概率论第1,2,3次答案

合集下载

西华大学概率论练习题答案

西华大学概率论练习题答案
第一次 1某人射击目标3次,记Ai={第i次击中目标}(i=1,2,3) ,用A1, A2, A3表示下列事件(1) 仅有一次击中目标 (2)至少有一次击中目标 (3)第一次击中且第二 三次至少有一次击中 (4) 最多击中一次 A A A A A A A A A (1) 1 2 3 1 2 3 1 2 3 (2)A 1 A 2 A 3 (3) A (A 1 2 A 3)
证明 P ( AB ) P ( A B )
A1
A
1
A
2
第三次 1 袋中有3红球2白球,不放回地抽取2次,每次取 一个,求(1) 第二次取红的概率 (2) 已知第一次 取白球,求第二次取红球的概率 解 Ai={ 第i次取红球} (i=1,2) 不放回 E 取2次
P(A1)P(A2|1)P(A1)P(A2|1)
A2
A2
P(A2)
2 5
P(A1A2A3)
P(A1)P(A2|1)P(A1)P(A2|1)
0.25 P(A|B)
3 5
2 4
A2
2白球, 3红球
3 2 2 3 3 5 4 5 4 5
P (A A 2 | 1)

2 3 4 5 6 7
P(A1)PA2|( A1)PA3|( A12)
P (A )P (B |A ) P (A )P (B |A ) P (A )P (B |A )( P A B ) P ( A ) P ( B ) P ( AB )0.04 1 1 2 2 3 3
B
A1
B
A2
0.98
A3
0.4
25 % 5 % 35 % 4 % 40 % 2 %
P(A 1A 2A 3)

《概率论与数理统计》第三版 龙永红 第一、二、三章练习及答案

《概率论与数理统计》第三版 龙永红 第一、二、三章练习及答案

《概率论》第一章 练 习 一、填空题:(1)设A 、B 为随机事件,P (A )=0.7,P (A -B )=0.3,则P (A B )= 。

(2)设A 、B 为随机事件,P (A )=0.92,P (B )=0.93,P (B/A )=0.85,则P (A/B )=_ _,P (A B )=_ __。

见课本习题—20题(3)设事件A 、B 相互独立,已知P (A )=0.5,P (A B )=0.8,则P(A B )= , P (A B )= 。

(4)袋中有50个乒乓球,其中20个黄球,30个白球,今两人依次随机地从中各取一球,则第二个人取得黄球的概率是 。

(5)设两个独立事件A 、B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A )= 。

(6)一射手对同一目标独立地进行4次射击,若至少命中一次的概率是80/81,则该射手的命中率为 。

(7) 袋中有5个黑球,3个白球,大小相同,一次随机地取出4球,其中“恰好2个黑球,2个白球”的概率为: 、(8) 事件A 、B 、C 中至少有两个不发生,可用运算符号表示为: ;而运算符号C B A -+)(则表示事件 。

(9) A 、B 为相互独立的事件,P (A )=0.4,P (AB )=0.12,则 P (B )= ;P (A B )= 。

(10) 设A 、B 为互不相容事件,P (B )=0.4,P (A+B )=0.75,则 P (A )= ;P (AB )= 。

(11)设A 、B 为互不相容事件,P (A )=0.35,P (A+B )=0.80,则 P (B )= ;P (A )-P (AB )= 。

(12)A 、B 为相互独立的事件,P (A )=0.4,P (AB )=0.12,则B)= 。

P(B)= ;P(A(13)某人射击时,中靶的概率为3/4,如果射击直到中靶为止,则射击次数为3的概率为(14)设每次试验成功的概率为:P(0<P<1),则3次重复试验中至少失败1次的概率为(15)甲、乙两个人独立地对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是二、计算题:1、现有编号为1,2,3的3个盒子,1号盒中有3个红球,2个黄球;2号盒中有2个红球,3个黄球;3号盒中有1个红球,4个黄球。

概率论1至7章课后答案

概率论1至7章课后答案

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

大学概率论第一章答案

大学概率论第一章答案

习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =I U ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10}.|0,1,2,n n +=L 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) ; (3) A B C U U ABC ABC ABC U U ; (4) ABC ABC ABC ABC U U U ; (5) ABC ; (6) ()A B C U .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2)A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2A A U 3; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B −=−. (B)()()()P A B P A P B =+U .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =−=−−+=U ,故. 于是()()1P A P B +=()1.P B p =−3. 已知()0.4P A =,,()0.3P B =()0P A B .4=U , 求()P AB .解 由公式()()()()P A B P A P B P AB =+−U 知()0.P AB 3=. 于是()()()0.1P AB P A P AB =−=..34. 设A , B 为随机事件,,()0.7P A =()0P A B −=, 求()P AB .解 由公式()()(P A B P A P AB )−=−可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为,所以=0, 即有=0.ABC AB ⊂0()P ABC P AB ≤≤()()P ABC 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++−−−+=U U 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==−U U U U =.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ×, 没有一等品的概率为023225C C C ×, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有种,两个球都是白球的取法有种,一黑一白的取法有种,由古典概率的公式知道29C 24C 1154C C (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C −. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()(P AB P B )=.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()P A 1<<, 则下列命题正确的是( ).(A) 若((P AB P A =), 则A , B 互斥.(B) 若()P B A 1=, 则()0P AB =.(C) 若()()P AB P AB +1=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则表示“恰有i 发击中目标”. (0,1,2,3i B i =)i B 为互斥的完备事件组. 于是没有击中目标概率为,0()0.60.50.30.09P B =××=恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =××+××+××=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =××+××+××=,恰有三发击中目标概率为3()0.40.50.70.14P B =××=.又已知 012(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B 3====,所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===×+×+×=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,表示“取得球来至第i 个箱子”,i =1,2,3. i H 则P ()=i H 13, i =1,2,3, 1211(|),(|),(|)52P A H P A H P A H ==358=. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P ()=2|H A 222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,,.12(|)0.04,(|)0.03P A B P A B ==3(|)0.05P A B =(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=×+×+×=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ×===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ×===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ×===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()((P AB P A P B =). (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) . (B) (|)()P A B P A =()()()P AB P A P B =.(C) A 与B 一定互斥. (D).()()()()()P A B P A P B P A P B =+−U 解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =U U ,求.()P A 解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++−−−+U U . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<,因此有 2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅= 从而 29()3()3[()]16P A B C P A P A =−=U U , 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==×= (2) ()()0.70.20.30.80.38;P AB P AB +=×+×=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+−=+−=U总 习 题 一1. 选择题:设是三个相互独立的随机事件, 且0(,,A B C )P C 1<<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B U 与C . (B)AC 与C . (C) A B −与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396×=×. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198×+×=× 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =(i ≠j, i , j =1, 2, 3)且B ∅1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221×+×+×=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|0.750.90.250.30.75P B P A P B A P A P B A =+=×+×=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ×====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。

概率论第三章课后习题答案_课后习题答案

概率论第三章课后习题答案_课后习题答案

第三章 离散型随机变量率分布。

,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。

出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。

概率论与数理统计_简答题答案

概率论与数理统计_简答题答案

3.将3个球随机地投入4个盒子中,求下列事件的概率 (1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球; (3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。

解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 三、2.一批产品共20件,其中一等品9件,二等品7件,三等品4件。

从这批产品中任取3件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率。

解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3;(1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故)()()()(321321A P A P A P A A A P ++=++320116241132711129C C C C C C C ++==0.671 (2)设事件A 表示取出的3件产品中至少有2件等级相同,那么事件A 表示取出的3件产品中等级各不相同,则779.01)(1)(320141719=-=-=C C C C A P A P 2.玻璃杯成箱出售,每箱20只.假设各箱含0,1,2只残次品的概率分别为0.8, 0.1和0.1. 一顾客欲购一箱玻璃杯,在购买时,售货员任取一箱,而顾客随机的察看4只,若无残次品,则买下该箱玻璃杯,否则退还.试求顾客买下该箱的概率。

解:设=i A “每箱有i 只次品” (),2,1,0=i , =B “买下该箱” . )|()()|()()|()()(221100A B P A P A B P A P A B P A P B P ++==94.01.01.018.0420418420419≈⨯+⨯+⨯C C C C1.一个工人看管三台车床,在一小时内车床不需要工人看管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7。

《概率论与数理统计》第三版王松桂科学出版社课后习题答案

《概率论与数理统计》第三版王松桂科学出版社课后习题答案

第一章 事件与概率1.写出下列随机试验的样本空间。

(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。

(2)同时掷三颗骰子,记录三颗骰子点数之和。

(3)生产产品直到有10件正品为止,记录生产产品的总件数。

(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(5)在单位正方形内任意取一点,记录它的坐标。

(6)实测某种型号灯泡的寿命。

解 (1)},100,,1,0{n i n i==Ω其中n 为班级人数。

(2)}18,,4,3{ =Ω。

(3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。

(5)=Ω{(x,y)| 0<x<1,0<y<1}。

(6)=Ω{ t | t ≥ 0}。

2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。

(1)A 发生,B 与C 不发生。

(2)A 与B 都发生,而C 不发生。

(3)A ,B ,C 中至少有一个发生。

(4)A ,B ,C 都发生。

(5)A ,B ,C 都不发生。

(6)A ,B ,C 中不多于一个发生。

(7)A ,B ,C 至少有一个不发生。

(8)A ,B ,C 中至少有两个发生。

解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃ 3.指出下列命题中哪些成立,哪些不成立,并作图说明。

