文科-经管类-微积分--微积分(下)总复习--PPT
合集下载
微积分课件-复习必备
经济应用
总结词
微积分在经济领域也有着广泛的应用,包括金融、生产 和市场分析等领域。
详细描述
金融学中,微积分用于研究资产价格、投资组合和风险 管理等,例如期权定价、资本资产定价模型和风险中性 定价等。生产领域中,微积分用于研究生产成本、生产 效率和生产优化等,例如生产函数、成本函数和利润函 数等。市场分析中,微积分用于研究市场需求、市场结 构和市场预测等,例如需求函数、供给函数和弹性分析 等。
极限概念
01
02
03
极限定义
极限是描述函数在某一点 的变化趋势的数学工具, 定义为“lim x→x0 f(x) = L”。
单侧极限
函数在某一点的左侧或右 侧的变化趋势,分别称为 左极限和右极限。
极限的性质
包括唯一性、有界性、局 部保号性等,这些性质在 研究函数的单调性、极值 等特性时非常重要。
导数概念
合运算问题。
洛必达法则
洛必达法则是求极限的重要方 法之一,通过求导数来简化极
限的计算。
极限题型
01
02
03
04
极限定义
极限是微积分中的基本概念, 通过理解极限的定义和性质,
可以解决各种极限题型。
无穷小与无穷大
掌握无穷小与无穷大的概念和 性质,有助于解决极限问题中 的无穷比值和无穷增量问题。
极限的四则运算
不定积分与定积分的性质
不定积分的线性性质
$int (u + v) dx = int u dx + int v dx$
定积分的线性性质
$int (u + v) dx = int u dx + int v dx$
积分的区间可加性
比较定理
浙江财经大学-微积分-下册总复习省公开课获奖课件市赛课比赛一等奖课件
e
ln
x
sin x
x
e
ln
x dx
C
1 x
sin
xdx
C
1 cos x C .
x
七、综合应用题
• 1. 求在直角坐标系下平面图形旳面积。
b
d
A [上边界 下边界]dx A [右边界 左边界]dy
a
c
绕 x 轴旋转一周
2. 旋转体旳体积
绕 y 轴旋转一周
Vx
b [外边界2 -内边界2 ]dx
三、求积分(6分*3=18分)
1、第一换元法:凑微分(处理复合函数求
积分)
凑内层函数旳导数
已知 f ( x)dx F ( x) C ,
f[(x)]'(x)dx f[(x)]d(x) F[(x] C
复合函数 凑内层函数旳导数
1) (2x 1)5 dx 1 (2x 1)5(2x 1)'dx 2
11 x2 ) f ( x)
x2
sin tdt
(4) lim x0
0
x4
;(0) 0
1 2
b
(5) f '(2x)dx
1 ( f ( 2b ) f ( 2a )) 2
Th2:由方程F(x,y,z)=0拟定旳函数z=f(x,y)称作隐函数,
其导函数为:z
' x
Fx' / Fz'
,
z
' y
Fy' / Fz'
(1)求由方程 e y 2x y 所拟定旳隐函数y=f(x)旳导函数。
(2)求由方程 sin z xyz 所拟定旳隐函数z=f(x,y)旳偏导数。
五、重积分旳计算
《微积分总复习》PPT课件
20 求f (x)在分界点的极限值或判断它不存在;
30
极限 lim x x0
f
( x)存在时,比较极限值与函数值f
(x0 ).
2021/4/26
10
间断点分类总结
第一类间断点:x0 是 f x 的间断点,且在点x0 处f x 的
左 、 右 极 限 都 存 在.
第二类间断点:不是第一类的其它间断点.
14
dy f (x)dx.
复合函数的微分法则、微分形式不变性. 求微分方法:
(1)利用微分的定义 dy f '(x)dx,先求f (x),再乘以dx.
(2)利用微分形式的不变性
2021/4/26
15
隐函数的微分
例 y tan(x y) 求dy.
