高中物理必修二第七章第18讲 动能 动能定理及其应用

高中物理必修二第七章第18讲 动能 动能定理及其应用
高中物理必修二第七章第18讲 动能 动能定理及其应用

第18讲动能动能定理及其应用

考情剖析

(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A 代表容易,B代表中等,C代表难)

知识整合

知识网络

第1课时动能定理

基础自测

一、动能

物体由于__________而具有的能量叫动能.

(1)动能的大小:__________;(2)动能是__________;

(3)动能是状态量,且具有相对性.

二、动能定理

1.动能定理的内容和表达式:.

2.物理意义:动能定理指出了__________和__________的关系,即外力做的总功,对应着物体动能的变化,变化的大小由__________来度量.

我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力.物体动能的变化是指__________,ΔE k>0表示__________,ΔE k<0表示__________.3.动能定理的适用条件:动能定理既适用于直线运动,也适用于________;既适用于恒力做功,也适用于__________.力可以是各种性质的力,既可以同时做功,也可以__________,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在.

重点阐述

重点知识概述

进一步理解动能定量

(1)一个物体的动能变化ΔE k与合外力对物体所做功W具有等量代换关系.

(2)动能定理中涉及的物理量有F、x、m、v、W、E k等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内所做的功和这段位移始、末两状态动能变化去考察,无需注意其中运动状态变化的细节.

(3)动能定理公式中等号的意义.

【典型例题1】如图甲所示,长为4m的水平轨道AB与倾角为37°的足够长斜面BC 在B处连接,有一质量为2kg的滑块,从A处由静止开始受水平向右的力F作用,F按图乙所示规律变化,滑块与AB和BC间的动摩擦因数均为0.25,重力加速度g取10m/s2.求:

(1)滑块到达B处时的速度大小;

(2)不计滑块在B处的速率变化,滑块冲上斜面,滑块最终静止的位置与到B点的距离.

图甲

图乙

温馨提示

分析图象、运用动能定理解题.

记录空间

【变式训练1】宇航员在太空中沿直线从A点运动到B点,他的运动图象如图所示,图中v是宇航员的速度,x是他的坐标.求:

(1)宇航员从A点运动到B点所需时间;

(2)若宇航员以及推进器等装备的总质量恒为240 kg,从A点到B点的过程中宇航员身上背着的推进器推力所做的功为多少?

易错诊所

应用动能定理的注意事项

(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.

(2)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表示为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.

(3)应用动能定理解题,关键是对研究对象进行准确的受力分析及运动过程分析,并画出物体运动过程的草图,借助草图理解物理过程和各量关系.

(4)动能定理是求解物体位移或速率的简捷公式.当题目中涉及到位移和速度而不涉及时间时可优先考虑动能定理;处理曲线运动中的速率问题时也要优先考虑动能定理.【典型例题2】如图所示,AB与CD为两个对称斜面,其上部都足够长,下部分分

别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0 m,一个物体在离弧底E高度为h=3.0 m处,以初速度v0=4 m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g取10 m/s2).温馨提示

记录空间

【变式训练2】如图所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B点相切,圆弧轨道的半径为R,圆以O与A、D在同一水平面上∠COB=θ,现有质量为m的小物体从距D点为(R cosθ)/4的地方无初速的释放,已知物体恰能从D点进入圆轨道.求:

(1)为使小物体不会从A点冲出斜面,小物体与斜面间的动摩擦因数至少为多少?

(2)若小物体与斜面间的动摩擦因数μ=sinθ/(2cosθ),则小物体在斜面上通过的总路程大

小?

随堂演练

第1题图

1.如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,AB 之间的水平距离为x ,重力加速度为g .下列说法正确的是( )

A .小车克服重力所做的功是mgh

B .合外力对小车做的功是1

2m v 2

C .推力对小车做的功是1

2m v 2+mgh

D .阻力对小车做的功是1

2

m v 2+mgh -Fx

2.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的两倍,在下落至离地高度h 处,小球的势能是动能的两倍,则h 等于( )

A .H /9

B .2H /9

C .H /3

D .4H /9

3.质量为M 的机车,牵引质量为m 的车厢在水平轨道上匀速前进,某时刻车厢与机车脱节,机车前进了L 后,司机才发现,便立即关闭发动机让机车滑行.假定机车与车厢所受阻力与其重力成正比且恒定.试求车厢与机车都停止时两者的距离.

第3题图

第4题图

4.如图所示,光滑水平面上静止放着长L =1.6m ,质量为M =3kg 的木块(厚度不计),一个质量为m =1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木

板施加一水平向右的拉力F (g 取10m/s 2

).

(1)为使物体与木板不发生滑动,F 不能超过多少?

(2)如果拉力F =10N 恒定不变,求小物体所能获得的最大动能?

(3)如果拉力F =10N ,要使小物体从木板上掉下去,拉力F 作用的时间至少为多少?

5.用汽车从井下提重物,重物质量为m ,定滑轮高为H ,如图所示,已知汽车从A 点开始由静止加速运动到B 点时速度为v B ,此时轻绳与竖直方向夹角为θ.这一过程中轻绳的拉力做功多少?

第5题图

第6题图

6.如图所示,轻弹簧左端固定在竖直墙上,右端点在O位置.质量为m的物块A(可视为质点)以初速度v0从距O点右方x0的P点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O′点位置后,A又被弹簧弹回,A离开弹簧后,恰好回到P点,物块A与水平面间的动摩擦因数为μ.求:

(1)物块A从P点出发又回到P点的过程,克服摩擦力所做的功.

(2)O点和O′点间的距离x1.

7.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB

间的动摩擦因数为μ.求:

第7题图

(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;

(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力.

8.如图所示,斜面轨道AB与水平面之间的夹角θ=53°,BD为半径R=4 m的圆弧形轨道,且B点与D点在同一水平面上,在B点,轨道AB与圆弧形轨道BD相切,整个光滑轨道处于竖直平面内,在A点,一质量为m=1 kg的小球由静止滑下,经过B、C点后从D

点斜抛出去.设以竖直线MDN为分界线,其左边为阻力场区域,右边为真空区域.小球最

后落到地面上的S点处时的速度大小v S=8 m/s,已知A点距地面的高度H=10 m,B点距地面的高度h=5 m.g取10 m/s2, cos53°=0.6,求:

第8题图

(1)小球经过B点时的速度大小;

(2)小球经过圆弧轨道最低处C点时对轨道的压力;

(3)若小球从D点抛出后,受到的阻力f与其瞬时速度的方向始终相反,求小球从D点至S点的过程中阻力f所做的功.

