各种测量坐标转换
测量中的常用坐标系及坐标转换概述
测量中的常用坐标系及坐标转换概述在测量领域中,常用的坐标系包括直角坐标系、极坐标系和球坐标系。
不同的坐标系适用于不同的测量任务和数据处理需求,而坐标转换则是将不同坐标系下的测量数据相互转换的方法。
本文将对常用坐标系及坐标转换进行概述。
1.直角坐标系直角坐标系是最常见的坐标系之一,通常用于描述二维或三维空间中的点的位置。
在二维直角坐标系中,一个点的位置可以由两个坐标值(x,y)表示。
而在三维直角坐标系中,一个点的位置可以由三个坐标值(x,y,z)表示。
直角坐标系中的坐标轴是相互垂直的,可以方便地描述点的位置和进行测量。
2.极坐标系极坐标系是另一种常用的坐标系,通常用于描述平面上的点的位置。
极坐标系由一个极径和一个极角组成。
极径表示点到原点的距离,极角表示点与正x轴的夹角。
在极坐标系中,一个点的位置可以由(r,θ)表示。
极坐标系在一些特定情况下对测量任务更加方便,例如描述圆形或对称物体的位置。
3.球坐标系球坐标系用于描述三维空间中的点的位置。
球坐标系由一个极径、一个极角和一个方位角组成。
极径表示点到原点的距离,极角表示点与正z轴的夹角,方位角表示点在xy平面上的投影与正x轴的夹角。
在球坐标系中,一个点的位置可以由(r, θ, φ)表示。
球坐标系在描述球体或对称物体的位置时非常有用。
在测量中,常常需要在不同的坐标系之间进行转换以满足不同的需求。
以下是常见的坐标转换方法:1.直角坐标系到极坐标系的转换从直角坐标系到极坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2)极角θ = atan2(y, x)其中,sqrt表示平方根,atan2表示求反正切值。
2.极坐标系到直角坐标系的转换从极坐标系到直角坐标系的转换可以通过以下公式实现:x = r * cos(θ)y = r * sin(θ)3.直角坐标系到球坐标系的转换从直角坐标系到球坐标系的转换可以通过以下公式实现:极径 r = sqrt(x^2 + y^2 + z^2)极角θ = acos(z / r)方位角φ = atan2(y, x)4.球坐标系到直角坐标系的转换从球坐标系到直角坐标系的转换可以通过以下公式实现:x = r * sin(θ) * cos(φ)y = r * sin(θ) * sin(φ)z = r * cos(θ)需要注意的是,在进行坐标转换时,要确保所使用的公式和单位系统是一致的,否则会导致转换结果错误。
建筑坐标转换测量坐标公式表
建筑坐标转换测量坐标公式表1. 引言在建筑设计和测量领域中,经常需要进行建筑坐标和测量坐标之间的转换。
建筑坐标是指相对于建筑物自身的坐标系,而测量坐标则是相对于某个已知的基准点或参考点的坐标系。
建筑坐标转换测量坐标的公式表提供了一系列用于进行坐标转换的公式和计算方法。
2. 公式表下面是建筑坐标转换测量坐标的公式表,其中涵盖了常见的坐标转换情境。
2.1. 平移转换平移转换用于将建筑坐标系下的点转换到测量坐标系下或者将测量坐标系下的点转换到建筑坐标系下。
平移转换的公式如下:建筑坐标系下的点 (x, y) 转换为测量坐标系下的点(x’, y’):x' = x + Δxy' = y + Δy测量坐标系下的点(x’, y’) 转换为建筑坐标系下的点 (x, y):x = x' - Δxy = y' - Δy2.2. 旋转转换旋转转换用于将建筑坐标系下的点绕某个基准点旋转一定角度后转换到测量坐标系下,或者将测量坐标系下的点绕某个基准点旋转一定角度后转换到建筑坐标系下。
旋转转换的公式如下:建筑坐标系下的点 (x, y) 绕基准点 (x0, y0) 逆时针旋转θ度后转换为测量坐标系下的点(x’, y’):x' = (x - x0) * cosθ + (y - y0) * sinθ + x0y' = (y - y0) * cosθ - (x - x0) * sinθ + y0测量坐标系下的点(x’, y’) 绕基准点 (x0, y0) 逆时针旋转θ度后转换为建筑坐标系下的点 (x, y):x = (x' - x0) * cosθ - (y' - y0) * sinθ + x0y = (y' - y0) * cosθ + (x' - x0) * sinθ + y02.3. 缩放转换缩放转换用于将建筑坐标系下的点按比例进行缩放后转换到测量坐标系下,或者将测量坐标系下的点按比例进行缩放后转换到建筑坐标系下。
测量坐标和施工坐标的换算公式表
测量坐标和施工坐标的换算公式表1. 前言测量坐标和施工坐标是在建筑、土木工程等领域中常见的概念。
测量坐标是指利用测量仪器进行测量所得到的坐标,通常用于确定建筑物或者工程项目中各个点的空间位置。
而施工坐标则是依据设计图纸上的坐标信息进行施工的坐标系统。
在实际应用中,常常需要将测量坐标转换为施工坐标,或者将施工坐标转换为测量坐标。
本文将介绍常见的测量坐标和施工坐标的换算公式表,以便工程人员进行参考和使用。
2. 测量坐标和施工坐标的定义在开始介绍具体的换算公式之前,我们先来了解一下测量坐标和施工坐标的定义。
•测量坐标:测量坐标是通过测量仪器进行测量得到的坐标值。
测量仪器可以是全站仪、经纬仪、测距仪等。
测量坐标通常用于确定建筑或工程项目中各个点的空间位置。
•施工坐标:施工坐标是根据设计图纸上的坐标信息确定的坐标系统。
施工坐标用于指导施工人员进行具体的施工操作。