解法I 第一步,两边求微分, dy sec2 (x y)(dx dy) 第二步,解出dy,
x0 x
反 三 角 函 数 的0 型 极 限 0
定理 设x x 时,, , , 为无穷小量,
0
1
1
1, 1,
若极限
lim
1
存在,则有
lim
lim
1
.
xx0 1
xx0
xx0 1
lim (1 1 ) x e.
x
x
可以求 1 型极限
2021/4/26
9
连续
连续的实质是
lim
xx0
则
b
a f (x)dx F(b) F(a).
b f (x)dx
a
f
(x)dx
b a
F(x)
b a
F(b)
F(a).
1、直接积分法:就是直接利用已有的数学结论、积分基ቤተ መጻሕፍቲ ባይዱ本公式与积分的性质来计算积分的方法
大学微积分总复习课件.ppt
函数 f (x)在 x0 处连续 函数 f (x)在 x0 处既左连续又右连续.
第y 一
可去型
类
间
断
点
o x0
x
y
第 二 类 间 断o 点
x0
x
无穷型
y 跳跃型
o
x0
x
y
o
x
振荡型
闭区间上连续函数的性质
定理1(最值和有界性定理) 在闭区间上 连续的函数一定有最大值和最小值.
故该函数在闭区间内一定是有界函数.
y log a x a y x
y log a x
(1,0)
•
(a 1)
y log 1 x
a
4. 三角函数 正弦函数y sin x (注意:x用弧度表示)
y sin x
o
余弦函数 y cos x
o
y cos x
正切函数 y tan x
余切函数 y cot x
正割函数 y sec x
1
20 lim (1 f (x)) f (x) e. 某过程
定义: 设,是同一过程中的两个无穷小,且 0.
(1) 如果 lim 0,就说 是比 高阶的无穷小,
记作 o();
(2) 如果lim ,就说 是比 低阶的无穷小.
(3) 如果 lim C 0,就说 与 是同阶的无穷小;
2
n
(1 x) 1 ~ x
注 1. 上述10个等价无穷小(包括反、 对、幂、指、三)必须熟练掌握
2.将x换成f ( x) 0都成立
函数连续点的等价定义
f ( x)在x0连续
lim
x x0
f (x)
f ( x0 )
lim [
微积分ppt课件
和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
微积分下册总复习PPT课件
柱体的体积. 一般情形,
f ( x, y)d xOy平面上方的曲顶柱体体积
D
减xOy平面下方的曲顶柱体体积.
14
3. 物理意义
若平面薄片占有平面内有界闭区域D, 它的面
密度为连续函数( x, y), 则它的质量M为:
M ( x, y)d .
D
4、二重积分的性质
(重积分与定积分有类似的性质)
x x0
z f ( x0 x, y0 y) f ( x0, y0)
z Ax By o( ) ( 0),
dz
(x)2 (y)2
dz
P0
z x
P0
x
z y
P0
y
f x ( x0 , y0 )dx
f y ( x0 , y0 )dy
总复习
1
第七章 多元函数微分学
1、多元函数的定义、极限及连续性
确定极限不存在 的方法 (1)找两种不同趋近方式,使 lim f ( x, y)存在,
x x0 y y0
但两者不相等,此时即可断言极限不存在。
(2)找一条特殊的路径,使 P( x, y)沿此路径趋向
于 P0 ( x0 ,
y0
)
时
(
x
0
若为0,则可微,否则不可微。
5
3、复合函数求导法
z f (u,v), u ( x, y)及v ( x, y)
则复合函数 z f [( x, y), ( x, y)]
zx zu ux zv vx z
u
x
zy zu uy zv vy
,
y
lim
微积分讲解ppt课件
多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将方程转化为可积分的形式
二阶常微分方程解法
可降阶的二阶微分方程
通过变量替换或分组,将方程降为一阶微分方 程求解
二阶线性微分方程法
利用特征根的性质,求解二阶线性常系数齐次 和非齐次微分方程
常系数线性微分方程组法
在经济学中的应用
边际分析
通过求导计算边际成本、边际收益等,为企业的决策 提供依据。
弹性分析
研究价格、需求等经济变量之间的相对变化关系,微 积分可用于计算弹性系数。
最优化问题
在资源有限的情况下,通过微积分求解最大化或最小 化某一经济指标的问题。
在工程学中的应用
结构力学
分析建筑、桥梁等结构的受力情况和稳定性,微积分可用 于求解复杂的力学方程。
通过消元法或特征根法,求解常系数线性微分方程组
05
多元函数微积分
多元函数的基本概念
多元函数的定义
设D为一个非空的n元有 序数组的集合,f为某一 确定的对应规则。若对 于每一个有序数组 (x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确 定的实数y与之对应, 则称对应规则f为定义在 D上的n元函数。
文科-经管类-微积分--微积分(下)总复习--PPT
0
上页
返回
下页
x
结束
铃
求旋转体体积
d
V c A( y)dy
曲边梯形:x=g(y),x=0, y=c, y=d 绕 y轴
y
d
..