第2课时动能定理的应用

重点阐述

重点知识概述

动能定理的应用技巧

(1)动能定理既适用于恒力,也适用于变力;既适用于直线运动,也适用于曲线运动.

其中的力可以是各种性质的力,可以同时作用,也可以分段作用.只要求出在作用过程中各力做功的多少和正负即可.这些正是用动能定理解题的优越性所在.

(2)动能定理不仅适用于一个持续过程,也适用于物体运动的整个过程,即若物体的运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以把全过程作为一个整体来处理.物体在整个过程中所有力对物体所做的功等于物体在运动开始时和结束时的动能改变量.

(3)动能定理既适用于质量恒定的物体、也适用于质量变化的物体.

像水和空气等流体,常需隔离一个“柱体微元”,并以此为研究对象,利用动能定理等,就会使问题迎刃而解.

(4)动能定理既适用于一个物体,也适用于系统.

当研究对象为系统时,组成系统的物体的总动能的变化量(系统内各物体的动能变化量之和)等于相应时间内的所有力(包括内力和外力)对物体系统所做的功.

难点释疑

动能定理的理解和应用要点

1.动能定理的计算式为W合=E k2-E k1,v和s是相对于同一参考系的,各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和.2.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式,但动能定理是标量式,功和动能都是标量,不能利用矢量法则分解.故动能定理无分量

式.在处理一些问题时,不能在某一方向应用动能定理.

3.动能定理不仅可以求恒力做功,也可以求变力做功,对变力做功,应用动能定理会更方便、更迅捷.

4.恒力作用下的匀变速直线运动,凡不涉及加速度和时间的,用动能定理求解一般比用牛顿定律和运动学公式简便.用动能定理还能解决一些用牛顿定律和运动学公式难以求解的问题,如变力作用过程、曲线运动问题等.

5.在用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程,此时,可以分段考虑,也可对全程考虑.如能对整个过程列式则可能使问题简化.再把

各个力的功代入公式:W1+W2+…+W n=1

2m v

2

末-

1

2m v

2

初时,要把它们的数值连同符号代入.

【典型例题1】如图所示,某滑道由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接(不考虑能量损失),其中轨道AB段是光滑的,水平轨道BC的长度s =5m,轨道CD足够长且倾角θ=37°,A点离轨道BC的高度为h1=4.30m.现让质量为m的小滑块自A点由静止释放,已知小滑块与轨道BC、CD间的动摩擦因数都为μ=0.5,重力加速度g取10m/s2,sin37°=0.6,cos37=0.8.

试求:

(1)小滑块第一次到达C点时的速度大小;

(2)小滑块第一次和第二次经过C点的时间间隔;

(3)小滑块最终静止的位置距B点的距离l.

温馨提示

记录空间

【变式训练1】如图所示,一粗糙水平轨道与一光滑的1/4圆弧形轨道在A处相连接.圆弧轨道半径为R,以圆弧轨道的圆心O点和两轨道相接处A点所在竖直平面为界,在其右侧空间存在着平行于水平轨道向左的匀强电场,在左侧空间没有电场.现有一质量为m、带电量为+q的小物块(可视为质点),从水平轨道的B位置由静止释放,结果,物块第一次冲出圆形轨道末端C后还能上升的最高位置为D,且|CD|=R,已知物块与水平轨道间的动摩擦因素为μ,B离A处的距离为x=2.5R(不计空气阻力),求:

(1)物块第一次经过A点时的速度;

(2)匀强电场的场强大小;

(3)物块在水平轨道上运动的总路程.

【典型例题2】在光滑的平面上有一静止物体,现以水平恒力推这一物体.作用一段时间后,换成相反方向的水平恒力推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,甲、乙两力做功分别是多少?

温馨提示

关键是学生是否能按题意画出表达物理过程的示意图.运用牛顿定律和动能定理来解决.

记录空间

【变式训练2】如图所示,在外力作用下某质点运动的v t图象为正弦曲线.从图中可以判断()

A.在0~t1时间内,外力做正功

B.在0~t1时间内,外力的功率逐渐增大

C.在t2时刻,外力的功率最大

D.在t1~t3时间内,外力做的总功为零

【典型例题3】如图甲所示,一条轻质弹簧左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m=1.0 kg,当弹簧处于原长时,小物块静止于O点.现对小物块施加一个外力F,使它缓慢移动,将弹簧压缩至A点,压缩量为x=0.1 m,在这一过程中,所用外力F与压缩量的关系如图乙所示.然后撤去F释放小物块,让小物块沿桌面运动,已知O点至桌面B点的距离为L=2x,水平桌面的高为h=5.0 m,计算时,可认为滑动摩擦力近似等于最大静摩擦力.(g取10 m/s2)求:

(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能.

(2)小物块到达桌边B点时速度的大小.

(3)小物块落地点与桌边B点的水平距离.

温馨提示

分析力——位移图象、力所做的功可以用力的图线与对应的位移轴所包围的“面积”表示.

记录空间

【变式训练3】 如图甲所示,一质量为m =1kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始,物块受到按如图乙所示规律变化的水平力F 作用并向右移动,第3s 末物块运动到B 点时速度刚好为0,第5s 末物块刚好回到A 点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g 取10m/s 2)求:

(1)A 与B 间的距离;

(2)水平力F 在5s 内对物块所做的功.