3. 测量坐标和施工坐标的换算公式表下面是常见的测量坐标和施工坐标的换算公式表:坐标类型公式描述测量坐标→ 施工坐标Xg = Xm +ΔXXg为施工坐标,Xm为测量坐标,ΔX为坐标转换量测量坐标→ 施工坐标Yg = Ym +ΔYYg为施工坐标,Ym为测量坐标,ΔY为坐标转换量施工坐标→ 测量坐标Xm = Xg -ΔXXm为测量坐标,Xg为施工坐标,ΔX为坐标转换量施工坐标→ 测量坐标Ym = Yg -ΔYYm为测量坐标,Yg为施工坐标,ΔY为坐标转换量4. 换算公式的应用示例下面举例说明如何应用上述换算公式进行坐标转换:假设某工程项目的设计图纸上给出了某一点的施工坐标为Xg=100.5m,Yg=75.2m,现在需要将其转换为测量坐标。
根据公式,我们可以计算出坐标转换量为ΔX=0.3m,ΔY=0.2m。
将这些值代入公式,得到测量坐标为:Xm = 100.5 - 0.3 = 100.2m Ym = 75.2 - 0.2 = 75.0m因此,该点的测量坐标为Xm=100.2m,Ym=75.0m。
测绘中常用的坐标系与坐标转换方法
测绘中常用的坐标系与坐标转换方法在测绘学中,坐标系和坐标转换方法是重要的概念。
测绘工程师和地理信息专家经常需要使用不同的坐标系来描述和分析地球表面的特征。
本文将介绍几种常用的坐标系以及常见的坐标转换方法。
首先,让我们来了解一下常见的坐标系。
地球是一个复杂的三维球体,在测绘中我们需要将其简化为二维平面来表示。
为此,人们开发了各种各样的坐标系。
最常见的是地理坐标系和投影坐标系。
地理坐标系以地球的经度和纬度作为坐标来表示地点的位置。
经度是指一个位置相对于地球上的子午线的角度,范围从-180度到180度。
纬度是指一个位置相对于赤道的角度,范围从-90度到90度。
地理坐标系非常适合描述较大范围的地理位置,比如国家、大洲、全球等。
然而,由于地球不是一个完美的球体,而是稍微扁平的。
所以地理坐标系并不适合描述局部地区的位置。
在局部地区,我们更常用的是投影坐标系。
投影坐标系通过将地球表面投影到一个平面上来表示地点的位置。
最常见的投影方法是经纬度投影。
这种方法将地球的经纬度网格映射到一个平面上,以实现局部位置的表示。
常见的经纬度投影有墨卡托投影、兰伯特投影和正轴等距投影等。
当需要在不同坐标系之间进行转换时,我们需要使用坐标转换方法。
常见的坐标转换方法有三角法、相似变换和大地测量等。
三角法是一种基础的坐标转换方法,它使用三角形相似性定理来计算两个坐标系之间的转换参数。
这种方法在测量小范围地区时非常实用,但对于大范围地区的坐标转换则会产生较大的误差。
相似变换是一种更复杂的坐标转换方法,它使用不同比例尺的相似形状来表示两个坐标系之间的转换。
这种方法适用于小范围和中等范围的坐标转换,但对大范围地区的转换也会有误差。
大地测量是一种比较准确的坐标转换方法,它基于地球的椭球体形状和地球椭球体的参数来计算坐标之间的转换。
大地测量方法适用于任意范围的坐标转换,但计算复杂度较高。
除了以上介绍的常用坐标系和坐标转换方法,还有一些其他的坐标系统和转换方法。
测量中的常用坐标系及坐标转换概述
三、坐标转换
5、高斯投影的邻带换算
应用高斯投影正反算公式间接进行换带计算:实质是把椭球 面上的大地坐标作为过渡坐标,首先把某投影带(比如I带)内 有关点的平面坐标(x,y) I ,利用高斯投影反算公式换算成椭球 面上的大地坐标(B ,ι),进而得到L=L10+ ι,然后再由大地坐 标(B ,ι),利用投影正算公式换算成相邻带第Ⅱ带的平面坐标 (x,y) Ⅱ,在这一步计算中,要根据第Ⅱ带的中央子午线L20来 计算经差ι,此时ι=L- L20
大地高H:某点沿投影方向到基准面(参考椭球面)的距离。
在大地坐标系中,某点的位置用(B , L,H)来表示。
二、测量中的各种坐标系
2、空间直角坐标系
定义:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤 道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。
在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
二、测量中的各种坐标系
3、平面直角坐标系
在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的, 通常采用平面直角坐标系。 测量工作以x轴为纵轴,以y轴为横轴 投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应 将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的 平面直角坐标表示。
三、坐标转换
3、大地坐标同空间直角坐标的变换
X N cos B cos L Y N cos B sin L Z N (1 e 2 ) sin B
三、坐标转换
4、大地坐标与高斯平面坐标的变换
将大地坐标转换为高斯平面坐标,按照高斯投影正算公式 进行。
高斯投影正算公式:
x X 0 0.5 N sin B cos B l 2 y N cos B l 1 / 6 N cos3 B l 3 (1 t 2 2 )
大地测量中常用的坐标转换方法
大地测量中常用的坐标转换方法大地测量是地理信息技术的重要组成部分,它用于测量地球表面的形态和地球参照系统。
在大地测量中,常常需要进行坐标转换,以便对不同坐标系统的地理数据进行有效管理和应用。
本文将介绍一些常用的坐标转换方法。
一、大地测量简介大地测量是研究地球形态和地球参照系统的科学与技术。
地球的形态非常复杂,不同地区的地形和地壳运动都会导致地球表面坐标的差异。
为了实现地球表面数据的一致性和互操作性,需要进行坐标转换。
二、地球参照系统地球参照系统是用于描述和定位地球表面上的物体的方法。