V d g 2 ( y)dy c
y
x=g(y)
A( y) . g 2 ( y)
c
首页
0
上页
返回
下页
x
结束
.
铃
由平面图形 0 a x b, 0 y f (x)
微积分 (下) 总复习
•基本初等函数的导数公式小结
(1) (C)0
(2) (xm)m xm1
(3) (sin x)cos x (4) (cos x)sin x (5) (tan x)sec2x
(11)
(log a
x)
1 x ln
a
(12) (ln x) 1 x
(13) (arcsin x) 1 1 x2
9) 中 值 定 理
若f ( x) C[a, b], 则 存 在 [a, b],
使 得
b
f ( x)dx
f ( )( b a).
a
(四)变上限定积分
设f ( x) R[a, b], F ( x)
x
f ( x)dx
a
x [a, b], F ( x)称为变上限定积分。
2)若f ( x) C[a, b],则F ( x)
a2 x2
(四)计算方法
1.利 用 基 本 公 式
2. 凑微分法
g(( x)) '( x)dx g(( x))d( x)= g(u)du
3. 第二换元法
令x (t )
《微积分》PPT课件
公式.
微积分Ⅰ
第九章
重积分
10
说明: ① 使用公式 (1) 必须是 X- 型域, 使用公式 (2) 必 须是 Y - 型域. ② 若积分区域既是 X - 型区域又是 Y- 型区域,
则有
f ( x, y ) d x d y
dx
a
d
y
y 2 ( x)
D b
x 1 ( y)
微积分Ⅰ
第九章
重积分
6
在 [a, b] 上任意取定一点 x0, 作平行于 yOz 面的平
面 x = x0, 则该平面截曲顶柱体所得的截面是一个以区 间 [ 1 (x0), 2 (x0) ] 为底、曲线 z = f (x0 , y) 为曲边的 曲边梯形.
z
z f ( x, y)
y
A( x0 )
2
R
它的底为 D {( x, y ) | 0 y R2 x 2 , 0 x R},
微积分Ⅰ
第九章
重积分
23
∴所求体积为
8
R
0
R 2 x 2 dx
R2 x 2
0
dy
8 ( R 2 x 2 )dx
0
R
16 3 R . 3
微积分Ⅰ
第九章
重积分
24
1 x
y x
1
微积分Ⅰ
第九章
重积分
21
说明: ① 计算二重积分时, 选择积分次序是比较重要的 一步, 积分次序选择不当, 可能会使计算繁琐, 甚至无
法计算. 一般地, 既要考虑积分区域 D 的形状, 又要考
虑被积函数 f (x, y) 的特性. ② 应遵循 “能积分, 少分快, 计算简” 的原则.