随堂 演练

1.一人用力把质量为m 的物体由静止竖直向上匀加速提升h ,速度增加为v ,则对此过程,下列说法正确的是( )

A .人对物体所做的功等于物体机械能的增量

B .物体所受合外力所做的功为1

2

m v 2

C .人对物体所做的功为mgh

D .人对物体所做的功为1

2

m v 2

2.如图所示,一个小孩从粗糙的滑梯上加速滑下,对于其机械能的变化情况,下列判断正确的是( )

第2题图

A.重力势能减小,动能不变,机械能减小

B.重力势能减小,动能增加,机械能减小

C.重力势能减小,动能增加,机械能增加

D.重力势能减小,动能增加,机械能不变

3.如图所示,一直角斜面体固定在水平地面上,左侧斜面倾角为60°,右侧斜面倾角为30°,A、B两个物体分别系于一根跨过定滑轮的轻绳两端且分别置于斜面上,两物体下边缘位于同一高度且处于平衡状态,不考虑所有的摩擦,滑轮两边的轻绳都平行于斜面.若剪断轻绳,让物体从静止开始沿斜面滑下,下列叙述错误的是()

第3题图

A.着地瞬间两物体的速度大小相等

B.着地瞬间两物体的机械能相等

C.着地瞬间两物体所受重力的功率相等

D.两物体的质量之比为m A∶m B=1∶ 3

4.质量为m的物体,由静止开始下落,由于阻力的作用,下落的加速度为4g/5,在物体下落高度为h的过程中,下列说法正确的是()

A.物体的动能增加了4mgh/5

B.物体的机械能减少了4mgh/5

C.物体克服阻力做功mgh/5

D.物体的重力势能减少了mgh

5.某滑沙场有两个坡度不同的滑道AB和AB′(均可看作斜面),甲、乙两名旅游者分别乘两个完全相同的滑沙撬从A点由静止开始分别沿AB和AB'滑下,最后都停在水平沙面BC上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑的,滑沙者保持一定姿势坐在滑沙撬上不动.则下列说法中正确的是()

第5题图

A.甲滑行的总路程一定大于乙滑行的总路程

B.甲在B点的动能一定等于乙在B′点的动能

C.甲在B点的速率一定等于乙在B′点的速率

D.甲全部滑行的水平位移一定大于乙全部滑行的水平位移

6.质量为10kg的物体,在变力F作用下沿x轴做直线运动,力随坐标x的变化情况如图所示.物体在x=0处,速度为1m/s,一切摩擦不计,则物体运动到x=16m处时,速度大小为()

第6题图

A.22m/s

B.3m/s

C.4m/s

D.17m/s

7.如图所示,斜面AB和水平面BC是由同一板材上截下的两段,在B处用小圆弧连接.将小铁块(可视为质点)从A处由静止释放后,它沿斜面向下滑行,进入平面,最终静止于P处.若从该板材上再截下一段,搁置在A、P之间,构成一个新的斜面,再将铁块放回A处,并轻推一下使之沿新斜面向下滑动.关于此情况下铁块运动情况的描述,正确的是()

第7题图

A.铁块一定能够到达P点

B.铁块的初速度必须足够大才能到达P点

C.铁块能否到达P点与铁块质量有关

D.以上说法均不对

8.如图所示,粗糙斜面AB与竖直平面内的光滑圆弧轨道BCD相切于B点,圆弧轨道的半径为R,C点在圆心O的正下方,D点与圆心O在同一水平线上,∠COB=θ.现有质量为m的物块从D点无初速释放,物块与斜面间的动摩擦因数为μ,重力加速度为g.求:

第8题图

(1)物块第一次通过C点时对轨道压力的大小;

(2)物块在斜面上运动离B点的最远距离.

9.如图所示,水平轨道上有一轻弹簧左端固定,弹簧处于自然状态时,其右端位于P 点.现用一质量m=0.1 kg的小物块(可视为质点)将弹簧压缩后释放,物块经过P点时的速度v0=18 m/s,经过水平轨道右端Q点后沿半圆轨道的切线进行竖直固定的光滑圆轨道,最后物块经轨道最低点A抛出后落到B点,已知物块与水平轨道间的动摩擦因数μ=0.15,R =l=1 m,A到B的竖直高度h=1.25 m,取g=10 m/s2.

第9题图

(1)求物块到达Q点时的速度大小(保留根号);

(2)求物块经过Q点时圆轨道对物块的压力;

(3)求物块水平抛出的位移大小.

10.如图所示,物体A的质量为M,圆环B的质量为m,通过绳子连结在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l=4m,现从静止释放圆环.不计定滑轮和空气的阻力,取g=10m/s2,求:

第10题图

(1)为使圆环能下降h=3m,两个物体的质量应满足什么关系?

(2)若圆环下降h=3m时的速度v=5m/s,则两个物体的质量有何关系?

(3)不管两个物体的质量为多大,圆环下降h=3m时的速度不可能超过多大?

第18讲 动能 动能

定理及其应用 第1课时 动能定理

知识整合 基础自测

一、运动 (1)E k =1

2

mv 2 (2)标量

二、1.外力对物体做的总功等于物体动能的变化.W 总=ΔE k 2.功 能 外力做的总功 末动能与初动能的差 动能增加 动能减少 3.曲线运动 变力做功 分阶段做功

重点阐述

【典型例题1】 如图甲所示,长为4m 的水平轨道AB 与倾角为37°的足够长斜面BC 在B 处连接,有一质量为2kg 的滑块,从A 处由静止开始受水平向右的力F 作用,F 按图乙所示规律变化,滑块与AB 和BC 间的动摩擦因数均为0.25,重力加速度g 取10m/s 2.求:

(1)滑块到达B 处时的速度大小;

(2)不计滑块在B 处的速率变化,滑块冲上斜面,滑块最终静止的位置与到B 点的距离.

图甲

图乙

【答案】 (1)10m/s (2)1m 【解析】 (1)由图得:0~2m :F 1=20N Δx 1=2m; 2~3m :F 2=0 Δx 2=1m; 3~4m :F 3=10N Δx 3=1m.

A 至

B 由动能定理:F 1×Δx 1-F 3×Δx 3-μmg(Δx 1+Δx 2+Δx 3)=1

2mv 2B .

20×2-10×1-0.25×2×10×(2+1+1)=1

2

×2×v 2B 得v B =10m/s. (2)因为mgsin37°>μmg cos37°,滑块将滑回水平面.设滑块由B 点上滑的最大距离为L ,由动能定理-μmgL cos37°-mgLsin37°=0-12mv 2B

.

解得:L =5

8

m.从最高点滑回水平面,设停止在与B 点相距s 处,mgLsin37°-

μmgL cos37°-μmgs =0-0.解得:s =sin37°-μcos37°μ

L =0.6-0.25×0.80.25×5

8=1m.

变式训练1 (1)35s (2)14.23J 【解析】 (1)Δt =

Δx v =Δx 1

v

,即图线所围的面积ΔS 就是运动时间. t =S =3×3+12×(3+5)×2+4×3+12×(4+2)×2 s =35s ; (2)W h =1

2mv 2

5-12mv 23+12mv 210-12mv 28=12m(v 25+v 210-v 23-v 2

8

)=12×240×(0.22+0.52-0.332-0.252)J =14.23J.