常见的地球参照系统有地理坐标系统(经纬度)、投影坐标系统(平面坐标)和高程坐标系统。
不同的地理信息系统常使用不同的地球参照系统,因此需要进行坐标转换以实现数据的兼容和交互。
三、大地水准面大地水准面是描述地球海平面的数学模型。
世界上各地的大地水准面存在差异,因此在进行海拔高度计算时需要进行水准面的转换。
常用的水准面模型有地球椭球体、高斯-克吕格地球模型等。
四、大地空间大地基准面大地基准面是用于确定地球表面上点的位置的参考面。
不同的地区可能使用不同的大地基准面,如WGS84、PZ-90等。
为了将数据在不同的大地基准面下进行比较和分析,需要进行大地基准面的转换。
五、坐标转换方法1. 大地测量中最常用的坐标转换方法是地理坐标与投影坐标之间的转换。
地理坐标使用经度和纬度表示,而投影坐标使用平面坐标系表示。
常见的投影坐标系统有UTM坐标系统、高斯投影坐标系统等。
通过合适的坐标转换公式,可以将地理坐标转换为投影坐标,或者反之。
2. 在进行海拔高度计算时,需要进行水准面的转换。
常见的水准面转换方法有正高转换和高程异常转换。
正高转换是将某地的高程值从一个水准面转换到另一个水准面,高程异常转换则是将某点的高程值转换为相对于某个水准面的高程异常值。
3. 大地基准面转换常用的方法是七参数法。
七参数法通过平移、旋转和尺度变换等操作,将一个大地基准面上的点的坐标转换到另一个大地基准面上。
测绘技术中的坐标数据转换方法
测绘技术中的坐标数据转换方法一、引言在测绘技术中,坐标数据的转换是至关重要的一步。
不同的测绘设备和测量方法得到的坐标数据可能存在差异,为了精确地进行地理信息系统(GIS)分析和地图制作,我们需要将这些坐标数据进行转换。
本文将从旋转法、平移法和缩放法等方面论述测绘技术中的坐标数据转换方法。
二、旋转法旋转法是一种常用的坐标数据转换方法。
它通过将源坐标系旋转到目标坐标系的方法来实现坐标数据的转换。
旋转法的基本原理是根据源坐标系和目标坐标系之间的旋转角度,对源坐标系中的坐标点进行旋转。
一般来说,旋转角度可以通过两个已知点之间的方位角来确定。
旋转法的步骤如下:1. 确定旋转角度:根据已知的方位角计算源坐标系与目标坐标系之间的旋转角度。
2. 坐标旋转:对源坐标系中的每个坐标点进行旋转,得到目标坐标系中的坐标点。
三、平移法平移法是另一种常用的坐标数据转换方法。
它通过将源坐标系平移至目标坐标系的方法来实现坐标数据的转换。
平移法的基本原理是通过计算源坐标系和目标坐标系之间的平移量,将源坐标系中的坐标点平移至目标坐标系中。
平移法的步骤如下:1. 确定平移量:根据已知的两个已知点在源坐标系和目标坐标系中的坐标值,计算源坐标系与目标坐标系之间的平移量。
2. 坐标平移:对源坐标系中的每个坐标点进行平移,得到目标坐标系中的坐标点。
四、缩放法缩放法是一种将源坐标系中的坐标数据按照比例进行放大或缩小的方法,从而实现坐标数据的转换。
缩放法的基本原理是通过计算源坐标系和目标坐标系之间的比例因子,对源坐标系中的坐标点进行比例缩放或放大。
缩放法的步骤如下:1. 确定比例因子:根据已知的两个已知点在源坐标系和目标坐标系中的坐标值,计算源坐标系与目标坐标系之间的比例因子。
2. 坐标缩放:对源坐标系中的每个坐标点进行比例缩放,得到目标坐标系中的坐标点。
五、综合应用实例为了更好地理解坐标数据转换方法的应用,我们来看一个综合的实例。
假设我们需要将一辆汽车的行驶轨迹数据从全球定位系统(GPS)坐标系转换到平面直角坐标系(UTM)。
测量中常见的坐标转换方法和注意事项
测量中常见的坐标转换方法和注意事项在测量工作中,坐标转换是一个非常关键的步骤。
它可以将不同坐标系下的测量数据进行转换,以便更好地进行分析和比较。
本文将讨论测量中常见的坐标转换方法和注意事项,以帮助读者更好地理解和应用这些知识。
一、常见的坐标转换方法1. 直角坐标系与极坐标系的转换直角坐标系和极坐标系是我们常见的两种坐标系,它们在不同的情况下都有各自的优势。
当我们在进行测量时,有时需要将直角坐标系转换为极坐标系,或者反过来。
这时我们可以使用以下公式进行转换:直角坐标系 (x, y) 转换为极坐标系(r, θ):r = √(x^2 + y^2)θ = arctan(y/x)极坐标系(r, θ) 转换为直角坐标系 (x, y):x = r * cosθy = r * sinθ2. 地理坐标系与平面坐标系的转换在地理测量中,我们常常需要将地理坐标系与平面坐标系进行转换。
地理坐标系是以地球表面为基准的坐标系,而平面坐标系则是在局部范围内采用平面近似地球的坐标系。
转换的目的是为了将地球上的经纬度转换为平面上的坐标点,或者反过来。
这时我们可以使用专门的地图投影算法进行转换,例如常见的墨卡托投影、UTM投影等。
3. 坐标系之间的线性转换有时,我们需要将一个坐标系中的点的坐标转换到另一个坐标系中。
这时我们可以通过线性变换来实现。
线性变换定义了一个坐标系之间的转换矩阵,通过乘以这个转换矩阵,我们可以将一个坐标系中的点的坐标转换到另一个坐标系中。
常见的线性变换包括平移、旋转、缩放等操作,它们可以通过矩阵运算进行描述。
二、坐标转换的注意事项1. 坐标系统选择的准确性在进行坐标转换时,必须保证所选择的坐标系统是准确可靠的。
不同的坐标系统有不同的基准面和基准点,选择错误可能导致转换结果出现较大误差。
因此,在进行测量时,我们应该仔细选择坐标系统,了解其基本原理和适用范围。
2. 数据质量的控制坐标转换所依赖的输入数据必须具有一定的质量保证。
测量坐标转换施工坐标的方法有哪些
测量坐标转换施工坐标的方法有哪些在施工工程中,测量坐标转换是将原始测量坐标转换为施工坐标的过程。