微积分下册复习资料PPT课件
将 a 或 b 平 移 使 它 们 的 起 点 重 合 , 它 们 所 在 的
射 线 之 间 的 夹 角 ( 0 ) 称 为 a , b 的 夹 角 , 记 作
(a,b )
5
问题:写出以下平行四边形中相等的向量:
D
C
Ao
B
6
二、向量的加减法与数乘运算
1. 向量的加法:平行四边形法则
b
c
a
3
如或果共两 线个,向记量为方a向//b相。同或相反,则称之为平行 注:零向量平行于任何向量。 如果k个向量把它们的起点放在同一点时,它们的 起点和终点在同一平面上,则称这k个向量共面。
4
向量的模(norm):
向量的大小(长度),记作 |
a
|或
|
M1M2|
模为1的向量称为单位向量.
向量的夹角:
(两要素:大小和方向)
向量表示:有向线段,如
M2
a或 M1M2
a M 1
(以 M1为起点, M2为终点的有向线段.)
2
向量的记法:
用小写字母记为
a,
f,v 等。
用大写字母记为 MN,OA等。
特别地,零向量记为 0, 它表示方向任意的一个点。
相等向量:大小相等且方向相同的向量。
说明:如果两个有向线段的大小和方向是相同的, 则不论它们的起点是否相同,我们就认为它们表示 同一向量,这里理解的向量叫做自由向量。若不加 说明,我们这里所讨论的向量都是自由向量。
ADb.试
用a和b表示向M量A, MB, MC,
MD,这里M是平形四边形对交 角点 线 . 的
D b M Aa
C
B
14
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
射 线 之 间 的 夹 角 ( 0 ) 称 为 a , b 的 夹 角 , 记 作
(a,b )
5
问题:写出以下平行四边形中相等的向量:
D
C
Ao
B
6
二、向量的加减法与数乘运算
1. 向量的加法:平行四边形法则
b
c
a
3
如或果共两 线个,向记量为方a向//b相。同或相反,则称之为平行 注:零向量平行于任何向量。 如果k个向量把它们的起点放在同一点时,它们的 起点和终点在同一平面上,则称这k个向量共面。
4
向量的模(norm):
向量的大小(长度),记作 |
a
|或
|
M1M2|
模为1的向量称为单位向量.
向量的夹角:
(两要素:大小和方向)
向量表示:有向线段,如
M2
a或 M1M2
a M 1
(以 M1为起点, M2为终点的有向线段.)
2
向量的记法:
用小写字母记为
a,
f,v 等。
用大写字母记为 MN,OA等。
特别地,零向量记为 0, 它表示方向任意的一个点。
相等向量:大小相等且方向相同的向量。
说明:如果两个有向线段的大小和方向是相同的, 则不论它们的起点是否相同,我们就认为它们表示 同一向量,这里理解的向量叫做自由向量。若不加 说明,我们这里所讨论的向量都是自由向量。
ADb.试
用a和b表示向M量A, MB, MC,
MD,这里M是平形四边形对交 角点 线 . 的
D b M Aa
C
B
14
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
f ( x)dx
a
在(a, b)内可导,且F'( x) f ( x).
(五)牛顿-莱布尼兹公式
设f ( x) C[a, b], F ( x)是f ( x)的 一 个 原 函 数,则
b a
f
( x)dx
F(x)
b a
F (b)
F (a)
(六)定积分计算
1.变 量 置 换 法
f ( x) C[a, b], 设x (t)满足a ( ),
b
a f (x) d x A1 A2 A3 A4 A5
定积分的值等于各部分面积的代数和. y
A1
a
A2
A3
A5
A4
bx
(三)定积分的性质
1)
b
kf
(
x)dx
k
b f ( x)dx , k为常数.
a
a
2)
b
(
f
(
x)
g(
x))dx
b
f ( x)dx
b
g( x)dx
a
a
a
3) a f ( x)dx 0 a
9) 中 值 定 理
若f ( x) C[a, b], 则 存 在 [a, b],
使 得
b
f ( x)dx
f ( )( b a).
a
(四)变上限定积分
设f ( x) R[a, b], F ( x)
x
f ( x)dx
a
x [a, b], F ( x)称为变上限定积分。
2)若f ( x) C[a, b],则F ( x)
8. csc2 xdx cot x C
9.