【典型例题2】 如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部分分

别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R =2.0 m ,一个物体在离弧底E 高度为h =3.0 m 处,以初速度v 0=4 m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g 取10 m/s 2).

【答案】 280 m 【解析】 由于滑块在斜面上受到摩擦阻力作用,所以物体的机械能将逐渐减少,最后物体在BEC 圆弧上做永不停息的往复运动.在BEC 圆弧上做永不停息的往复运动之前的运动过程中,重力所做的功为W G =mg(h -R/2),摩擦力所做的功为W f =-μmgs cos60°,由动能定理得:

mg(h -R/2)-μmgs cos60°=0-12

mv 2

s =280 m.

变式训练2 (1)1

4tan θ (2)5Rcos θ2sin θ 【解析】 (1)为使小物体不会从A 点冲出斜面,

由动能定理得mg

Rcos θ4-μmg cos θRcos θsin θ

=0,解得动摩擦因数至少为μ=1

4tan θ; (2)分析运动过程可得,最终小物体将从B 点开始做往复的运动,由动能定理得mg ??

??Rcos θ

4+Rcos θ-μmgs cos θ=0,解得小物体在斜面上通过的总路程为s =

5Rcos θ2sin θ. 随堂演练

1.ABD 【解析】 小车克服重力做功W =mgh ,A 正确;由动能定理,小车受到的合力做的功等于小车动能的增量,W 合=ΔE k =1

2mv 2,B 正确;由动能定理,W 合=W 推+

W 重+W 阻=12mv 2,所以推力做的功W 推=12mv 2-W 阻-W 重=1

2mv 2+mgh -W 推,C 错误;

阻力对小车做的功W 阻=12mv 2-W 推-W 重=1

2

mv 2+mgh -Fx ,D 正确.

2.D 【解析】 小球上升至最高点过程,根据动能定理,-mgH -F f H =0-1

2mv 20

小球上升至离地高度h 处过程:-mgh -F f h =12mv 21-12mv 20,又12

mv 2

1=2mgh; 小球上升至最

高点后又下降至离地高度h 处过程:-mgh -F f (2H -h)=12mv 22-12mv 20,又2·12mv 2

2=mgh; 联

立以上各式解得h =4

9

H ,选项D 正确.

3.L(1+m

M

) 【解析】

对车头,脱钩后的全过程用动能定理得:

FL -kMgs 1=-12

Mv 2

对车厢,脱钩后用动能定理得:

-kmgs 2=-1

2mv 20

而Δs =s 1-s 2,

由于原来列车是匀速前进的,所以F =k(M +m)g 由以上方程解得Δs =L(1+m

M

).

4.(1)4N (2)0.8J (3)0.8s 【解析】 (1)物体与木板不发生滑动,则木块和小物体具有共同加速度,由牛顿第二定律得:F =(M +m)a 小物体的加速度由木块对它的摩擦力提供,则有:μmg =ma 解得:F =μ(M +m)g =4N (2)小物体的加速度a 1=μmg

m =μg =1m/s 2

木板的加速度 a 2=F -μmg M =3m/s 2 物体滑过木板所用时间为t ,由位移关系得:12a 2t 2-

1

2a 1t 2=L 物体离开木板时的速度v 1=a 1t E k1=1

2mv 21=0.8J (3)若要F 作用时间最短,则物

体离开木板时与木板速度相同.设F 作用的最短时间为t 1,物体在木板上滑行的时间为t ,物体离开木板时与木板的速度为v ,则v =a 1t 撤去F 时,物体速度为v 1,木板的速度为v 2,则v 1=a 1t 1 v 2=a 2t 1 撤去F 后由动量守恒定律得:mv 1+Mv 2=(m +M)v 由位移关系得:v 22t 1+v 2+v 2(t -t 1)-v 2

t =L 解得:t 1=0.8s. 5.见解析 【解析】 绳对重物的拉力为变力,应用动能定理列方程.以重物为研究对象:

W T -mgh =12

mv 2

m

由图所示,重物的末速度v m 与汽车在B 点的速度v B 的沿绳方向的分速度相同,则

v m =v B ·sin θ h =H/cos θ-H

解得:

W T =mgH ?

???

?1-cos θcos θ+12mv 2B

sin 2θ.

6.(1)12mv 20 (2)v 02

4μg -x 0

【解析】 (1)A 从P 点出发又回到P 点的过程中根据动能定

理得克服摩擦力所做的功为W f =1

2

mv 02 (2)A 从P 点出发又回到P 点的过程中根据动能定

理 2μmg(x 1+x 0)=12mv 02

得:x 1=v 024μg -x 0

.

7.(1)R

μ (2)(3-2cos θ)mg 【解析】 (1)因为摩擦力始终对物体做负功,所以物体最

终在圆心角为2θ的圆弧上往复运动.对整个过程由动能定理得:mgR·cos θ-μmg cos θ·s =0,所以总路程为s =R μ.(2)对B →E 过程mgR(1-cos θ)=12mv 2E F N -mg =mv 2E R 解得:F N

=(3-2cos θ)mg.由牛顿第三定律得物体对圆弧轨道的压力为(3-2cos θ)mg.

8.(1)10m/s (2)43N ,方向竖直向下 (3)-68J 【解析】 (1)设小球经过B 点时的速度大小为v B ,由动能定理得mg(H -h)=12mv 2

B 求得v B =10m/s. (2)设小球经过

C 点时的

速度为v C ,对轨道的压力为F N ,则轨道对小球的支持力F N ′=F N ,根据牛顿第二定律可得F N ′-mg =mv 2C

R 由动能定理得mgR(1-cos53°)=12mv 2C -12mv 2B ,解得F N =43N 方向竖

直向下 (3)设小球由D 到达S 的过程中阻力所做的功为W ,易知v D =v B ,由动能定理可得mgh +W =12mv 2S -12

mv 2

D 代入数据,解得W =-68J. 第2课时 动能定理的应用

重点阐述

【典型例题1】 如图所示,某滑道由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接(不考虑能量损失),其中轨道AB 段是光滑的,水平轨道BC 的长度s =5m ,轨道CD 足够长且倾角θ=37°,A 点离轨道BC 的高度为h 1=4.30m.现让质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 、CD 间的动摩擦因数都为μ=0.5,重力加速度g 取10m/s 2,sin37°=0.6,cos37=0.8.