(1)B B A B A = (2)AB B A =(3)AB B A B =⊂则若, (4)若 A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC 解 : (1) 成立,因为B A B B B A B B A ==))((。

概率论第一章课后习题答案

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答习题一3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生;(2)A 与B 都发生,而C 不发生;(3)A ,B ,C 都发生;(4)A ,B ,C 都不发生;(5)A ,B ,C 中至少有一个发生;(6)A ,B ,C 中恰有一个发生;(7)A ,B ,C 中至少有两个发生;(8)A ,B ,C 中最多有一个发生.解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ;(5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ;(8)BC AC AB 或C B C A B A .5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;(2)求最大的号码为5的概率.解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得(1)121)(31025==C C A P ; (2)201)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求:(1)任取3件产品恰有1件是废品的概率;(2)任取3件产品没有废品的概率;(3)任取3件产品中废品不少于2件的概率.解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ; (3)0023.0)(32003611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率:A 表示“这三个数字中不含0和5”; B 表示“这三个数字中包含0或5”; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得157)(31038==C C A P ;158)(1)(=-=A P B P ;307)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P .解:4.08.05.0)|()()(=⨯==A B P A P AB P)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()()()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少?解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为319.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.(1)求他拨号不超过三次而接通的概率;(2)若已知最后一个数字是奇数,那么他拨号不超过三次而接通的概率又是多少?解:设事件A 分别表示“他拨号不超过三次而接通”,事件B 分别表示“最后一个数字是奇数”,则所求的概率为(1)103819810991109101)(=⨯⨯+⨯+=A P (2)53314354415451)|(=⨯⨯+⨯+=B A P 13.一盒里有10个电子元件,其中有7个正品,3个次品.从中每次抽取一个,不放回地连续抽取四次,求第一、第二次取得次品且第三、第四次取得正品的概率. 解:设事件i A 表示“第i 次取得次品”(4,3,2,1=i ),则所求的概率为 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =201768792103=⨯⨯⨯= 14.一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别有5箱、3箱、2箱,三厂产品的次品率依次为1.0,2.0,3.0,从这10箱中任取 一箱,再从这箱中任取一件产品,求取得正品的概率.解:设事件321,,A A A 分别表示“产品是甲,乙,丙厂生产的”,事件B 表示“产品是正品”,显然,事件321,,A A A 构成一个完备事件组,且2.0102)(,3.0103)(,5.0105)(321======A P A P A P 7.03.01)|(,8.02.01)|(,9.01.01)|(321=-==-==-=A B P A B P A B P 由全概率公式得83.07.02.08.03.09.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P15.甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是2.0.飞机被击中1弹而坠毁的概率为1.0,被击中2弹而坠毁的概率为5.0,被击中3弹必定坠毁.(1)求飞机坠毁的概率;(2)已知飞机已经坠毁,试求它在坠毁前只被命中1弹的概率.解:设事件i A 表示“飞机被击中i 弹而坠毁”)3,2,1(=i ,事件B 表示“飞机坠毁”,显然,事件321,,A A A 构成一个完备事件组,由二项概率公式计算得008.0)2.0()(,096.0)8.0()2.0()(,384.0)8.0()2.0()(33331223221131======C A P C A P C A P 1)|(,5.0)|(,1.0)|(321===A B P A B P A B P(1)由全概率公式得0944.01008.05.0096.01.0384.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P(2)由贝叶斯公式得407.00944.01.0384.0)|()()|()()|(31111≈⨯==∑=i ii A B P A P A B P A P B A P 16.设甲袋中装有5个红球,4个白球;乙袋中装有4个红球,5个白球.先从甲袋中任取2个球放入乙袋中,然后从乙袋中任取一个球,求取到是白球的概率. 解:设事件i A 表示“从甲袋取出的2个球中有i 个白球”)2,1,0(=i ,事件B 表示“从乙袋中取出的一个球是白球”,显然,事件321,,A A A 构成一个完备事件组,且29254)(C C C A P i i i -=,115)|(i A B P i +=,)2,1,0(=i ,由全概率公式得 5354.09953115)|()()(202925420==+⋅==∑∑=-=i i i i i i i C C C A B P A P B P 17.已知男子有%5是色盲患者,女子有%25.0是色盲患者.现在从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:设事件A 表示“此人是男性”,事件B 表示“此人是色盲患者”,显然,事件A A ,构成一个完备事件组,且5.0)()(==A P A P ,%25.0)|(%,5)|(==A B P A B P由贝叶斯公式得9524.02120%25.05.0%55.0%55.0)|()()|()()|()()|(≈=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 18.设机器正常时生产合格品的概率为%98,当机器发生故障时生产合格品的概率为%30,而机器正常(即不发生故障)的概率为%95.某天,工人使用该机器生产的第一件产品是合格品,求机器是正常的概率.解:设事件A 表示“该机器正常”,事件B 表示“产品是合格品”,显然,事件A A ,构成一个完备事件组,且%30)|(%,98)|(%,5)(1)(%,95)(===-==A B P A B P A P A P A P由贝叶斯公式得984.0%30%5%98%95%98%95)|()()|()()|()()|(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 19.三人独立地去破译一个密码,他们能够译出的概率分别是51,31,41,问能将密码译出的概率是多少?解:设事件C B A ,,分别表示“第一人,第二人,第三人破译出密码”,显然事件C B A ,,相互独立,且41)(,31)(,51)(===C P B P A P ,则所求的概率为 53)411)(311)(511(1)()()(1)(=----=-=C P B P A P C B A P 20.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是02.0,03.0,05.0和03.0.假设各道工序是互不影响的,求加工出来的零件的次品率.解:设事件i A 表示“第i 道工序加工出次品”)4,3,2,1(=i ,显然事件4321,,,A A A A 相互独立,且03.0)(,05.0)(,03.0)(,02.0)(4321====A P A P A P A P ,则所求的概率为)()()()(1)(43214321A P A P A P A P A A A A P -=124.0)03.01)(05.01)(03.01)(02.01(1=-----=21.设第一个盒子里装有3个蓝球,2个绿球,2个白球;第二个盒子里装有2个蓝球,3个绿球,4个白球.现在独立地分别从两个盒子里各取一个球.(1)求至少有一个蓝球的概率;(2)求有一个蓝球一个白球的概率;(3)已知至少有一个蓝球,求有一个蓝球一个白球的概率.解:设事件21,A A 表示“从第一个盒子里取出的球是篮球,白球”,事件21,B B 表示“从第二个盒子里取出的球是篮球,白球”,显然事件i A 与j B 相互独立)2,1;2,1(==j i ,且94)(,92)(,72)(,73)(2121====B P B P A P A P ,则所求的概率为 (1)95)921)(731(1)()(1)(1111=---=-=+B P A P B A P ; (2)631692729473)()()()()(12211221=⨯+⨯=+=+B P A P B P A P B A B A P ; (3))()])([()](|)[(11111221111221B A P B A B A B A P B A B A B A P +++=++ 3516956316)()(111221==++=B A P B A B A P 22.设一系统由三个元件联结而成(如图51-),各个元件独立地工作,且每个元件能正常工作的概率均为p (10<<p ).求系统能正常工作的概率.图51- 解:设事件i A 表示“第i 个元件正常工作”)3,2,1(=i ,事件B 表示“该系统正常工作”,显然,事件321,,A A A 相互独立,且p A P i =)(,则所求的概率为 )()()()(])[()(32132313231321A A A P A A P A A P A A A A P A A A P B P -+=== 3232132312)()()()()()()(p p A P A P A P A P A P A P A P -=-+=24.一批产品中有%20的次品,进行放回抽样检查,共取5件样品.计算:(1)这5件样品中恰有2件次品的概率;(2)这5件样品中最多有2件次品的概率.解:设事件A 表示“该样品是次品”,显然,这是一个伯努利概型,其中%80)(%,20)(,5===A P A P n ,由二项概率公式有(1)2048.0%)80(%)20()2(32255==C P(2)942.0%)80(%)20()(2055205==∑∑=-=k k k k k C k P。