施工坐标是指在施工现场上实际进行施工操作所使用的坐标系统。
由于原始测量坐标一般是地理坐标或平面坐标,与实际施工相差较大,需要进行坐标转换以适应施工需要。
本文将介绍几种常用的测量坐标转换施工坐标的方法。
1. 计算坐标转换这是最常用的一种方法,通过数学计算将原始测量坐标转换为施工坐标。
具体步骤如下:1.获取原始测量坐标系中的坐标数据;2.在施工现场建立施工坐标系,并确定其中一个点的坐标;3.根据原始测量坐标系和施工坐标系的参照关系,建立坐标转换方程;4.利用坐标转换方程,将原始测量坐标转换为施工坐标。
这种方法在计算过程中需要考虑坐标系之间的缩放、旋转和平移等因素,以确保转换结果的准确性。
2. 光电测距法光电测距法是另一种常用的测量坐标转换方法。
该方法利用光电测距仪测量特定点到控制点的距离,并结合已知控制点坐标计算测点的施工坐标。
具体步骤如下:1.在施工现场选择一些已知坐标的控制点,并利用测量仪器获取其准确坐标;2.使用光电测距仪测量待测点到相邻的控制点的距离;3.根据已知控制点的施工坐标和测得的距离,利用三角测量原理计算待测点的施工坐标。
光电测距法适用于平面坐标的转换,但要求场地较为平坦,以确保测量的准确性。
3. GPS定位法GPS定位法是一种基于卫星导航系统的测量坐标转换方法。
它通过接收卫星发射的信号,计算接收器与卫星之间的距离,并结合卫星的坐标信息,确定接收器的位置坐标。
具体步骤如下:1.使用GPS接收器,在施工现场上测量多个已知坐标的控制点;2.利用卫星导航系统获取控制点的地理坐标;3.使用测量仪器对待测点进行GPS定位,获取其地理坐标;4.利用已知控制点的地理坐标和待测点的地理坐标,进行坐标转换,得到施工坐标。
GPS定位法适用于大范围的坐标转换,并且可以在复杂的地形和天气环境下进行准确测量。
4. 其他方法除了上述方法外,还有一些其他方法可以用于测量坐标转换施工坐标,如:•基于无人机的影像测量法:通过无人机拍摄施工现场的影像,并对影像进行处理和分析,得到施工点的坐标。
测量施工坐标转换公式
测量施工坐标转换公式引言在测量施工中,我们经常会遇到需要进行坐标转换的情况。
例如,在进行地形测量时,我们常常需要将现场测得的坐标转换为工程坐标,以便于在施工过程中进行准确的定位和布点。
本文将介绍一种常用的测量施工坐标转换公式,帮助读者更好地理解和应用于实际工作中。
背景测量施工中的坐标转换是将不同坐标系下的坐标相互转换的过程。
常见的坐标系统包括地理坐标系、平面直角坐标系等。
在施工测量中,我们通常使用平面直角坐标系来描述和定位施工点位,因为平面直角坐标系具有简单、直观的特点。
坐标转换公式根据施工现场的具体情况,我们可以通过以下公式将测量点的坐标从一种坐标系转换为另一种坐标系:X1 = X0 + ΔXY1 = Y0 + ΔY在上述公式中,X1和Y1表示待求的新坐标点,X0和Y0表示已知的旧坐标点,ΔX和ΔY表示X轴和Y轴上的坐标差。
举例说明假设在地理坐标系下,测量点A的坐标为(120.5, 35.2),现需要将其转换为平面直角坐标系。
已知在平面直角坐标系下,起点的坐标为(1000, 2000)。
根据上述公式,可以进行如下计算:X1 = 1000 + (120.5 - 100) = 1020.5Y1 = 2000 + (35.2 - 20) = 2015.2因此,点A在平面直角坐标系下的坐标为(1020.5, 2015.2)。
注意事项在进行坐标转换时,需要注意以下几点:1.坐标系之间的转换需要有明确的参考和基准点,并保证参考和基准点在不同坐标系下的坐标是已知的。
2.确保使用的坐标系是准确、一致的,以避免转换过程中的误差累积。
3.转换过程中应严格按照坐标差进行计算,确保计算的准确性。
结论测量施工坐标转换是施工测量中常见的需求,通过合理的坐标转换公式,可以方便地将不同坐标系下的坐标相互转换。
本文介绍了一种常用的坐标转换公式,希望能帮助读者更好地理解和应用于实际工作中。
在进行坐标转换时,应注意参考和基准点的准确性,以及坐标系的一致性,以确保转换结果的准确性。
测绘技术中的坐标变换方法介绍
测绘技术中的坐标变换方法介绍测绘技术作为一门专业学科,它不单纯是以地理学、地图学为基础知识,还融合了各种测量和数学方法。
其中,坐标变换是测绘技术中的一个重要概念和方法。
在测绘工作中,坐标变换可以帮助我们实现不同坐标系之间的转换,为地理信息系统、地图制图等提供了极大的便利。
本文将介绍测绘技术中的常见坐标变换方法。
一、平面坐标与大地坐标的转换方法在测绘工作中,我们通常会遇到不同坐标系之间的转换。
最常见的就是平面坐标与大地坐标之间的转换。
平面坐标是利用平面坐标系来表示地理位置的坐标值,而大地坐标则是使用经纬度等来表示地理位置的坐标值。
为了实现平面坐标与大地坐标的转换,我们可以利用以下方法:1. 大地坐标系统的参数化转换方法大地坐标系是地球表面上各个点的经纬度坐标表示。
要将大地坐标转换为平面坐标,我们可以采用参数化转换方法。
该方法通过定义一系列参数,以实现大地坐标到平面坐标的转换。
具体的参数化转换方法有著名的高斯投影、横轴墨卡托等。
2. 七参数变换法七参数变换法是常用的坐标变换方法,它适用于平面坐标与大地坐标之间的转换。
它通过七个参数的定义,分别对应平移、旋转和尺度变换等,从而将平面坐标与大地坐标之间进行转化。
二、不同大地坐标系之间的转换方法除了平面坐标与大地坐标之间的转换外,不同大地坐标系之间的转换也是测绘技术中常见的任务之一。
这是因为不同地区采用的大地坐标系可能具有不同的参数,因此需要进行转换以实现一致性。
以下是常见的大地坐标系转换方法:1. 布尔莎参数法布尔莎参数法是一种常用的大地坐标系转换方法。