试求:

(1)小滑块第一次到达C 点时的速度大小;

(2)小滑块第一次和第二次经过C 点的时间间隔; (3)小滑块最终静止的位置距B 点的距离l. 【答案】 (1)6m/s (2)1.9s (3)4.28m

【解析】 (1)小物块第一次从A 到C 的过程中,由动能定理得 mgh 1-μmgs =1

2mv 2C

将h 1、s 、μ、g 代入得:v C =6m/s.

(2)第一次冲上CD 轨道上升的高度最大,上升过程的加速度大小为a 1=gsin θ+μg cos θ=10m/s 2

上升的时间t 1=v C

a 1

=0.6s

则沿斜面上升的距离最大值为x =v 2C

2a 1

=1.8m

返回时小滑块做匀加速运动,加速度a 2=gsin θ-μg cos θ=2m/s 2

从最高点返回到C 点所用的时间 t 2=

2x a 2=355

s 故小滑块第一次和第二次经过C 点的时间间隔

t =t 1+t 2=1.9s

(3)小球返回到C 点的速度满足v′2C =2a 2x 从C 点向左的过程,由动能定理得1

2mv ′ 2C =μmg(s -l)

带入数字解得l =4.28m.

变式训练1 (1)2gR (2)μmg +0.8mg

q

(3)(2.5+2μ)R 【解析】 (1)对物体由A 至D 运用动能定理得:-mg·2R =0-1

2mv 2A v

A

=2gR.(2)对物体由B 至A 运用动能定理得:Eq·2.5R -μmg·2.5R =1

2mv 2A -0解得E =

μmg +0.8mg q . (3)对物体全过程运用动能定理得:Eq ·2.5R -μmg·s =0解得s =(2.5+2

μ)R. 【典型例题2】 在光滑的平面上有一静止物体,现以水平恒力推这一物体.作用一段时间后,换成相反方向的水平恒力推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J ,则在整个过程中,甲、乙两力做功分别是多少?

【答案】 8J 24J 【解析】 由于在前后两段相同的时间t 内,位移相同,

则12v 1t =1

2(v 2-v 1)t 即v 2=2v 1

得E k2=12mv 22=4×12

mv 2

1=4E k1 已知E k2=32J 故E k1=8J

按动能定理,恒力F 甲、F 乙做的功分别为

W 乙=E k2-E k1=32J -8J =24J W 甲=E k1=8J.

变式训练2 AD 【解析】 由动能定理可知,在0~t 1时间内质点速度越来越大,动能越来越大,外力一定做正功,故A 项正确;在t 1~t 3时间内,动能变化量为零,可以判定外力做的总功为零,故D 项正确;由P =F·v 知0、t 1、t 2、t 3四个时刻功率为零,故B 、C 都错.

【典型例题3】 如图甲所示,一条轻质弹簧左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m =1.0 kg ,当弹簧处于原长时,小物块静止于O 点.现对小物块施加一个外力F ,使它缓慢移动,将弹簧压缩至A 点,压缩量为x =0.1 m ,在这一过程中,所用外力F 与压缩量的关系如图乙所示.然后撤去F 释放小物块,让小物块沿桌面运动,已知O 点至桌面B 点的距离为L =2x ,水平桌面的高为h =5.0 m ,计算时,可认为滑动摩擦力近似等于最大静摩擦力.(g 取10 m/s 2)求:

(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能. (2)小物块到达桌边B 点时速度的大小. (3)小物块落地点与桌边B 点的水平距离. 【答案】 (1)2.3 J (2)2 m/s (3)2 m

【解析】 (1)取向左为正方向,从F -x 图中可以看出,小物块与桌面间的滑动摩擦力大小为

F f =1.0 N ,方向为负方向 在压缩过程中,摩擦力做功为 WF f =-F f ·x =-0.1 J

由图线与x 轴所围面积可得外力做功为

W F =

1.0+47.0

2

×0.1 J =2.4 J 所以弹簧存贮的最大弹性势能为 E p =W F +WF f =2.3 J

(2)从A 点开始到B 点的过程中,由于L =2x ,摩擦力做功为W′F f =-F f ·3x =-0.3 J

对小物块用动能定理有 E p +W′F f =12mv 2

B

解得:v B =2 m/s

(3)小物块从B 点开始做平抛运动h =1

2

gt 2

下落时间t =1 s

水平距离s =v B t =2 m.

变式训练3 (1)4m (2)24J 【解析】 (1)在3~5s 内物块在水平恒力F 作用下由B 点匀加速运动到A 点,设加速度为a ,A 与B 间的距离为x ,则F -μmg =ma ,得a =2m/s 2,x =1

2at 2=4m. (2)设物块回到A 点时的速度为v A ,由v A2=2ax 得v A =4m/s.设整个过程中F 做的功为W F ,由动能定理得:W F -2μmgx =1

2

mv A2,解得:W F =24J.

随堂演练

1.AB 【解析】 由功能原理可知,人对物体所做的功等于物体机械能的增量,为mgh +12mv 2,选项A 正确CD 错误;由动能定理可知,物体所受合外力所做的功为1

2mv 2,

选项B 正确.

2.B 【解析】 小孩下滑过程中,受到重力、支持力和滑动摩擦力,其中重力做正功,支持力不做功,滑动摩擦力做负功;重力做功是重力势能的变化量度,故重力势能减小;小孩加速下滑,故动能增加;除重力外其余力做的功是机械能变化的量度,摩擦力做负功,故机械能减小;故选B.