概率论第一章习题答案

概率论第一章习题答案

概率论11、甲、乙两艘轮船驶向一个不能同时停泊两艘船的码头停泊.它们在一昼夜内到达码头的时刻是等可能的.如果甲船停泊的时间是一小时,乙船停泊的时间是两小时,求这两艘船都不等候码头的概率. 解:分别用x、y表示甲、乙船到达时刻,在直角坐标系下作直线x=24、y=24,它们与x轴及y轴围成一个正方形,点(x,y)总是落入这个正方形的;作直线y=x+1与y=x-2,如果点(x,y)落入两直线所夹以外区域就不需要等待,所以不需要等待的概率为:p=(22*22/2+23*23/2)/(24*24)=1013/1152≈0.87934027777777825、已知男人中5%是色盲患者,女人中有0.25%;今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男人的概率是多少?解:可以算出色盲的人占总人数的比率是5%x50%+0.25%x50%=2.625%,而在2.625%的人中,男的占5%x50%,所以是男的几率为5%x50%除以2.625%=20/21第一章随机事件与概率1.设A,B,C为三个事件,试用A、B、C表示下列事件,并指出其中哪俩个事件是互逆事件:1)仅有一个事件发生;2)至少有一个事件发生;3)三个事件都发生;4)至多有两个事件发生;5)三个事件都不发生;6)恰好两个事件发生。

用a,b,c分别表示A,B,C的补事件,那么有1)abC∪aBc∪Abc2)1-abc3)ABC4)1-ABC5)abc6)ABc∪AbC∪aBC其中(2)和(5) (3)和(4) 是互逆事件2.设对于事件A,B,C,有P(A)=P(B)=P(C)=1/4,P(AC)=1/8,P(AB)=P(BC)=0,求A、B、C至少出现一个的概率。

因为P(AB)=0,所以P(ABC)=0,所以P(A+B+C)=PA+PB+PC-PAB-PAC-PBC+PABC=5/83.设A,B为随机事件,P(A)=0.7,P(A-B)=0.3,求P(AB(—))。

概率论第二版范大茵--课后习题答案习题答案

概率论第二版范大茵--课后习题答案习题答案

习题一1--4 5--10 11--19 20--10h写出下列试验的样本空间:(1)随机抽查10户居民勺记录已安装空调机的户娄(2)记录某一车站某一时间区间内的候车人数;⑶同时掷10个钱币,记录正面朝上的钱币的个娄(4)从某工厂生产的产品中依次抽取3件进行检査. 次品的情况;在单位球内随机地取一点争记录其直角坐标:(6)某人进行射击,射击进行到命中目标为止,记情况;(7)对某工厂的产品进行检查,每次抽查1个产百的次品数达到2个就停止检查或总的检査数达到4个查,记录检查情况.2.设厶5 C为三个事件,用A9民C的运算表示一(IM,民c都发生;(2X5发生,C不发生;解发生,C不发生表示为人胚二仙-C.解"C都不发生表示为[肥(4>4, B中至少有一个发生而C不发生;(5>4, 5 C中至少有一个发生;(6>4, 5 C中至多有一个发生;(7>4, 5 C中至多有两个发生;(8M, 5 C中恰有两个发生.3・将一颗骰子投掷两次,依次记录所得点数.记,之和为5冷E为“两数之差的绝对值为3笃C为^两数之于俨.试用样本点的集合表示事件4 B, C.A^B.AC,.解样本空间为d{(l,l), (1,2), (1,3), (1,4), (1,5), (1,6),(2,1), (2, 2),(2, 3), (2, 4), (2, 5), (2,6), (6, 1),(6, 2),(6, 3), (6,4), (6, 5), (6,6)}.4二{(1,4), (2, 3), (3,2), (4,1)};5=((1, 4), (2, 5), (3, 6), (4,1), (5, 2), (6, 3)};C二{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (4, 1)};^={(1, 4), (2, 3), (2, 5), (3, 2), (3, 6), (4, 1), (5, 2), (6, 3)};AC={(29 3), (3, 2)};BC={(1.4), (4, 1)}.4・(1)设厶乙67为三个事件,已知:PQ4>0.3, P@)=0・8, P(C>0・6,P⑷)=0.2, P(AC)=09 P(BC)=Q.6.试求①企4 zB); (ii)P(AB); (in)P(A<jB<jC).解(1)巩45)二F3)+P(B)—二0.3+0.8—0.2二0.9; (ii)P(A劝二二0.3-0.2二0.1;(111)卩(乩夙丿0二尸⑷+P(B)+HG-P(A^-P(ACyP{BC)+P(ABC)—0.3+0.8+0.6-0.2-0-0.6+0=0.9.注:因为ABCuAC,所以(KPC4BC)<P3C)二0,即P(ABC^0.(2)设卩⑷试问Pg5)的所有可能取值、最小值各是多少?习题一1--4 5--10 11--19 20--10®将一郭段子投掷两次欄依次记录所得点轨试】(1)两骰子点数相同的概率;解用占表示“两数之差的绝对值为以则〃二{(1 歩2), (2,1), (2, 3), (35 2), (3, 4)5(4, 3), (4, 5), (5,4), (5,6), (6? 5)}・因为样本空间的样本点数为36, B的样本点数为insG)两数之乘积小于等于12的概率.P(C)= 23(1)恰好取到1只红球.2只解用C表示"两数之乘积小于等于12丁则G{(1, 1),(1, 2),(1,3), (1,4), (1,5), (1,6),(2.1), (2, 2), (2, 3), (2,4), (2, 5), (2, 6),(3, 1), (3, 2), (3, 3), (3,4),(4, 1), (4, 2), (4, 3),(5, 1), (5, 2),(6.1), (6, 2)}.因为样本空间的样本点数为36, C的样本点数为23,所以6. 一袋中装有红球5只、黄球6只、蓝球7只,任取6只球,试求:(2)P(B (18用,4解 用鸟表示“恰好取到Z 只红球和Z 只黄球;用B 表示^取 到红球只数与黄球只数相等订则 』二6-27丿 P(B)二 P (冏 uS 1 i)—P{B^)+P(B \ }+P(B2)+P(Bi)7・设一袋中有编号为1, 2厶・・・,9的球共9只, 任取3只球,试求:⑴取到1号球的概率;(2)最小号码为5的概率;中解用B表示最小号码为5二因为〃发生表示号码为5,其它两个球的号码为6 7, & 9.因此⑶所取号码从小到大排序中间一只恰为5的概率解用C表示“所取号码从小到大排序中间一只恰为5二因为c发生表示其中一球的号码为5,其它两个球的号码分别为1,2,3,4 和6,7,&9・因此(4)2号球或3号球中至少有一只没有取到的概率. 解用刀表示乜号球没有取到爲E表示T号球没有取到笃则2号球或3号球中至少有一只没有取到可表示为ME,于是P3E)二 P(D)十P(E)- P(DE)&从数字0, 1, 2,・・・,9十个数字中不放回地依次数字,组成一个三位数(或二位数)'试问:(1)此数个位是5的概率是多少?(2)此数能被5整除的概率是多少?解用貝表示^所得数的个位是5笃用B表示斯得数的个位是0”,则表示所得数的个位或为0或为5,于是所得数能被5整除的概率为巴5)二巴)+P(B)二#令斗⑶依次所取三数怡为从小到大排列的概率是多少解用C表示“所得三数恰为从小到大排列",则率:(1)解用/表示山至解9.从一副扑克牌(52张冲任取13张牌.