1
1 x2
dx
arctan
x
C
1
10.
dx arcsin x C 1 x2
11. tan x secxdx secx C
12. cot x csc xdx csc x C
13.
a2
1
x2
dx
1 a
arctan
x a
C
14.
记 作 f ( x)dx F ( x) C
(二)基本性质
1. F'(x)dx F(x) C 2. ( f (x)dx)' f (x)
3. kf (x)dx k f (x)dx , k 0 4. ( f (x) g(x))dx f (x)dx g(x)dx
(三)基本公式
d(tan x)sec2xdx
(cot x)csc2x
d(cot x)csc2xdx
(sec x)sec x tan x
d(sec x)sec x tan xdx
(csc x)csc x cot x
d(csc x)csc x cot xdx
(a x)a x ln a
d(a x)a x ln adx
(e x)e x
a2 x2
(四)计算方法
1.利 用 基 本 公 式
2. 凑微分法
g(( x)) '( x)dx g(( x))d( x)= g(u)du
3. 第二换元法
令x (t )
f ( x)dx f ((t ))'(t )dt
F (t ) C F ( 1( x)) C
4.分 部 积 分 法
b ( ),a (t) b,'(t)连续,则
b
a f ( x)dx f ( (t))'(t)dt
2.分 部 积 分 法
b
u(
a
x)dv(
x)
u(
x)v(
(6) (cot x)csc2x (7) (sec x)sec xtan x
(14) (arccos x) 1 1 x2
(8) (csc x)csc xcot x (9) (a x)a x ln a (10) (e x)ex
首页
上页
(15)
(arctan x) 1 1 x2
(16)
(arc cot x) 1 1 x2
4) b f ( x)dx
a
f ( x)dx
a
b
5) b f ( x)dx
c
f ( x)dx
b
f ( x)dx
a
a
c
6)若f (x) g(x) , x [a, f (x)dx a g(x)dx;.
8) 估 值 定 理
若m f ( x) M ,则
b
m(b a) a f ( x)dx M (b a)
返回
下页
结束
铃
三、微分公式与微分运算法则
•导数公式
当 d y f (x)d x 时, 有 f (x) d y .
•微分公式
dx
(x m)m x m1
d(x m)m x m1dx
(sin x)cos x
d(sin x)cos xdx
(cos x)sin x
d(cos x)sin xdx
(tan x)sec2 x
1 dx arcsin x C
a2 x2
a
(a 0) (a 0)
15. secxdx ln tan x secx C
16. csc xdx ln cot x csc x C
17.
1 a2 x2
dx
1 ln a x 2a a x
C
18.
1 dx ln( x a2 x2 ) C
1. xdx 1 x1 C ( 1)
1
2.
1 x
dx
ln
x
C
3. e xdx e x C
4. axdx 1 ax C (a 0, a 1) ln a
5. sin xdx cos x C
6. cos xdx sin x C
7. sec2 xdx tan x C
d(e x)e xdx
C 0,
d C 0dx
首页
上页
返回
下页
结束
铃
六.不定积分
(一)基本概念 1.原函数
若在区间I上F'( x) f ( x),则称F( x) 是f ( x)在区间I上的一个原函数。
2.不定积分
f ( x)的 全 体 原 函 数F ( x) C, (C为 任 意 常 数 ) 称 为f ( x)在 区 间 上 的 不 定 积 分 ,
微积分 (下) 总复习
•基本初等函数的导数公式小结
(1) (C)0
(2) (xm)m xm1
(3) (sin x)cos x (4) (cos x)sin x (5) (tan x)sec2x
(11)
(log a
x)
1 x ln
a
(12) (ln x) 1 x
(13) (arcsin x) 1 1 x2
udv uv vdu
七.定积分
(1)
A
定积分的值等于曲边梯形面积;
(2)
定积分的值等于曲边梯形面积 的负值;
首页
上页
返回
下页
A
a b
结束
铃
1.定积分的几何意义
b f ( x)dx表示f ( x)与x轴及直线x a, a
x b之间所围面积的代数和.
f (x) 有时为正,有时为负时.