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

人教版高中物理必修二动能定理专题练习

(精心整理,诚意制作) 动能定理专题练习 1. 如图所示,水平传送带A 、B 间距离为10m ,以恒定的速度1m/s 匀速传动。现将一质量为0.2 kg 的小物体无初速放在A 端,物体与传送带间滑动摩擦系数为0.5,g 取10m/s 2 ,则物体由A 运动到B 的过程中传送带对物体做的功为( ) (A)零 (B)10J (C)0.1J (D)除上面三个数值以外的某一值 2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。当每个物体受到大小相同的制动力时,它们制动距离之比是( ) A .1∶2∶3 B .12∶22∶32 C .1∶1∶1 D .3∶2∶1 3.一个物体自由下落,落下一半时间的动能与落地时动能之比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4 4.质量为m ,速度为υ的子弹,能射入固定的木板L 深。设阻力不变,要使子弹射入木板3L 深,子弹的速度应变为原来的( ) A .3倍 B .6倍 C .23 倍 D .3倍 5.物体从静止开始自由下落,下落ls 和下落4s 时,物体的动能之比是_____;下落1m 和4m 时,物体的动能之比是________。 6.质量为m 的物体在水平力F 的作用下,由静止开始光滑地面运动,前进一段距离之后速度大小为v 。再前进一段距离使物体的速度增大为2v ,则( ) A 、第二过程的动能增量是第一过程的动能增量的4倍 B 、第二过程的动能增量是第一过程的动能增量的3倍 C 、第二过程的动能增量是第一过程的动能增量的2倍 D 、第二过程的动能增量等于第一过程的动能增量 7.质量为m 的物体以初速度v 0开始沿水平地面滑行,最后停下来。在这个过程中,物体的动能增量是 8.一个小孩把6.0kg 的物体沿高0.50m ,长2.0m 的光滑斜面,由底部匀速推到顶端,小孩做功为 ,若有5.0N 阻力的存在,小孩匀速把物体推上去应做 功,物体克服阻力做的功为 ,重力做的功为 。(g m s 取102 /) 9.把质量为3.0kg 的石块,从高30m 的某处,以s m /0.5的速度向斜上方抛出,g m s 取102 /,不计空气阻力,石块落地时的速率是 ;若石块在运动过程中克服空气阻力做了73.5J 的功,石块落地时的速率又为 。 10.竖直上抛一个质量为m 的物体,物体上升的最大高度 h ,若不计空气阻力,则抛出时的初动能为 。 11.一个人站在高出地面点h 处,抛出一个质量为m 的物体,物体落地时速率为v ,人对物体做的功等于_______(不计空气阻力) 12.木块在粗糙水平面上以大小为υ的初速度开始运动,滑行s 后静止,则要使木块在此平面上滑行3s 后静止,其开始运动的初速度应为 。

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

人教版高中物理必修二动能与动能定理

高中物理学习材料 (马鸣风萧萧**整理制作) 动能与动能定理 三、动能定理: 1.内容: 2.表达式: 3.对动能定理的理解:合外力做功的正负与物体动能变化的关系为: 4、应用动能定理解题的一般步骤: (1)确定研究对象,明确运动过程; (2)明确始末状态,确定其动能; (3)对研究对象进行受力分析,找出各力所做的功或合力做的功; (4)根据动能定理列方程; (5)求解并验算。 【例1】关于动能,下列说法正确的是 ( ) A 、动能是机械能的一种表现形式,凡是运动的物体都具有动能 B 、动能总是正值 C 、一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化 D 、动能不变的物体,一定处于平衡状态 【例2】.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量k E 之比为? 【例3】.关于功和物体动能变化的关系,不正确的说法是( ) A 、有力对物体做功,物体的动能就会变化 B 、合力不做功,物体的动能就不变 C 、合力做正功,物体的动能就增加 D 、所有外力做功代数和为负值,物体的动能就减少 【例4】.一物体做变速运动时,下列说法正确的是 ( ) A .合外力一定对物体做功,使物体动能改变

B .物体所受合外力一定不为零 C .合外力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 一.常规题(匀变速直线运动) 1.如图,物体在光滑的水平面上以4m/s 的速度向右滑行.现对物体施加一水平向左的力F,经过一段时间后,速度以4m/s 的速度向左运动,求:在此过程中F所做功. 2.用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的摩擦因数为μ,求木箱获得的速度? 3.质量是2g 的子弹,以300m /s 的速度水平射入厚度是5cm 的木板,射 穿后的速度是100m /s .子弹在射穿木板的过程中所受的平均阻力是多大。 【选做4】.如图所示,半径1R m =的14 圆弧导轨与水平面相接,从圆弧导轨的顶端A ,由静止释放一个质量为20m g =的小木块,测得其滑至底端B 时速度3/B v m s =,以后在水平导轨滑行3BC m =而静止。求: (1)小木块刚到达底端B 时,对B 点的压力N ; (2)在圆弧轨道上克服摩擦力做的功? (3)BC 段轨道的动摩擦因数为多少? 4.已知斜面高 h ,斜面长 l ,质量为 m 的人从斜面顶部沿着斜面滑下,不计斜面的阻 A

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得: ?2mgR=m v12-m v02 且需要满足m≥mg,解得R≤0.72m, 综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

人教版高中物理必修二《动能和动能定理》

动能和动能定理 一、选择题 1.关于对动能的理解,下列说法正确的是( ) A.动能是机械能的一种表现形式,凡是运动的物体都具有动能 B.动能总为正值 C.一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化 D.动能不变的物体,一定处于平衡状态 2.关于运动物体所受的合力、合力的功、运动物体动能的变化,下列说法正确的是( ) A.运动物体所受的合力不为零,合力必做功,则物体的动能一定要变化 B.运动物体所受的合力为零,物体的动能一定不变 C.运动物体的动能保持不变,则该物体所受合力一定为零 D.运动物体所受合力不为零,则该物体一定做变速运动 3.质量不同而具有相同动能的两个物体,在动摩擦因数相同的水平面上滑行到停止,则( ) A.质量大的滑行的距离大 B.质量大的滑行的时间短 C.它们滑行的时间一样大 D.它们克服阻力做的功一样大 4.在下列几种情况中,甲乙两物体的动能相等的是 ( ) A.甲的速度是乙的2倍,甲的质量是乙的12 B.甲的质量是乙的2倍,甲的速度是乙的12 C.甲的质量是乙的4倍,甲的速度是乙的12 D.质量相同,速度大小也相同,但甲向东运动,乙向西运动 5.一个小球从高处自由落下,则球在下落过程中的动能( ) A.与它下落的距离成正比 B.与它下落距离的平方成正比 C.与它运动的时间成正比 D.与它运动的时间平方成正比 二、填空题 6.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N.子弹射入土墙前的动能是______J ,它的速度是______m /s. 7.甲、乙两物体的质量之比为2:1m :m 乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______. 三、计算题 8.一颗质量m =10g 的子弹,以速度v =600m /s 从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s =0.6m ,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?