试求下列P(B)(Hl(3广方块”或^红桃"中至少缺一种花色的概率;26 P(ABC)解A 表示“缺红桃"显表示“缺方块冷故“方块诫“红桃" 中至少缺一种花色可表示为“故所求概率为P(AuB)=P(A)+P(B)-P(AB)⑷缺「方块"且缺梅花冷旦不缺红桃^的概率解 用C 表示“缺梅花”,而怎表示“缺红桃”,B 表示“缺方 块”,故缺“方块”且缺梅花”但不缺“红桃"可表示为ABC=BC-ABC\故所求概率为J3丿10.已知 P(A)=0.39 P(£)=0A 9 P(AB)=0.2,试求⑵ 2W);(4)尸(尿J片_]H现45)]二]F(.4〃)二]0.2 二3 ■■一巴5) 0.3+0」-02一§习题一1--4 5--10 11--19 20--101L已知巩4)=0亿F@)=06尸3方)=05 求(1)凡4心);(2)恥陀5);(3)P(A\AuB\12.设甲地下雨的概率是0.5,乙地下雨的概率是乙两地同时下雨的概率是0.10,试求:(1)已知甲地下雨的条件下,乙地下雨的概率;解用且表示“甲地下雨訂B表示“乙地下雨笃C表示^丙地下雨:则P ⑷二0.5, P(B)二0.3, P(45)=0.10, 所求概率为P(B ⑷二警^=皿=0.2.v 1 ' P(A) 0.5解P(A\A<J B)P(AuB) (2)已知甲、乙两地中至少有一地下雨的条件下, 的概率.尸3)二0・5,尸3)二 0.3, p(40)二O ・io,所求概率为 5 713. 设有甲、乙、丙三个小朋友,甲得病的概率韦 甲得病的条乙得病的概率是o.4o,在甲、乙两人 条件下丙得病的条件概率是0.80,试求甲、乙、丙三 的概率.解 用表示“甲得病:B 表示Z 得病:凡4)二 0.05, P (旳4)二 0.4, P(CRB)二 0・ &HQ解 用卫表示”点数之和为B 表示“点数相等',则 4)},14. 丢两骰子,观察所得数对,试计算下列条件的(1)已知两颗骰子点数之和为8的条件下,两颗段 等的概率;心2, 6), (6, 21 (3, 5), (5, 3), (4, 4)},曲二{(4,所求概率为(2)已知两颗锻子点数之差的绝对值为1的条件I 子点数之和大于等于5的概率.C={(152)9 (2, 1), (2, 3)? (3, 2), (3,4),(4, 3), (4, 5), (5, 4), (5,6), (6, 5)},CD={(2, 3), (3, 2), (3, 4), (4, 3),(4, 5), (5, 4)9 (5, 6), (6, 5)}, 所求概率为=解用C表示“差的绝对值为1?5?D - 和大于等3615.设某人按如下原则决定某日的活动:如该天0.2的概率外岀购物,以0.8的概率去探访朋友;如该: 则以0.9的概率外出购物,以0.1的概率去探访朋友. 雨的概率是0・3・(1)试求那天他外出购物的概率;⑵若已知他那天外岀购物.试求那天下雨的概率.16.设在某一男、女人数相等的从群中,已知5% 0.25%的女人患有色盲.今从该人群中随机地选择一人(1)该人患有色盲的概率是多少?解用」表示"选到男:用鸟表示"所选的人是色盲二则PC4>P(X>|,巴⑷二需池丽牆.所求概率为P(B)二 P⑷ F®A)+P(a(B ⑷1 5 . 1 025 n2100 2 100(2)若已知该人患有色盲,那么他是男性的概率是17.设某地区间应届初中毕业生有70%报考普通]报考中专,10%报考职业高中,录取率分别为90%, 7.试求:(1)随机调查一名学生,他如愿以偿的概率;解用丄表示報考普髙,异表示漲考中专冷c 5职髙笃Q表示"被录取笃则P ⑷二0.7, P(B)二0.2, P(C)二0.1,卩(刀円)二0.9, F(Q0)二0.75, P(D\C)=O 85.所求概率为F(刀)二F3)P(刀H)+P(B)P(Z)|B)+P(C)P(QC)二0.7x0・9+0・2x0・75+0,1x0,85=0.865.(2)若某位学生按志愿被录取了,那么他报考普通率.1&设有甲、乙两个旅行团*旅行团甲有中国旅萌外国旅游者m人;旅行团乙有中国旅游者a人,外匡人.今从旅行团甲中随机地挑选两人编入旅行团乙,旅行团乙中随机地选择一人,试问他是中国人的概率丿n m1 +、2a+20+用鸟表示柱甲团中所选的两个人中有2芥中国人"a二o」2)9A表示^在乙团中所选的人是中国人3则P ⑷二聘Bo)+P3b)+P ⑷ 2)二玖BjPQi |耳)+卩(5)凡4血)+只艮)卩3血) 迪19.有两箱同种类的零件「第一箱装50个,其中品;第二箱装30个,其中18个一等品.今从两箱中, 然后从该箱中取零件两次,每次任取1个厂作不放回丸(1)第一次取到的零件是一等品的概率;解用乙表示“选中第一箱笃场表示'选中第二箱笃A表示“第一次取到的零件是一等品”',则卩3)二卩3团)+卩3场) 二理1血)+卩厲)凡4艮)-1.10+1.18_2_0 4_______________ 2J5(L2 30L^_+I m+n I(2)第一次取到的零件是一等品的条件下,第二次是一等品的概率・0」解用C 表示“第二次取到的零件是一等品二则D//-q P (AC ) P (ACB )+P (ACB^))巩出攻)F (C|HBJ+戶厲辺)P(A)1 10 9 丄1 18 17• ■ ---.2 50 49 2 30 29^4856^ 习题一 1--4 5--10 11--19 20--1030.设4 B 是相互独立的事件” P ⑷=05尸3)=0」 ⑴H(2)电 3):⑶疋一 £);(4侃4禺〃)・21.试证明:若凡4)二1,则/与任何事件独立.证因为P0)=1,所以4是必然事件•设〃是任意事件,则AB=B,卩他冲⑻二卩⑷P(B),因此/与B相互独立.即且与任何事件独立.22.甲、乙、丙三门大炮对某敌机进行独立射击,的命中率依次为0.7, 0.8, 0.9.若敌机被命中两弹或两被击落,设三门炮同时射击一次,试求敌机被击落的相解用A表示用命片;B表示Z命中二C表示Z命中冷刀表示“敌机被击落",则P ⑷二0.7, P(B)=0. & P(C)=0.9.所求概率为P(D)=P(ABC<J ABC U ABC U ABC)二P(ABC)+P(ABC)+P(ABC)+P(ABC)=0.7x0.8x0.1+07x0.2x0.9+0.3x0.8x0.9+0.7x0.8x0.9 二0.902.各继电器闭合也分别用& 5 C, D 、E 表示 23.如图1-11所示,人表示继电器接#一个继电器闭合的概率均为P 且继电器闭合与否相上求Z 到7?是通路的概率.通路可表示为[(A 5) C] 三4 C AJ B C U DE,所求概率为P{ [(4u5)C]u(Z)£)}=P(ACu5CuZ)£) =P(AC)+P(BC)+P(DE)-PQBC)-P(4CDE)-P(BCDE)+P®BCDE) =p+p+p-p-p-p+p24.设甲、乙、丙三人在某地钓鱼.每人能钓到鱼别为0.4, 0.6, 0.9,且三人之间能否钓到鱼相互独立,方 Z 到人是(1)三人中恰有一人钓到鱼的枇率;解用A表示“甲钓到鱼笃B表示“乙钓到鱼笃C表示^丙钓到鱼;则P ⑷二0.4, P(B)二0.6, P©二09三人中恰有一人钓到鱼用刀表示,则所求概率为P(D)二 P(应 C)+P(ABC)+P(A BC)=0.4x0.4x0.1+0.6x0.6x0.1+0.6x0.4x0.9=0.268.(2)三人中至少有一人钓到鱼的概率.解三人中至少有一人钓到鱼用£表示,则所求概率为P(£)=1-P(£)=1-P05Q=1-0.6x0.4x0.1=0.976.。