它通过定义一系列参数,如椭球参数和基准点坐标等,以实现不同大地坐标系之间的转换。
2. 七参数变换法七参数变换法同样适用于不同大地坐标系之间的转换。
通过定义不同的七参数值,我们可以将一个大地坐标系转换为另一个大地坐标系,以满足具体测绘需求。
三、测量数据的坐标变换方法在测绘工作中,我们还需要对测量数据进行坐标变换,以将测量结果与已知的地理坐标体系相匹配。
测量坐标转换公式
测量坐标转换公式1. 引言在测量学中,坐标转换是一项重要的任务。
当我们在进行地理测量或者工程测量时,经常需要将不同坐标系下的点进行转换,以便于进行数据分析和地图绘制等工作。
本文将介绍测量中常用的坐标转换公式,包括平面坐标转换和空间坐标转换。
2. 平面坐标转换在平面测量中,我们常常使用直角坐标系来描述点的位置。
而不同的地方可能使用不同的坐标系,需要进行坐标转换。
下面是常见的几种平面坐标转换公式:2.1. 坐标平移坐标平移是将点的位置沿着x轴和y轴方向进行平移。
设原坐标系中点的坐标为(x, y),平移后的坐标为(x’, y’),平移的距离分别为dx和dy,则平移后的坐标可以通过以下公式计算:x' = x + dxy' = y + dy2.2. 坐标旋转坐标旋转是将点的位置绕着某个基准点旋转一定角度。
设原坐标系中点的坐标为(x, y),旋转中心为(cx, cy),旋转的角度为θ,旋转后的坐标为(x’, y’),则旋转后的坐标可以通过以下公式计算:x' = (x-cx) * cos(θ) - (y-cy) * sin(θ) + cxy' = (x-cx) * sin(θ) + (y-cy) * cos(θ) + cy2.3. 坐标缩放坐标缩放是将点的位置按照一定比例进行放大或缩小。
设原坐标系中点的坐标为(x, y),缩放中心为(cx, cy),横向缩放比例为sx,纵向缩放比例为sy,缩放后的坐标为(x’, y’),则缩放后的坐标可以通过以下公式计算:x' = (x-cx) * sx + cxy' = (y-cy) * sy + cy2.4. 坐标仿射变换坐标仿射变换是将点的位置进行平移、旋转和缩放的组合操作。
设原坐标系中点的坐标为(x, y),仿射变换矩阵为A,平移向量为T,仿射变换后的坐标为(x’, y’),则仿射变换后的坐标可以通过以下公式计算:[x', y'] = A * [x, y] + T3. 空间坐标转换在空间测量中,我们通常使用三维直角坐标系来描述点的位置。
测量常用各种坐标系及其转换
一、北京54坐标系简介北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。
1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,在全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。
由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。
因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京而是在前苏联的普尔科沃。
它是将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。
因此,P54可归结为:a.属参心大地坐标系;b.采用克拉索夫斯基椭球的两个几何参数;c.大地原点在原苏联的普尔科沃;d.采用多点定位法进行椭球定位;e.高程基准为1956年青岛验潮站求出的黄海平均海水面;f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。
按我国天文水准路线推算而得。
坐标参数椭球坐标参数:长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3。
缺点自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。
但是随着测绘新理论、新技术的不断发展,人们发现该坐标系存在如下缺点:1、椭球参数有较大误差。
克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m。
2、参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。
这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。
测量中的常用坐标系及坐标转换概述
测量中的常用坐标系及坐标转换概述1.引言在测量与空间信息处理中,坐标系是非常重要的概念。
通过坐标系,可以将现实世界中的点、线、面等空间要素进行数学建模和描述。
常用的坐标系包括笛卡尔坐标系、极坐标系、球坐标系等。
坐标系之间的转换是测量与空间信息处理中常用的操作。
2.笛卡尔坐标系笛卡尔坐标系是最常见的坐标系,由三个互相垂直的坐标轴构成。
在二维情况下,有两个坐标轴分别表示横坐标和纵坐标;在三维情况下,有三个坐标轴分别表示横坐标、纵坐标和高度坐标。
笛卡尔坐标系广泛应用于地理信息系统、测绘工程、建筑设计等领域。
3.极坐标系极坐标系由极径和极角两个坐标轴构成。
极径表示点到坐标原点的距离,极角表示点在平面上相对于一个基准线的角度。
极坐标系常用于极坐标测量仪器中,如激光扫描仪,雷达等。
极坐标系优点之一是可以简化角度变化的描述,适用于自然界中的很多环境和场景。
4.球坐标系球坐标系由球半径、极角和方位角三个坐标轴构成。
球半径表示点到坐标原点的距离,极角表示点距离球心的水平角度,方位角表示点在水平面上相对于一个基准线的角度。