高一物理 动能定理练习题

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 2.下列说法正确的是( ) A .某过程中外力的总功等于各力做功的代数之和; B .外力对物体做的总功等于物体动能的变化; C .在物体动能不变的过程中,动能定理不适用; D .动能定理只适用于物体受恒力作用而做加速运动的过程。 3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 C .两物块速度变化相等 D .水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( ) A .与它通过的位移s 成正比 B .与它通过的位移s 的平方成正比 C .与它运动的时间t 成正比 D .与它运动的时间的平方成正比 5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D .0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J

高中物理动能定理的综合应用练习题及答案

高中物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求: (1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。 【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】 (1)物块A 从出发至N 点过程,机械能守恒,有 22011 222 mv mg R mv =?+ 得 20445m /s v v gR =-= (2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有 2 N v mg F m R += 得物块A 受到的弹力为 2 N 150N v F m mg R =-= 由牛顿第三定律可得,物块对轨道的作用力为 N N 150N F F '== 作用力方向竖直向上 (3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有 2 0102 mgx mv μ-=- 得

12.5m x = 2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

高中物理动能定理的运用归纳与总结

一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运 动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 【解析】对物块整个过程用动能定理得: ()0 00=+-s s umg Fs 解得:s=10m 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少? 【解析】对车头,脱钩后的全过程用动能定理得: 201)(2 1 )(V m M gS m M k FL --=-- 对车尾,脱钩后用动能定理得: 2022 1 mV kmgS -=- 而21S S S -=?,由于原来列车是匀速前进的, 所以F=kMg 由以上方程解得m M ML S -=?。 (二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度 v 将一个质量为m 的物体竖直向上抛出,上升的最大高度 为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( ) A. 2021mv B. fh mgh - C. fh mgh mv -+2021 D. fh mgh + S 2 S 1 L V 0 V 0

人教版高中物理必修二高一物理动能定理机械能守恒检测(计算题)

高中物理学习材料 金戈铁骑整理制作 高一物理动能定理机械能守恒检测(计算题) 1.“绿色奥运”是2008年北京奥运会的三大理念之一,奥委组决定在各比赛场馆适用新型节能环保电动车,届时奥运会500名志愿者将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次试验中,质量为8×102kg 的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同的时刻电动车的牵引力F 与对应的速度v ,并描绘出F —1/v 图像(图中AB 、BO 均为直线)。假设电动车在行驶中所受的阻力恒定,求: (1)根据图线ABC ,判断该环保电动车做什么 运动并计算环保电动车的额定功率 (2)此过程中环保电动车做匀加速直线运动的 加速度大小 (3)环保电动车由静止开始运动,经过多长时间 速度达到2m/s? 2.如图所示,粗糙的斜面通过一段极小的圆弧与光滑的半圆 轨道在B 点相连,整个轨道在竖直平面内,且C 点的切线水平。 现有一个质量为m 且可视为质点的小滑块,从斜面上的A 点由 静止开始下滑,并从半圆轨道的最高点C 飞出。已知半圆轨道的 半径R=1m, A 点到水平底面的高度h=5m, 斜面的倾角θ=450,滑块 与斜面间的动摩擦因数μ=0.5, 空气阻力不计,求小滑块在斜面上的 落点离水平面的高度。(g=10m/s 2) 3.在光滑的水平面有一个静止的物体。现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J 。则在整个过程中,恒力甲、乙对物体做的功分别是多少? 4.从倾角为θ的斜面上,水平抛出一个小球,小球的初动能为E K0, F / N C B A 151 2000 400 V 1/s.m -1 O C O · y R A B H θ x C θ

人教版高中物理必修二动能和动能定理优质教案

动能和动能定理 一、要求与目标: 1、 理解动能的的概念,会用动能的定义进行计算。 2、 理解动能定理,知道动能定理的适用条件,会用动能定理进行计算。 3、 理解动能定理的推导过程。 4、 会用动能定理解决力学问题,知道用动能定理解题的步骤。 二、重点与难点: 1、动能的概念;动能定理及其应用。 2、对动能定理的理解。 三教学过程: (一)①请同学们欣赏几个课件,这些课件有什么共同特点呢? 学生的回答是:这些物体均在运动, ②哪这些物体具有能吗? 归纳:我们把这些运动物体具有的能叫物体的“动能” ③哪么物体的动能与哪些因素有关呢? 例题1、如图有一质量为m 的物体放在粗糙的水平面上,物体在运动过程中受到的摩擦力为f ,当物体受到恒力F (F >f )作用从速度V 0增加到V 时,物体运动合力做功为多大? 解:物体运动中的加速度为: m f F a -= 由运动学公式得到as V V 22 02+= 代入得到:m s f F V V )(22 02-=- 整理得到:s f F mV mV )(21212 02-=- 我们将:2 2 1mV =E k ,叫物体的动能。s f F )(-=W 合,叫合外力做功。 (二)、认识动能:E K =2 2 1mV 动能不仅与物体的质量有关,还与物体的速度平方有关; 它是一个标量,仅有大小而没有方向。如一个物体以4m/s 速度从A 点运动过后又以4m/s 的速度返回A 点,两次过A 点时物体的动能大小相等。 动能的单位是:“J ” 有:1kg.m 2/s 2=1J 例题1、改变汽车的质量和速度,都能使汽车的动能发生改变,在下列情况下,汽车的动能各是原来的几倍。 A 、质量不变,速度增大为原来的2倍; B 、速度不变,质量增大为原来的2倍; C 、质量减半,速度增大到原来的4倍; D 、速度减半,质量增大到原来的4倍。 (三)动能定理: 1、 在物理上我们将 s f F mV mV )(2 1 21202-=- 叫动能定理,它反映的是物体合外力做

高中物理必修二动能和动能定理

高中物理必修二动能和动能定理 【知识整合】 1、动能:物体由于_____________而具有的能量叫动能。 ⑴动能的大小:_________________ ⑵动能是标量。 ⑶动能是状态量,也是相对量。 2、动能定理: ⑴动能定理的内容和表达式:____________________________________________ ⑵物理意义:动能定理指出了______________________和_____________________的关系,即外力做的总功,对应着物体动能的变化,变化的大小由________________来度量。 我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。物体动能的变化是指_____________________________________________。 ⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于________________。 既适用于恒力做功,也适用于______________________。力可以是各种性质的力,既可以同时做用,也可以____________________,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。 【重难点阐释】 1、应用动能定理解题的基本步骤: ⑴选取研究对象,明确它的运动过程。 ⑵分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。 ⑶明确物体在过程的始末状态的动能E k1和E k2 ⑷列出动能定理的方程W合=E k2-E k1及其它必要的解题方程,进行求解。 2、动能定理的理解和应用要点: (1)动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。 (2)动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。 (3)动能定理不仅可以求恒力做功,也可以求变力做功。在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。 (4)动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题(圆周和平抛有自己独立的方法)。(5)在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速和减速的过程),此时可以分段考虑,也可整体考虑。如能对整个过程列动能定理表达式,则可能使问题简化。在把各个力代入公式:W1﹢W2﹢……﹢Wn=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。 【典型例题】 另一端施加大小为F1的拉力作用,在水平面上 做半径为R1的匀速圆周运动今将力的大小改变