概率论与数理统计答案第一章

概率论与数理统计答案第一章

概率论第一章习题解答习题1.11. 写出下列随机试验的样本空间Ω及指定的事件:(1)袋中有3个红球和2个白球,现从袋中任取一个球,观察其颜色;(2)掷一枚硬币,设H 表示“出现正面”,T 表示“出现反面”.现将一枚硬币连掷两次,观察出现正、反面的情况,并用样本点表示事件A =“恰有一次出现正面”;(3)对某一目标进行射击,直到击中目标为止,观察其射击次数,并用样本点表示事件A =“射击次数不超过5次”;(4)生产某产品直到5件正品为止,观察记录生产该产品的总件数;(5)从编号a 、b 、c 、d 的四人中,随机抽取正式和列席代表各一人去参加一个会议,观察选举结果,并用样本点表示事件A =“编号为a 的人当选”.解:(1)Ω = {红色, 白色}; (2)Ω = {(H , H ), (H , T ), (T , H ), (T , T )},A = {(H , T ), (T , H )};(3)Ω = {1, 2, 3, …, n , …},A = {1, 2, 3, 4, 5}; (4)Ω = {5, 6, 7, …, n , …};(5)Ω = {(a , b ), (a , c ), (a , d ), (b , a ), (b , c ), (b , d ), (c , a ), (c , b ), (c , d ), (d , a ), (d , b ), (d , c )},A = {(a , b ), (a , c ), (a , d ), (b , a ), (c , a ), (d , a )}.2. 某射手射击目标4次,记事件A =“4次射击中至少有一次击中”,B =“4次射击中击中次数大于2”.试用文字描述事件A 与B . 解:A 表示4次射击都没有击中,B 表示4次射击中击中次数不超过2.3. 设A , B , C 为三个事件,试用事件的运算关系表示下列事件:(1)A , B , C 都发生;(2)A , B , C 都不发生;(3)A , B , C 中至少有一个发生;(4)A , B , C 中最多有一个发生;(5)A , B , C 中至少有两个发生;(6)A , B , C 中最多有两个发生.解:(1)ABC ; (2)C B A ; (3)A ∪B ∪C ; (4)C B A C B A C B A C B A U U U ;(5)ABC BC A AB U U U ; (6)ABC .4. 在一段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次,….记事件A n =“接到的呼唤次数小于n ”(n = 1, 2, …),试用事件的运算关系表示下列事件:(1)呼唤次数大于2;(2)呼唤次数在5到10次范围内;(3)呼唤次数与8的偏差大于2.解:(1)3A ; (2)A 11 − A 5; (3)116A A U .5. 证明:(1)Ω=−A B A AB U U )(; (2)AB B A B A B A =))()((U U U .证:(1)Ω==Ω===−A A B A A AB B A AB U U U U U U U U )()(;(2)U U U U U U A B A B B A B A B A B A ())(())()((==∅AB AB A A B A A B A ===U U U )())(.习题1.21. 设P (A ) = P (B ) = P (C ) = 1/4,P (AB ) = P (BC ) = 0,P (AC ) = 1/8,求A 、B 、C 三个事件至少有一个发生的概率.解:因P (AB ) = P (BC ) = 0,且ABC ⊂ AB ,有P (ABC ) = 0, 则8581414141)()()()()()()()(=−++=+−−−++=ABC P BC P AC P AB P C P B P A P C B A P U U . 2. 设P (A ) = 0.4,P (B ) = 0.5,P (A ∪B ) = 0.7,求P (A − B )及P (B − A ).解:因P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.4 + 0.5 − 0.7 = 0.2,则P (A − B ) = P (A ) − P (AB ) = 0.4 − 0.2 = 0.2,P (B − A ) = P (B ) − P (AB ) = 0.5 − 0.2 = 0.3.3. 某市有A , B , C 三种报纸发行.已知该市某一年龄段的市民中,有45%的人喜欢读A 报,34%的人喜欢读B 报,20%的人喜欢读C 报,10%的人同时喜欢读A 报和B 报,6%的人同时喜欢读A 报和C 报,4%的人同时喜欢读B 报和C 报,1%的人A , B , C 三种报纸都喜欢读.从该市这一年龄段的市民中任选一人,求下列事件的概率:(1)至少喜欢读一种报纸;(2)三种报纸都不喜欢;(3)只喜欢读A 报;(4)只喜欢读一种报纸.解:分别设A , B , C 表示此人喜欢读A , B , C 报,有P (A ) = 0.45,P (B ) = 0.34,P (C ) = 0.2,P (AB ) = 0.1,P (AC ) = 0.06,P (BC ) = 0.04,P (ABC ) = 0.01,(1)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ) = 0.8;(2)2.0)(1)((=−==C B A P C B A P P U U U U ;(3)3.0)()()()()()()(=+−−=−=ABC P AC P AB P A P B A P B A P C B A P ;(4)因21.0)()()()()()()(=+−−=−=ABC P BC P AB P B P P B P B P ,11.0)()()()()()()(=+−−=−=ABC P BC P AC P C P BC A P C A P C B A P , 故62.0)()()()(=++=++C B A P C B A P C B A P C B A C B A C B A P .4. 连续抛掷一枚硬币3次,求既有正面又有反面出现的概率.解:样本点总数n = 2 3 = 8,事件A 中样本点数62313=+=C C k A ,则75.043)(===n k A P A . 5. 在分别写有2, 4, 6, 7, 8, 11, 12, 13的8张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率.解:样本点总数2828==C n ,事件A 中样本点数18231315=+=C C C k A ,则6429.0149)(===n k A P A . 6. 一部5卷文集任意地排列在书架上,问卷号自左向右或自右向左恰好为1, 2, 3, 4, 5顺序的概率等于多少?解:样本点总数12055==A n ,事件A 中样本点数k A = 2,则0167.0601)(===n k A P A . 7. 10把钥匙中有3把能打开某一门锁,今任取两把,求能打开某该门锁的概率.解:样本点总数45210==C n ,事件A 中样本点数24231317=+=C C C k A ,则5333.0158)(===n k A P A . 8. 一副扑克牌有52张,进行不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色. 解:样本点总数270725452==C n ,(1)事件A 1中样本点数285611131131131131==C C C C k A ,则1055.0208252197)(11===n k A P A ; (2)事件A 2表示两种花色各两张,或者一种1张一种3张,样本点数81120)2(113313213213242=+=C C C C C k A ,则2996.041651248)(22===n k A P A . 9. 口袋内装有2个伍分、3个贰分、5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率. 解:样本点总数252510==C n ,事件A 分三种情形:①两枚5分,三枚其它,②一枚5分,三枚2分,一枚1分,③一枚5分,两枚2分,两枚1分,样本点数1262523121533123822=++=C C C C C C C C k A ,则5.021)(===n k A P A . 方法二:10枚硬币总额2角1分,任取5枚若超过1角,那么剩下的5枚将不超过1角,可见事件A 中的样本点与A 中的样本点一一对应,即A k k =,则5.0)()(==A P A P .10.在10个数字0, 1, 2, …, 9中任取4个(不重复),能排成一个4位偶数的概率是多少(最好是更正为:排在一起,恰好排成一个4位偶数的概率是多少)?解:样本点总数5040410==A n ,事件A 的限制条件是个位是偶数,首位不是0,样本点数2296281814281911=+=A A A A A A k A ,则4556.09041)(===n k A P A . 11.一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算). 解:样本点总数n = 365 100,A 的对立事件A 表示所有学生生日都不在元旦,100364=A k , 则2399.036536411(1)(100=⎟⎠⎞⎜⎝⎛−=−=−=n k A P A P A .12.在 [0, 1] 区间内任取两个数,求两数乘积小于1/4的概率.解:设所取得两个数为x , y ,Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},}1,10,10|),{(<<<<=y x y x A 有m (Ω) = 1,4034.042ln 23)41ln 4141(1)ln 41(411()(141141=−=−−=−=−=∫x x dx x A m 则5966.042ln 21)()(1(1)(=+=Ω−=−=m A m P A P . 习题1.31. 一只盒子有3只坏晶体管和7只好晶体管,在其中取二次,每次随机地取一只,作不放回抽样,发现第一只是好的,问另一只也是好的概率是多少?解:设A 表示第一只是好的,B 表示第二只是好的,当第一只是好的时,第二次抽取前有3只是坏的,6只是好的,则6667.03296)|(===A B P . 2. 某商场从生产同类产品的甲、乙两厂分别进货100件、150件,其中:甲厂的100件中有次品4件,乙厂的150件中有次品1件.现从这250件产品中任取一件,从产品标识上看它是甲厂生产的,求它是次品的概率.解:设A 表示甲厂产品,B 表示次品,故04.01004)|(==A B P . 3. 根据抽样调查资料,2000年某地城市职工家庭和农村居民家庭收入按人均收入划分的户数如下:户数 6000元以下 6000 ~ 12000元 12000元以上 合计城市职工 25 125 50 200 农村居民 120 132 48 300 合计 145 257 98 500 现从被调查的家庭中任选一户,已知其人均收入在6000元以下,试问这是一个城市职工家庭的概率是多少?解:设A 表示人均收入在6000元以下,B 表示城市职工家庭,故1724.014525)|(==A B P . 4. 某单位有92%的职工订阅报纸,93%的职工订阅杂志,在不订阅报纸的职工中仍有85%的职工订阅杂志,从单位中任找一名职工,求下列事件的概率:(1)该职工至少订阅报纸或杂志中一种;(2)该职工不订阅杂志,但是订阅报纸. 解:设A 表示订阅报纸,B 表示订阅杂志,有P (A ) = 0.92,P (B ) = 0.93,85.0|(=A B P , 则068.085.008.0)|()()(=×==A B P A P B A P ,862.0068.093.0)()()(=−=−=B A P B P AB P ,(1)P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.92 + 0.93 − 0.068 = 0.988;(2)P (A − B ) = P (A ) − P (AB ) = 0.92 − 0.862 = 0.058.5. 某工厂有甲、乙、丙三个车间生产同一种产品,各个车间的产量分别占全厂产量的25%、35%、40%,各车间产品的次品率分别为5%、4%、2%.(1)求全厂产品的次品率;(2)如果从全厂产品中抽取一件产品,恰好是次品,问这件次品是甲、乙、丙车间生产的概率分别是多少?解:(1)任取一件产品,设A 1, A 2, A 3分别表示甲、乙、丙车间产品,B 表示次品,则P (B ) = P (A 1) P (B | A 1) + P (A 2) P (B | A 2) + P (A 3) P (B | A 3)= 0.25 × 0.05 + 0.35 × 0.04 + 0.4 × 0.02 = 0.0345;(2)3623.069250345.005.025.0)()|()()()()|(1111==×===B P A B P A P B P B A P B A P , 4058.069280345.004.035.0)()|()()()()|(2222==×===B P A B P A P B P B A P B A P , 2319.069160345.002.04.0)()|()()()()|(3333==×===B P A B P A P B P B A P B A P . 6. 有三个形状相同的罐,在第一罐中有两个白球和一个黑球;在第二个罐中有三个白球和一个黑球;在第三个罐中有两个白球和两个黑球.某人随机地取一罐,再从该罐中任取一球,试问这球是白球的概率有多少?解:设321,,A A A 分别表示第一、二、三罐,B 表示白球, 则6389.03623423143313231)|()()|()()|()()(332211==×+×+×=++=A B P A P A B P A P A B P A P B P . 7. 三部自动的机器生产同样的汽车零件,其中机器A 生产的占40%,机器B 生产的占25%,机器C 生产的占35%,平均说来,机器A 生产的零件有10%不合格,对于机器B 和C ,相应的百分数分别为5%和1%,如果从总产品中随机地抽取一个零件,发现为不合格,试问:(1)它是由机器A 生产出来的概率是多少?(2)它是由哪一部机器生产的可能性最大?解:设A 1, A 2, A 3分别表示机器A , B , C 生产的零件,D 表示不合格的零件,(1))|()()|()()|()()|()()()()|(3322111111A D P A P A D P A P A D P A P A D P A P D P D A P D A P ++== 7143.075056.004.001.035.005.025.01.04.01.04.0===×+×+××=; (2)2232.011225056.00125.0056.005.025.0)()()|(22===×==D P D A P D A P ,0625.01127056.00035.0056.001.035.0)()()|(33===×==D P D A P D A P , 则由机器A 生产的概率最大.8. 设P (A ) > 0,试证:)()(1)|(A P B P A B P −≥. 