度AB 为2米,台阶AC 的坡度为1:3(即AB: BC =1:3),且B 、C 、E 三点在同一条直线上.请根据 以上条件求出树DE 的高度(测倾器的高度忽略不计)。
解:
4、“一炷香”是某大峡谷著名的景点.校综合实践活动小组先在峡谷对面的广场上的A 处测得“香顶”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B 处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,732.13 )
解:
5、如图,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO ,并求出计算结果与实际塔
高388米之间的误差.≈1.732≈1.414.结果精确到0.1米) 解:
6、小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面的高OO′=2米.当吊臂顶端由A 点抬升至A′点(吊臂长度不变)时,地面B 处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB .AB 垂直地面O′B 于点B ,A′B′垂直地面O′B 于点C ,吊臂长度OA′=OA =10米,且cosA =5
3
,sinA′=21.
(1)求此重物在水平方向移动的距离BC ;
(2)求此重物在竖直方向移动的距离B′C .(结果保留根号) 解:
7、小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部AD 的距离,小强测得办公大楼顶部点A 的仰角为45°,测得办公大楼底部点B 的俯角为60°,已知办公大楼高46米,CD=10米.求点P 到AD 的距离(用含根号的式子表示). 解:
8、如图,已知高36米的楼房AB 正对着斜坡CD ,点E 在斜坡CD 的中点处,已知斜坡的坡角(即∠DCG )为30°,AB ⊥BC ,若点A 、B 、C 、D 、E 在同一平面内,从点E 处测得楼顶A 的仰角α为 ︒37, 楼底的俯角β为 ︒24;(1)、点A 、E 之间的距离AE 长为多少米?(精确到十分位);
(2)、现计划在斜坡中点E 处挖去部分斜坡,修建一条小路,平行于BC 的平路EF 和上坡路DF ,其中上坡路DF 的坡比为3:1,某施工队承包了这项工程任务,为了尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前了2天完成任务,施工队原计划平均每天修建多少米? (参考数据:80.037cos ≈︒ 75.037tan ≈︒ 45.024tan ≈︒
工程问题:
某开发商要建一批住房,经调查了解,若甲、乙两个施工队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成. (1)甲、乙两队单独完成各需多少天?
(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选择一队单独施工,若要使开发商选择甲队支付的总费用不超过选择乙队支付的总费用,则甲队每天的施工费最多为多少元?【总费用=施工费+工程师食宿费】
在一个不透明的盒子里装有4个分别标有数字1,2,3,4的小球,它们除数字不同 其余完全相同,概率:
搅匀后从盒子里随机取出1个小球,将该小球上的数字作为a 的值,则使关于x 的不等式组
21
2
x a x a >-⎧⎨
≤+⎩只有一个整数解的概率为 。
几何:如图,在ABC ∆中,,AB BC AD BC =⊥于点D ,点E 为AC 中点,连接BE 交AD 于点F ,且B F A C -,
过点D 作//DG AB 交AC 于点G 。
求证:(1)2BAD DAC ∠=∠; (2)GC =。