球坐标系常用于天文学、地理学等领域,描述地球表面上各个点的位置。
5.坐标转换在实际测量中,经常需要在不同的坐标系之间进行转换,以实现测量数据的互通。
常见的坐标转换包括坐标系之间的旋转、平移和缩放等操作。
下面以笛卡尔坐标系和极坐标系为例,介绍一下坐标转换的基本原理。
-笛卡尔坐标系到极坐标系的转换:假设有一个点在笛卡尔坐标系中的坐标为(x,y),则可以通过以下公式将其转换为极坐标系中的坐标(r,θ):r=√(x²+y²)θ = arctan(y/x)-极坐标系到笛卡尔坐标系的转换:假设有一个点在极坐标系中的坐标为(r,θ),则可以通过以下公式将其转换为笛卡尔坐标系中的坐标(x,y):x = r * cos(θ)y = r * sin(θ)在实际测量中,常常需要进行坐标系之间的转换,比如将地理坐标转换为笛卡尔坐标,或者将局部坐标系转换为全球坐标系等。
测绘工程中的坐标变换方法与注意事项
测绘工程中的坐标变换方法与注意事项在测绘工程中,坐标变换是将不同坐标系统之间的坐标进行转换的过程。
由于地球是一个椭球体,而测绘工程中常用的坐标系统是平面坐标系统,因此需要通过坐标变换将平面坐标系统与地理坐标系统之间进行转换。
本文将介绍测绘工程中常用的坐标变换方法,并提出一些注意事项。
一、坐标变换的目的和方法坐标变换的目的是将不同坐标系统中的点的坐标进行转换,以实现数据的相互对应和转换。
常用的坐标变换方法有三种:经纬度转换为平面直角坐标、平面直角坐标转换为经纬度和平面直角坐标之间的转换。
1. 经纬度转换为平面直角坐标经纬度是一种地理坐标系统,常用于地图制图和导航等应用。
在将经纬度转换为平面直角坐标时,需要考虑地球的椭球体形状和各地区的投影方式。
常用的投影方式有高斯投影、UTM投影等。
通过将经纬度投影到平面上,并根据投影方式进行转换,可以得到点在平面直角坐标系中的坐标。
2. 平面直角坐标转换为经纬度相对于经纬度来说,平面直角坐标系统更便于进行计算和测量。
在将平面直角坐标转换为经纬度时,需要考虑地球的椭球体形状和各地区的投影方式。
通过将平面直角坐标反投影到地球上,并根据投影方式进行转换,可以得到点的经纬度坐标。
3. 平面直角坐标之间的转换在测绘工程中,常常需要在不同的平面直角坐标系统之间进行转换。
例如,将国家统一坐标系转换为本地坐标系,或者将测量坐标系转换为计算坐标系。
这种转换需要考虑坐标系的参数和转换公式,以确保转换精度和一致性。
二、注意事项在进行坐标变换时,需要注意一些问题和细节,以确保转换的准确性和可靠性。
1. 坐标系的选择在进行坐标变换前,需要确定使用哪种坐标系进行计算和测量。
常用的坐标系有国家统一坐标系、WGS84坐标系等。
根据实际需求和测绘项目的要求,选择适应的坐标系进行坐标变换。
2. 坐标转换参数的确定坐标转换参数是进行坐标变换的关键。
不同坐标系统之间的转换需要不同的参数,包括投影方式、椭球体参数、转换公式等。
测量坐标转换公式推导过程
测量坐标转换公式推导过程一、二维坐标转换(平面坐标转换)(一)平移变换。
1. 原理。
- 设原坐标系O - XY中的一点P(x,y),将坐标系O - XY平移到新坐标系O' - X'Y',新坐标系原点O'在原坐标系中的坐标为(x_0,y_0)。
2. 公式推导。
- 对于点P在新坐标系中的坐标(x',y'),根据平移的几何关系,我们可以得到x = x'+x_0,y = y'+y_0,则x'=x - x_0,y'=y - y_0。
(二)旋转变换。
1. 原理。
- 设原坐标系O - XY绕原点O逆时针旋转θ角得到新坐标系O - X'Y'。
对于原坐标系中的点P(x,y),我们要找到它在新坐标系中的坐标(x',y')。
- 根据三角函数的定义,设OP = r,α是OP与X轴正方向的夹角,则x = rcosα,y = rsinα。
- 在新坐标系中,x'=rcos(α-θ),y'=rsin(α - θ)。
2. 公式推导。
- 根据两角差的三角函数公式cos(A - B)=cos Acos B+sin Asin B和sin(A -B)=sin Acos B-cos Asin B。
- 对于x'=rcos(α-θ)=r(cosαcosθ+sinαsinθ),因为x = rcosα,y = rsinα,所以x'=xcosθ + ysinθ。
- 对于y'=rsin(α-θ)=r(sinαcosθ-cosαsinθ),所以y'=-xsinθ + ycosθ。
(三)一般二维坐标转换(平移+旋转)1. 原理。
- 当既有平移又有旋转时,先进行旋转变换,再进行平移变换。
2. 公式推导。
- 设原坐标系O - XY中的点P(x,y),先将坐标系绕原点O逆时针旋转θ角得到中间坐标系O - X_1Y_1,根据旋转变换公式,P在O - X_1Y_1中的坐标(x_1,y_1)为x_1=xcosθ + ysinθ,y_1=-xsinθ + ycosθ。
测绘技术中的坐标系转换方法及精度评估
测绘技术中的坐标系转换方法及精度评估引言:测绘技术是一门关于地球形状测量、地球表面及其上各种对象的测量、计算、制图、刻度、记录、存储与再现的学科。
坐标系转换是测绘技术中的一个重要环节,它将不同坐标系下的数据进行转换以满足不同需求。
本文将介绍测绘技术中常用的坐标系转换方法,并探讨如何评估其精度。
一、坐标系转换方法1.1 大地水准面转换大地水准面转换是将地球椭球体上的高程数据转换为平面坐标数据的方法。
常用的转换方法有正算和反算两种。
正算是通过已知的椭球体参数、基准点的经纬度和高程,计算出对应的平面坐标。
反算则相反,通过已知的平面坐标计算出对应的经纬度和高程。
1.2 平面坐标转换平面坐标转换通常指的是将地球表面上的经纬度坐标转换为平面坐标。