证:)()(1)()(11)(1)()()()()()()()()|(A P B P A P B P A P B P A P A P B A P B P A P A P AB P A B P −=−−=−+≥−+==U . 习题1.41. 一个工人看管三台机床,在一小时内机床不需要工人看管的概率分别为0.9、0.8、0.7,求在一小时内3台机床中最多有一台需要工人看管的概率.解:设A 1, A 2, A 3分别表示一小时内第一、二、三台机床不需要工人照管,可以认为A 1, A 2, A 3相互独立, 则概率为)()()()()(321321321321321321321321A A A P A A A P A A A P A A A P A A A A A A A A A A A A P +++=U U U)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++== 0.9 × 0.8 × 0.7 + 0.9 × 0.8 × 0.3 + 0.9 × 0.2 × 0.7 + 0.1 × 0.8 × 0.7 = 0.902.2. 电路由电池A 与两个并联的电池B 及C 串联而成,设电池A , B ,电路发生断电的概率. 解:设A , B , C 分别表示电池A , B , C 损坏,电路断电为事件A ∪BC ,则概率为P (A ∪BC ) = P (A ) + P (BC ) − P (ABC ) = P (A ) + P (B ) P (C ) − P (A ) P (B ) P (C ) = 0.3 + 0.2 × 0.2 − 0.3 × 0.2 × 0.2 = 0.328.方法二:设A , B , C 分别表示电池A , B , C 正常工作,系统正常工作为事件A (B ∪C ) = AB ∪AC , 则概率为1 − P (AB ∪AC ) = 1 − P (AB ) − P (AC ) + P (ABC )= 1 − P (A ) P (B ) − P (A ) P (C ) + P (A ) P (B ) P (C )= 1 − 0.7 × 0.8 − 0.7 × 0.8 + 0.7 × 0.8 × 0.8 = 0.328.3. 加工某一零件共需经过四道工序.设第一、二、三、四道工序的次品率分别为2%, 3%, 5%, 3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解:设A 1, A 2, A 3, A 4分别表示第一、二、三、四道工序加工出合格品,有A 1, A 2, A 3, A 4相互独立,则概率为1 − P (A 1A 2A 3A 4) = 1 − P (A 1) P (A 2) P (A 3) P (A 4) = 1 − 0.98 × 0.97 × 0.95 × 0.97 = 0.1240.4. 抛掷一枚质地不均匀的硬币8次,设正面出现的概率为0.6,求下列事件的概率:(1)正好出现3次正面;(2)至多出现2次正面;(3)至少出现2次正面.解:将每次掷硬币看作一次试验,出现正面A ,反面A ;独立;P (A ) = 0.6.伯努利概型,n = 8,p = 0.6.(1)1239.04.06.0)3(53388=××=C P ; (2)0498.04.06.04.06.04.06.0)2()1()0(622871188008888=××+××+××=++C C C P P P ;(3)9915.04.06.04.06.01)1()0(17118800888=××−××−=−−C C P P .5. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:将每次射击看作一次试验,击中A ,没击中A ;独立;P (A ) = 0.2.伯努利概型,n 次试验,p = 0.2,则9.08.018.02.01)0(100≥−=××−=−n n n n C P ,即0.8 n ≤ 0.1,故32.108.0lg 1.0lg =≥n ,取n = 11.6. 一大批产品的优质品率为60%,从中任取10件,求下列事件的概率:(1)取到的10件产品中恰有5件优质品;(2)取到的10件产品中至少有5件优质品;(3)取到的10件产品中优质品的件数不少于4件且不多于8件.解:将取每件产品看作一次试验,优质品A ,非优质品A ;独立;P (A ) = 0.6.伯努利概型,n = 10,p = 0.6.(1)2007.04.06.0)5(5551010=××=C P ;(2)P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8) + P 10 (9) + P 10 (10)288103771046610555104.06.04.06.04.06.04.06.0××+××+××+××=C C C C8338.04.06.04.06.0010101019910=××+××+C C ;(3)P 10 (4) + P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8)28810377104661055510644104.06.04.06.04.06.04.06.04.06.0××+××+××+××+××=C C C C C= 0.8989;7. 证明:若)|()|(B A P B A P =,则事件A 与B 独立. 证:因)(1)()()(1)()()()|()()()|(B P AB P A P B P B A P P B A P B A P B P AB P B A P −−=−−====, 则P (AB )[1 − P (B )] = P (B )[P (A ) − P (AB )],即P (AB ) − P (AB ) P (B ) = P (B ) P (A ) − P (B ) P (AB ), 故P (AB ) = P (A ) P (B ),A 与B 相互独立.复习题一1. 设P (A ) = 0.5,P (B ) = 0.6,问:(1)什么条件下P (AB )可以取最大值,其值是多少?(2)什么条件下P (AB )可以取得最小值,其值是多少?解:(1)当A ⊂ B 时P (AB ) 最大,P (AB ) = P (A ) = 0.5;(2)当A ∪B = Ω 时P (AB ) 最小,P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.5 + 0.6 − 1 = 0.1.2. 一电梯开始上升时载有5名乘客,且这5人等可能地在8层楼的任何一层出电梯,求:(1)每层至多一人离开的概率;(2)至少有两人在同一层离开的概率;(3)只有一层有两人离开的概率.解:样本点总数是8取5次的可重排列,即n = 8 5 = 32768,(1)事件A 1中样本点数6720581==A k A ,则2051.0512105)(11===nk A P A ; (2)事件A 2是A 1的对立事件,则7949.0512407)(1)(12==−=A P A P ; (3)事件A 3表示有两人在同一层离开,而另外三人分别在3个不同楼层或者都在同一层离开,样本点数17360)(33173725183=+=C A A C A k A ,则5298.020481085)(33===n k A P A . 3. 从5副不同的手套中任取4只手套,求其中至少有两只手套配成一副的概率.解:样本点总数210410==C n ,A 的对立事件表示4只手套都不配套,801212121245==C C C C C k A , 则6190.021131(1)(==−=−=n k A P A P A . 4. 从1, 2, …, n 中任取两数,求所取两数之和为偶数的概率. 解:样本点总数为)1(212−=n n C n ,事件A 表示取得两个偶数或两个奇数,当n 为偶数时,共有2n 个偶数和2n 个奇数, 样本点数)2(41)12(22222−=−=+=n n n n C C k n n A ,则)1(22)(2−−==n n C k A P n A ; 当n 为偶数时,共有21−n 个偶数和21+n 个奇数, 样本点数2221221)1(41212121232121−=−⋅+⋅+−⋅−⋅=+=+−n n n n n C C k n n A ,则n n C k A P nA 21)(2−==. 5. 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以一只吃掉另一只的概率.解:样本点总数4005290==C n ,事件A 中样本点数7652911021019=+=C C C C k A ,则1910.08917)(===n k A P A . 6. 某货运码头仅能容一船卸货,而甲、乙两船在码头卸货时间分别为1小时和2小时.设甲、乙两船在24小时内随时可能到达,求它们中任何一船都不需等待码头空出的概率.解:Ω = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24},A = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24, x − y > 2或y − x > 1},有m (Ω) = 24 2 = 576,5.50622212321)(22=×+×=A m , 则8793.05765.506)()()(==Ω=m A m A P . 7. 从区间 [0, 1] 中任取三个数,求三数和不大于1的概率.解:Ω = {(x , y , z ) | 0 ≤ x , y , z ≤ 1},A = {(x , y , z ) | 0 ≤ x , y , z ≤ 1, x + y + z ≤ 1},有m (Ω) = 1,A 是一个三棱锥,6112131)(=××=A m ,则1667.061)()()(==Ω=m A m A P . 8. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率是多少?(假设男人和女人各占人数的一半.)解:设A 1, A 2分别表示男人和女人,B 表示色盲,则9524.021200025.05.005.05.005.05.0)|()()|()()|()()()()|(22111111==×+××=+==A B P A P A B P A P A B P A P B P B A P B A P . 9. 发报台分别以0.7和0.3的概率发出信号0和1(例如:分别用低电频和高电频表示).由于随机干扰的影响,当发出信号0时,接收台不一定收到0,而是以概率0.8和0.2收到信号0和1;同样地,当发报台发出信号1时,接收台以概率0.9和0.1收到信号1和0.试求:(1)接收台收到信号0的概率;(2)当接收台收到信号0时,发报台确是发出信号0的概率.解:设A 0, A 1分别表示发出信号0, 1,B 0, B 1表示收到信号0, 1,(1)P (B 0) = P (A 0) P (B 0 | A 0) + P (A 1) P (B 0 | A 1) = 0.7 × 0.8 + 0.3 × 0.1 = 0.59;(2)9492.0595659.08.07.0)()|()()()()|(000000000==×===B P A B P A P B P B A P B A P . 10.设A , B 独立,AB ⊂ D ,D B A ⊂,证明P (AD ) ≥ P (A ) P (D ).证:因AB ⊂ D ,有AB ⊂ AD ,则P (AD ) − P(AB ) = P (AD − AB ),B D ΩA因B A ⊂=U ,有D ⊂ A ∪B ,D − B ⊂ A ∪B − B ⊂ A ,则AD − AB = A (D − B ) = D − B ,故P (AD ) − P (AB ) = P (AD − AB ) = P (D − B ) ≥ P (A ) P (D − B ) ≥ P (A ) [P (D ) − P (B )],由于A , B 独立,有P (AB ) = P (A ) P (B ),故P (AD ) ≥ P (A ) P (D ).11.甲、乙、丙三人同时向一架飞机射击,他们击中目标的概率分别为0.4, 0.5, 0.7.假设飞机只有一人击中时,坠毁的概率为0.2,若2人击中,飞机坠毁的概率为0.6,而飞机被3人击中时一定坠毁.现在如果发现飞机已被击中坠毁,计算它是由三人同时击中的概率.解:结果:设B 表示目标被击毁,原因:设A 0, A 1, A 2, A 3分别表示无人、1人、2人、3人击中目标, 则)|()()|()()|()()|()()|()()()()|(332211003333A B P A P A B P A P A B P A P A B P A P A B P A P B P B A P B A P +++==, 且有P (B | A 0) = 0,P (B | A 1) = 0.2,P (B | A 2) = 0.6,P (B | A 3) = 1,又设C 1, C 2, C 3分别表示甲、乙、丙击中目标, 则09.03.05.06.0)()()()()(3213210=××===C P C P C P C C C P A P ,)()(3213213211C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P P P P C P P P P C P ++== 0.4 × 0.5 × 0.3 + 0.6 × 0.5 × 0.3 + 0.6 × 0.5 × 0.7 = 0.36,)()(3213213212C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P C P P C P P C P P C P C P ++== 0.4 × 0.5 × 0.3 + 0.4 × 0.5 × 0.7 + 0.6 × 0.5 × 0.7 = 0.41,P (A 3) = P (C 1C 2C 3) = P (C 1) P (C 2) P (C 3) = 0.4 × 0.5 × 0.7 = 0.14, 故3057.0458.014.0114.06.041.02.036.0009.0114.0)|(3==×+×+×+××=B A P . 12.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4人治好则认为这种药有效,反之则认为无效.试求:(1)虽然新药有效,且把痊愈率提高到35%,但通过试验被否定的概率;(2)新药完全无效,但通过试验被认为有效的概率. 解:将每人服药看作一次试验,痊愈A ,没有痊愈A ;独立;(1)新药有效,痊愈率为0.35,即P (A ) = 0.35,伯努利概型,n = 10,p = 0.35,故概率为P 10 (0) + P 10 (1) + P 10 (2) + P 10 (3) 5138.065.035.065.035.065.035.065.035.0733108221091110100010=××+××+××+××=C C C C .(2)新药完全无效,痊愈率为0.25,即P (A ) = 0.25,伯努利概型,n = 10,p = 0.25,故所求概率为1 − P 10 (0) − P 10 (1) − P 10 (2) − P 10 (3)2241.075.025.075.025.075.025.075.025.01733108221091110100010=××−××−××−××−=C C C C .。