高中物理动能及动能定理典型例题

动能和动能定理·典型例题剖析 例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可 求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a. [解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有

高中物理动能与动能定理解题技巧分析及练习题(含答案)

高中物理动能与动能定理解题技巧分析及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

高一物理必修二知识点总结动能和动能定理

高一物理必修二知识点总结动能和动能定 理 高一物理必修二知识点总结:动能和动能定理主要包含了对这两个物理概念的详细讲解,希望对高一同学们的物理学习有一定的帮助,把基础知识掌握牢固才能更好的提升能力。 一、动能 如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. Ek=mv2, 其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。 二、动能定理 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+=mvt2-mv02 1.反映了物体动能的变化与引起变化的原因力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.增量是末动能减初动能.EK0表示动能增加,EK0表示动能减小. 3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的

功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用. 7.对动能定理中的位移与速度必须相对同一参照物. 上面的高一物理必修二知识点总结:动能和动能定理,对于大家掌握这部分知识点非常有帮助,希望大家好好利用。更多相关内容请点击进入高一物理知识点栏目。

高中物理 动能 动能定理

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

人教高中物理 必修二 第七章 第七节 动能定理(无答案)

动能定理 知识梳理 一、动能 (一)动能的表达式 1.定义:物体由于运动而具有的能叫做动能. 2.公式:E k = mv 2 ,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关. (2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等. (3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能. (二)动能定理 1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:W=E -E ,W 是外力所做的总功,E 、E 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E = mv 21,E =mv . 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程. 利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1. 只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功. ②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功: W 1+W 其他=ΔE k . 12 2k 1k 1k 1k 1k 122k 12 2 2

人教版高中物理必修二动能定理(一)

高中物理学习材料 (马鸣风萧萧**整理制作) 动能定理(一) 1.A 、B 两个物体的质量比为1∶3,速度之比是3∶1,那么它们的动能之比是 ( ) A .1∶1 B .1∶3 C .3∶1 D .9∶1 2.下列关于运动物体所受合外力做功和动能变化的关系正确的是 ( ) A.如果物体所受合外力为零,则合外力对物体做的功一定为零 B.如果合外力对物体所做的功为零,则合外力一定为零 C.物体在合外力作用下做变速运动,动能一定发生变化 D.物体的动能不变,所受合外力一定为零 3.当重力对物体做正功时,物体的 ( ) A .重力势能一定增加,动能一定减小 B .重力势能一定减小,动能不一定增加 C .重力势能一定增加,动能一定增加 D .重力势能一定减小,动能一定增加 4.人在高h 处向斜上抛出一质量为m 的物体,物体到最高点的速度为v 1,落地速度为v 2, 人对这个物体做的功为( ) A . 21mv 22-2 1 mv 12 B . 2 1 mv 22 C . 2 1 mv 22-mgh D . 2 1 mv 12-mgh 5.足球运动员一脚把足球踢出,足球沿水平地面运动,速度逐渐变小,在球离开运动员以后的运动过程中( ) A .运动员对球做了功 B .球克服支持力做了功 C .重力对球做了功 D .球克服阻力做了功 6.质量为m 的物体静止在粗糙水平面上,若物体受一水平力F 作用通过位移为s 时,它的动能为E 1;若静止物体受一水平力2F 作用通过相同位移时,它的动能为E 2,则 ( ) A .E 2=E 1 B .E 2=2E 1 C .E 2>2E 1 D . E 2<2E 1 7.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,在下落至离地高度h 处,小球的势能是动能的2倍,则h 等于 ( ) A.H 9 B.2H 9 C.3H 9 D.4H 9 8.如图,ABCD 为光滑轨道,其中ABC 为半径是R 的四分之一圆弧,CD 水平。今有一根粗细均匀的细杆恰好搁在AC 之间,现由静止开始释放细杆,求最后细杆在CD 上滑行

人教版高中物理必修二《动能和动能定理》知识点训练

训练8 动能和动能定理 [基础题] 1.对于动能定理表达式W =E k2-E k1的理解,正确的是 ( ) A .物体具有动能是由于力对物体做了功 B .力对物体做功是由于该物体具有动能 C .力做功是由于物体的动能发生变化 D .物体的动能发生变化是由于力对物体做了功 2.在粗糙水平地面上,使一物体由静止开始运动,第一次用斜向上的拉力,第二次用斜向下的推力,两次的作用力大小相等,力与水平方向的夹角也相等、物体的位移也相等,则这两种情况下 ( ) A .拉力和推力做功相等,物体末速度相等 B .拉力和推力做功相等,物体末速度不等 C .拉力和推力做功不等,物体末动能相等 D .拉力和推力做功不等,物体末动能不等 3.一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v (方向与原来相反),在这段时间内,水平力所做的功为 ( ) A.32m v 2 B .-32m v 2 C.52m v 2 D .-52 m v 2 4.一个人站在高出地面h 处,抛出一个质量为m 的物体,物体落地时的速率为v ,人对物体所做的功等于(空气阻力不计) ( ) A .mgh B.12m v 2 C.12m v 2-mgh D.12 m v 2+mgh [能力题] 5.质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平地面上滑行,直至停止,则 ( ) A .质量大的物体滑行的距离大 B .质量小的物体滑行的距离大 C .它们滑行的距离一样大 D .它们克服摩擦力所做的功一样多 6.一辆质量为m ,额定功率为P 的小车从静止开始以恒定的加速度 a 启动,所受阻力为F f ,经时间t ,行驶距离l 后达到最大速度v m ,然后匀速运动,则从静止开始到达到最大速度的过程中,机车牵引力所做的功为 ( ) A .Pt B .(F f +ma )l C.12m v 2m D.12 m v 2m +F f l 7.一质量为1 kg 的物体被人用手由静止开始向上提升1 m ,这时物体的速度是2 m/s ,则下列结论中不正确的是 ( ) A .手对物体做功12 J B .合外力对物体做功12 J C .合外力对物体做功2 J

相关文档
最新文档