这种转换方法常用于地图制图和地理信息系统等领域。
常见的转换方法有高斯投影法、墨卡托投影法等。
1.3 高程数据转换高程数据转换是将不同高程数据间进行转换的方法。
常见的高程数据包括正常高、大地高、椭球高等。
转换方法主要有高程差法、高程变换法等。
二、精度评估精度评估是对坐标系转换结果进行准确性和可靠性的评估。
常见的评估方法有以下几种。
2.1 残差分析法残差分析法是通过对已知控制点进行观测,得到转换后的坐标与实际坐标之间的差异,从而评估坐标系转换的精度。
该方法适用于小范围的转换评估。
2.2 精度评定法精度评定法是通过对已知控制点进行观测,计算出转换前后坐标之间的差异,从而评估转换的精度。
这种方法需要较多的控制点,并且对控制点的选择有一定要求。
2.3 网形控制法网形控制法是通过建立一定数量的控制网,测量控制网上的点在转换前后的坐标差异,并根据这些差异来评估转换的精度。
这种方法适用于大范围的转换评估。
2.4 统计分析法统计分析法是通过对转换前后坐标差异的统计分析来评估转换的精度。
常用的统计分析方法包括平均误差分析、方差分析等。
结论:在测绘技术中,坐标系转换是一个重要的环节,它可以将不同坐标系下的数据进行转换以满足不同需求。
工程测量坐标系转换另一个坐标系怎么转换
工程测量坐标系转换另一个坐标系怎么转换在工程测量中,常常会涉及到不同坐标系之间的转换。
坐标系转换是将一个坐标系中的点的位置描述转换到另一个坐标系中的过程。
常见的坐标系转换包括从大地坐标系到平面坐标系的转换,以及从局部坐标系到全球坐标系的转换。
本文将介绍一些常见的工程测量坐标系转换方法。
大地坐标系到平面坐标系转换大地坐标系一般用经度、纬度和高程来表示地球上某一点的位置。
而平面坐标系则是在局部区域内采用笛卡尔坐标系来表示坐标点的位置。
将大地坐标系转换为平面坐标系一般需要进行以下步骤:1.选择适当的投影方式:根据工程测量的具体要求和区域特点,选择适当的地图投影方式。
常用的地图投影方式包括高斯-克吕格投影、UTM投影等。
2.计算投影中央子午线的经度:投影中央子午线是指在某一区域内,与该区域内的标准子午线的夹角。
3.计算投影平面的比例因子:比例因子是指在地球表面上的某一点在平面坐标系中所占的长度与该点在大地坐标系中所占长度的比值。
4.进行坐标转换计算:根据选定的投影方式、中央子午线经度和比例因子,通过一定的计算方法将大地坐标系中的点的位置转换到平面坐标系中。
局部坐标系到全球坐标系转换局部坐标系一般是在某一工程项目或建筑物上建立的坐标系,用来表示该项目或建筑物的各个点的位置。
全球坐标系则是用地心经纬度坐标系来表示地球上任意一点的位置。
将局部坐标系转换为全球坐标系一般需要进行以下步骤:1.确定局部坐标系的基准点:基准点是局部坐标系中的一个已知点,其在全球坐标系中的经纬度已知。
2.确定局部坐标系的坐标轴方向和转角:根据局部坐标系建立时的设定,确定局部坐标系中的坐标轴方向和转角。
3.进行坐标转换计算:利用基准点的经纬度、坐标轴方向和转角,可以通过一定的计算方法将局部坐标系中的点的位置转换到全球坐标系中。
坐标系转换的注意事项在进行坐标系转换时,需要注意以下几个问题:1.坐标精度的问题:在坐标系转换过程中,可能会存在一定的误差,导致转换后的坐标存在一定的偏差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同坐标系介绍及相互转换关系
一、各坐标系介绍
GIS的坐标系统大致有三种:Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、
Geographic Coordinate System(地理坐标系统)、
Projection Coordinate System(投影坐标系统)。
这三者并不是完全独立的,而且各自都有各自的应用特点。
如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,地理坐标系统和投影坐标系统是相互联系的,地理坐标系统是投影坐标系统的基础之一。
1、椭球面(Ellipsoid)
地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。
因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
采用的3个椭球体参数如下
2、高斯投影坐标系统
(1)高斯-克吕格投影性质
高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。
德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。
该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。
投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。
设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。
将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。
取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。
高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。
由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。