概率论与数理统计第一章习题参考解答

概率论与数理统计第一章习题参考解答
Bi 为事件“i 接点闭合”,i=1,2,…5
P( A) = P( A | B3)P(B3) + P( A | B3)P(B3) 其中 P( A | B3) = P((B1 ∪ B4 )(B2 ∪ B5 ))
= P(B1 ∪ B4 )P(B2 ∪ B5 )
= [1 − P(B1)P(B4 )][1 − P(B2 )P(B5 )] = [1 − (1 − p)2 ]2 = p2 (2 − p)2
片”。验证
P(AB) = P(A)P(B),P( AC) = P( A)P(C),P(BC) = P(B)P(C)
P(A)P(B)P(C) ≠ P(ABC)
解:显然 P( A) = P(B) = P(C) = 1 , P( AB) = 1 , P(BC) = 1 , P( ABC) = 1 ,
2
4
4
首位偶 : A41 A41 A82
A140
10 ⋅9 ⋅8⋅ 7 90
解法二 分末位 0 和末位不为 0 两种,组成一个偶数四位数有 C41C81A82 + A93 种
∴ P( A) = C41C21 A82 + A93 = 41
A140
90
错误:认为样本空间也为四位数,实际只要求是一列.
10、求 10 人中至少有两人出生于同一月份的概率。
里选三个,所求概率为 C53 C130
1
=
12
9、在 0,1,2,3,…..,9 共 10 个数字中,任取 4 个不同数字排成一列,求这 4 个数字能 组成一个偶数四位数的概率。
解:设事件“组成一个偶数四位数”为 A
任取 4 个不同数字排成一列共有: A140 种 解法一 组成一个偶数四位数有

《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。

西大2014《概率论》作业答案(6次作业-已整理)

西大2014《概率论》作业答案(6次作业-已整理)

西大2014《概率论》作业答案(6次作业-已整理)西南大学2014年秋季学期《概率论》作业答案(6次作业,已整理)第一次作业1:[判断题]"A∪B∪C”表示三事件A、B、C至少有一个发生。

参考答案:正确2:[判断题]从一堆产品中任意抽出三件进行检查,事件A 表示"抽到的三个产品中合格品不少于2个”,事件B表示"抽到的三个产品中废品不多于2个”,则事件A与B是互为对立的事件。

参考答案:错误3:[判断题]已知:P(A)=0.2, P(B)=0.5, P(AB)=0.1,则P(A∪B)=0.6参考答案:正确4:[判断题]设A、B、C为三事件,若满足:P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P (C),则三事件A、B、C必然相互独立。

参考答案:错误5:[判断题]每一个连续型随机变量均有方差存在。

参考答案:错误6:[判断题]设X、Y是随机变量,若E(XY)=EX•EY,则X 与Y相互独立.参考答案:错误7:[判断题]X为随机变量,a,b是不为零的常数,则E(aX+b)=aEX+b.参考答案:正确8:[判断题]X~N(3,4),则P(X<3)= P(X>3).参考答案:正确9:[判断题]任意随机变量均存在数学期望。

参考答案:错误10:[判断题]一批产品有10件正品,3件次品,现有放回的抽取,每次取一件,直到取得正品为止,假定每件产品被取到的机会相同,用随机变量ξ表示取到正品时的抽取次数,则ξ服从几何分布。

参考答案:正确11:[单选题]设X是随机变量,且EX=DX,则X 服从()分布。

A:二项B:泊松C:正态D:指数参考答案:B12:[单选题]()是离散型随机变量的分布。

A:正态分布B:指数分布C:均匀分布D:二项分布参考答案:D13:[填空题]一部五卷的文集,按任意次序放到书架上,则(1)"第一卷及第五卷出现在旁边”的概率为;(2)"第一卷出现在旁边”的概率为。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

概率论与数理统计学1至7章课后答案解析

概率论与数理统计学1至7章课后答案解析

第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。

并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{Λ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{Λ===k k X P k,求 };6,4,2{)1(Λ=X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++==ΛΛΛX P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。

《概率论》第三次作业答案

《概率论》第三次作业答案

《概率论》第三次作业
设X、Y是随机变量,若E(XY)=EX•EY,则X与Y相互独立.
X、Y相互独立,则X、Y必不相关.
A.B为任意二随机事件,则P(A-B)=P(A)-P(B). (错误)
C为常数,则D(C)=0.(正确)
若X服从二项分布B(5,0.2),则EX=2.(错误)
若X服从泊松分布P(10),Y服从泊松分布P(10),且X与Y相互独立,则X+Y服从泊松分布P(20).(正确)
cov(X,Y)=0等价于D(X+Y)=DX+DY.(正确)
随机变量的分布函数与特征函数相互唯一确定。

(正确)
两个相互独立的随机变量之和的特征函数等于他们的特征函数之和.(错误)
相互独立的随机变量序列,如果具有有限的数学期望,则该序列服从大数定律。

(错误)
随机变量X服从二项分布b (n,p),当n充分大时,由中心极限定理,X近似服从正态分布N(np,np(1-p)).(正确)。

概率论与数理统计理工类第四版简明版1-3章课后答案

概率论与数理统计理工类第四版简明版1-3章课后答案

1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1. X=0表示未投中,其概率为 p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为 p2=P{X=1}=0.6.则随机变量的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此 x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.解答:因为 sinxnπ2={1,当n=4k-10,当n=2k-1,当n=4k-3,所以Y=sin(π2X)只有三个可能值-1,0,1. 容易求得 P{Y=-1}=215,P{=0}=13,P{Y=1}=815故Y的分布律列表表示为总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλ a. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3) dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即 K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.解答:由Y=2X+3, 有 y=2x+3,x=y-32,x′=12,由定理即得 fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:函数F(x,y)在平面各区域的表达式 F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.3.3 二维随机变量函数的分布习题5设随机变量(X,Y)的概率密度为 f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题9设随机变量X,Y相互独立,且服从同一分布,试明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z} =1-P{X>z,Y>z}=1-P{X>z}P{Y>z} =1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=0}=2×1012×11=1066, P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1, P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2, P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0, P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70, P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70 , P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70, P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70, P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70, P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y的边缘分布律中的部分数值,试将其余数值填入表中的空白处:解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1} +P{X=1,Y=0}+P{X=2,Y=0} =1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它. 同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2 dx 0 4 13 4 24
1
(2)方程有正根,要求
x
x2 4y 0 ,也就是要求 x 0, y 0 。 2
因此点的坐标满足 ( x , y ) ( x , y ) D , x 2 4 y 0,x 0, y 0 ,见图阴影 部分。因此概率为:


P
3
发生两位及两位以上乘客在同一层离开电梯的概率 4.
7 A10 189 0.06048 。 7 3125 10
袋中装有编号为 1,2, , n 的 n 个球,每次从中任意摸一球。若按照有放回
k 1 n 1 方式摸球,则第 k 次摸球时,首次摸到 1 号球的概率为 。若按照无
S阴 SD
x2 -1 4 dx 1 。 4 48
0
6
7.
在一张印有方格的纸上投一枚直径为 1 的硬币,试问方格边长 a 要多大才能 使硬币与边线不相交的概率小于 1%。 解:
由于投掷的等可能性,只需考虑硬币投入一个方格的情况。如图所示,样本 空间对应于面积为 a 2 的区域,若硬币与边线不相交,则硬币中心应落入面积 为 a 1 的中心阴影区域中,故
二. 选择题: 1.设 {1,2,3, ,10} , A {2,3,5} , B {3,4,5,7} , C {1,3,4,7} ,则事件
A BC ( A )。
A. {1,6,8,9,10}
B. {2,5}

C. {2,6,8,9,10}
D. {1,2,5,6,8,9,10}
2
P 硬币与边线不相交 = 于是有
a 1
a2
2
0.01
a
10 9

8. n 个人随机地围绕圆桌就座, 试问其中 A 、B 两人的座位相邻的概率是多少?
解:
2 n3 P A,B两人座位相邻 = n 1 n2 1

9.
一部五卷的选集,按任意顺序放在书架上,求: (1) 各卷自左至右或者自右至左的卷号顺序恰为 1,2,3,4,5 的概率; (2) 第一卷及第五卷分别在两端的概率; (3) 第一卷及第五卷都不在两端的概率。
华东理工大学
概率论与数理统计
作业簿(第一册)
学 学 院 号 ____________专 ____________姓 业 名 ____________班 级 ____________ ____________任课教师____________
第一次作业
一. 填空题:
1 1 1.设 S x 0 x 2 , A x x 1 , B x x 2 4 3 2 ,具体写出下列
解:样本空间为 ( x , y ) 0 x 1, 0 y 1 ,
1 记 A ( x , y ) ( x , y ) , x y , 2
P ( A)
SA 3 S 4

5
6. 在正方形 D ( x , y ) 1 x 1, 1 y 1 中任取一点,求使得关于 u 的方程
u 2 xu y 0 有(1)两个实根的概率 ; (2)有两个正根的概率。 解: (1)方程有两个实根,要求 x 2 4 y 0 ,即点的坐标满足:
( x , y ) ( x, y ) D, x
P S阴 SD
2
4 y 0 ,见如图阴影部分。因此概率为:

2 2
A AB B A AB B AAB B A AB B
AB ABB AB AB
所以: A AB B AB 。 6.设 A 、 B 为两个事件,若 AB A B ,问 A 和 B 有什么关系? 解: A 和 B 为对立事件。
nk
放回方式摸球,则第 k 次摸球时,首次摸到 1 号球的概率为
1 。 n
二. 选择题: 1. 为了减少比赛场次,把 20 个球队任意分成两组(每组 10 队)进行比赛, 则 最强的两个队被分在不同组内的概率为( B )。 1 10 5 1 A. B. C. D. 19 19 10 2 2. 从一副扑克牌(52 张)中任取 4 张,4 张牌的花色各不相同的概率( C ) A.
a x y x y a x y 2 y a x y x a 0 x 2 a x y x y 0 x a , 0 y a 0 y a 2
4
故这三段能够成三角形的概率为
3.设 A 、 B 是两个事件,且 A , B ,则 A B A B 表示( D ) 。 A. 必然事件 C. A 与 B 不能同时发生 B. 不可能事件 D. A 与 B 中恰有一个发生 ) 。


4. 以 A 表示事件 “甲种产品畅销, 乙种产品滞销” , 则其对立事件 A 表示 ( D A. B. C. D. “甲种产品滞销,乙种产品畅销” “甲、乙两种产品均畅销” “甲种产品畅销” “甲种产品滞销,或乙种产品畅销”
B {3,4, ,8} 。
(3)样本空间可以表示为 {10,11,12, } ;事件 A {10,11,12, ,50} 。 2. 某电视台招聘播音员,现有三位符合条件的女士和两位符合条件的男士前 来应聘: (1)写出招聘男女播音员各一名的样本空间; (2)写出招聘两名播音员的样本空间。设事件 A 表示“招聘到两名女士” ,把该 事件表示为样本点的集合。 解: 用 W i 表示招聘了的第 i ( i 1,2,3) 位女士, 用 M j 表示招聘了第 j ( j 1,2) 位 男士。


4. 已知 A B A B A B A B C ,且 P (C ) 1 ,则 P ( B ) 2 。 3 3 5. 设随机事件 A 、 B 及其和事件的概率分别是 0.4,0.3,0.6。若 B 表示 B 的对
1 1 各事件: A B = x 4 x 2 或者1 x
3 ,A B = S ,A B = B ,AB = A 。 2
2.设 A 、 B 、 C 表示三个随机事件,试将下列事件用 A 、 B 、 C 表示出来: (1)事件ABC表示 A 、 B 、 C 都发生; (2) 事件 ABC 表示 A 、 B 、 C 都不发生; (3)事件 ABC 表示 A 、 B 、 C 不都发生; (4)事件 A B C 表示 A 、 B 、 C 中至少有一件事件发生; (5)事件 AB AC BC 或 AB AC BC 表示 A 、 B 、 C 中最多有一事件 发生。
三. 计算题: 1.写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合: (1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分, 只取整数) ; 设事件 A 表示:平均得分在 80 分以上。 (2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和; 设事件 A 表示:第一颗掷得 5 点; 设事件 B 表示:三颗骰子点数之和不超过 8 点。 (3)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次 数;设事件 A 表示:至多只要投 50 次。 解: (1)样本空间可以表示为 {0, 1,2,3, ,100} ;事件 A {81,82, ,100} 。 ( 2 ) 样 本 空 间 可 以 表 示 为 {3,4,5, ,18} ; 事 件 A {7,8, ,17} ,
P ( A)
20!! 1 20! 19!!
4.
从 5 双不同的鞋子中任取 4 只,求此 4 只鞋子中至少有两只鞋子配成一双的 概率。 解: P
1 2 2 1 1 2 C5 C 2 C4 C 2C 2 C5 13 。 4 C10 21
1 5. 在区间(0,1)中随机地取两个数,求两数之差的绝对值小于 的概率。 2
1 . 4
2. 同时掷五颗骰子,求下列事件的概率: (1) A=“点数各不相同” ; (2) B=“至少出现两个 6 点 ” ; (3) C=“恰有两个点数相同” ; (4) D=“某两个点数相同,另三个同是另一个点数” ;
P65 解: (1) P ( A) 5 ; 6
(2) P ( B ) 1
第二次作业
一.填空题: 1. 10 个螺丝钉有 3 个是坏的, 随机抽取 4 个。 则恰好有两个是坏的概率是0.3 , 4 个全是好的概率是0.1667 。 2. 把 12 本书任意地放在书架上,则其中指定的 4 本书放在一起的概率
9!4! 1 。 12! 55
3. 10 层楼的一部电梯上同载 7 个乘客,且电梯可停在 10 层楼的每一层。求不
2.对飞机进行两次射击,每次射一弹,设事件 A “恰有一弹击中飞机”, 事件 B = “至少有一弹击中飞机” ,事件 C =“两弹都击中飞机”, 事件 D “两 弹都没击中飞机” ,又设随机变量 为击中飞机的次数,则下列事件中( C )不
1
表示 { 1} 。 A. 事件 A B. 事件 B C C. 事件 B C D. 事件 D C
1 13
B.
13 4 C 52
C.
134 4 C52
D.
13 4 52 51 50 49
三. 计算题: 1. 将长为 a 的细棒折成三段,求这三段能构成三角形的概率。 解 : 设 三 段 分 别 为
x, y , a x y
,




: (0 x a ) (0 y a ) ( x y a ) 能构成三角形须满足(图中阴影部分)
解: (1) P =
2 1 ; 5! 60 2!3! 1 ; 5! 10
(2) P =
相关文档
最新文档