(2)高斯-克吕格投影分带
按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。
分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。
通常按经差6度或3度分为六度带或三度带。
六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。
三度带是在六度带的基础上分成的,它的中央子午线与六
(3)高斯-克吕格投影坐标
高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。
以中央经线投影为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。
纵坐标以赤道为零起算,赤道以北为正,以南为负。
我国位于北半球,纵坐标均为正值。
横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加 500公里。
由于高斯-克吕格投影每一个投影带的坐标都是对本带
坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。
(4)高斯-克吕格投影与UTM投影
UTM投影全称为“通用横轴墨卡托投影”,是等角横轴割圆柱投影(高斯-克吕格为等角横轴切圆柱投影),圆柱割地球于南纬80度、北纬84度两条等高圈,该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。
UTM投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为1,而UTM投影的比例系数为0.9996。
UTM投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为0.9996,在南北纵行最宽部分的边缘上距离中心点大约 363公里,比例系数为 1.00158。
高斯-克吕格投影与UTM投影可近似采用 Xutm=0.9996 * X高斯,
Yutm=0.9996 * Y高斯进行坐标转换。
以下举例说明(基准面为WGS84):
注:坐标点(32,121)位于高斯投影的21带,高斯投影Y值21310996.8中前两位“21”为带号(三度带还是六度带?);坐标点(32,121)位于UTM投影的51带,上表中UTM投影的Y值没加带号。
因坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000。
理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。
方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。
3、地理坐标网(经纬网)
在我国1:1万-1:10万地形图上,经纬线只以图廓的形式表现,经纬度数值注记在内图廓的四角,在内外图廓间,绘有黑白相间或仅用短线表示经差、纬差1’的分度带,需要时将对应点相连接,就构成很密的经纬网。
在1:20万-1:100万地形图上,直接绘出经纬网,有时还绘有供加密经纬网的加密分割线。
纬度注记在东西内外图廓间,经度注记在南北内外图廓间。
4、直角坐标网(方里网)
直角坐标网是以每一投影带的中央经线作为纵轴(X轴),赤道作为横轴(Y轴)。
纵坐标以赤道我0起算,赤道以北为正,以南为负。
我国位于北半球,纵坐标都是正值。
横坐标的若干直线,便构成了图面上的平面直角坐标网,又叫方里网。
二、坐标系转换(三度带与六度带相互转换)
在定位一个点时,首先需要一个坐标系,也就是大地水准面,因为对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
通过软件或者编程实现,将大地坐标转化为高斯坐标。
鉴于我国曾使用不同的坐标基准(BJ54、State80、Correct54),各地的重力值又有很大差异,所以很难确定一套适合全国且精度较好的转换参数。
在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样。
必须了解,在不同的椭球之间的转换是不严密的。
那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即3个平移因子(X平移,Y平移,Z平移),3个旋转因子(X旋转,Y旋转,Z旋转),一个比例因子(也叫尺度变化K)。
国内参数来源的途径不多,一般当地测绘部门会有。
通行的做法是:
在工作区内找三个以上的已知点,利用已知点的BJ54坐标和所测WGS84坐标,通过一定的数学模型,求解七参数。
若多选几个已知点,通过平差的方法可以获得较好的精度。
如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即只考虑3个平)基圈是地平圈
(2)原点是南点,始圈是午圈
(3)纬度叫高度或高度角h,是天体相对地平圈上下的角距离.地平圈为起点0°,向上至天顶为90°,向下至天底为-90°.天体相对天顶的角距离叫天顶距Z,Z=90°-h
(4)经度叫方位或方位角A,是天体所在地平圈相对原点的方向和角距离.南0°,西90°,北180°,东270°.
(5)地球自转引起天体自东向西的周日视运动,h和A变化;同时h 和A随经纬度变化,
故记录天体位置及绘制星图不宜用地平坐标系.地平坐标系反映天体在天空中高度和方位.
第一赤道坐标系(时角坐标系)
(1)基圈是天赤道
(2)主点为天赤道与观测者天顶南子。