浙大远程工程数学离线作业答案(2015年春)
浙大远程操作系统原理离线作业及答案
浙⼤远程操作系统原理离线作业及答案操作系统原理离线作业⼀、单选题1.进程P0和P1的共享变量定义及其初值为boolean flag[2];int turn=0;flag[0]=FALSE;flag[1]=FALSE;若进程P0和P1访问临界资源的类C代码实现如下:void P0() //P0进程{ while(TURE){flag[0]=TRUE; turn = 1;while (flag[1] && turn == 1) ;临界区;flag[0] = FALSE;}}void P1() //P1进程{ while(TURE){flag[1]=TRUE; turn = 0;while (flag[0] && turn == 0) ;临界区;flag[1] = FALSE;}}则并发执⾏进程P0和P1时产⽣的情况是:DA.不能保证进程互斥进⼊临界区、会出现“饥饿”现象B.不能保证进程互斥进⼊临界区、不会出现“饥饿”现象C.能保证进程互斥进⼊临界区、会出现“饥饿”现象 D.能保证进程互斥进⼊临界区、不会出现“饥饿”现象2.有两个进程P1和P2描述如下:shared data:int counter = 6;P1 :Computing;counter=counter+1;P2 :counter=counter-2;两个进程并发执⾏,运⾏完成后,counter的值不可能为 C 。
A. 4B. 5C. 6D. 73.某计算机采⽤⼆级页表的分页存储管理⽅式,按字节编址,页⼤⼩为210字节,页表项⼤⼩为2字节,逻辑地址结构为:页⽬录号页号页内偏移量逻辑地址空间⼤⼩为216页,则表⽰整个逻辑地址空间的页⽬录表中包含表项的个数⾄少是BA.64 B.128 C.256 D.5124.在动态分区系统中,有如下空闲块:空闲块块⼤⼩(KB)块的基址1 80 602 75 1503 55 2504 90 350此时,某进程P请求50KB内存,系统从第1个空闲块开始查找,结果把第4个空闲块分配给了P进程,请问是⽤哪⼀种分区分配算法实现这⼀⽅案? CA.⾸次适应B. 最佳适应C. 最差适应D. 下次适应5.在⼀页式存储管理系统中,页表内容如下所⽰。
浙江大学远程考试-工程数学练习题库(2018版)
浙江大学远程考试-工程数学练习题库(2018版)work Information Technology Company.2020YEAR浙江大学远程教育学院《工程数学》练习题一、填空题:1. 设2i z e -=,那末z =____________,arg z =______________。
2. 设21()2z f z z =--,那么函数()f z 除了点z =______外处处解析,且()f z '=____________。
3. 微分方程1/y x '=的通解y =_________,当满足条件(1)0y =时,y =__________。
4. 设已知方程()()y p x y f x '+=的齐次方程一解为x 、非齐次方程一解为2x ,则方程的通解为y =__________________________。
5. 积分()()j t F f t e dt ωω+∞--∞=⎰称为()f t 的______变换,()f t 称为()F ω的_____函数。
6. 傅里叶变换有微分性质[()]f t '=__________________。
7. 设12i z e -=,那末z =____________,arg z =______________。
8. 设1()cos()f z z=,那么函数()f z 除了点z =_____外处处解析,且()f z '=___________。
9. 微分方程x y e '=的通解y =________,当满足条件(0)1y =时,y =__________。
10. 设已知方程()()y p x y f x '+=的齐次方程一解为2x 、非齐次方程一解为x ,则方程的通解为y =_________________________。
11. 积分0()()st F s f t e dt +∞-=⎰称为()f t 的______变换,()f t 称为()F s 的_____函数。
工程数学离线作业 (1)
浙江大学远程教育学院《工程数学》课程作业姓名: 杜小勇 学 号: 715100202040年级: 15秋 学习中心: 西溪直属————————————————————————————— 《复变函数与积分变换》第一章1.1计算下列各式:(2)(a-b i )3=a3-3a2bi+3a(bi)2-(bi)3=a3-3ab2+i(b3-3a2b)(3)i (i 1)(i 2)--解 i 1.2证明下列关于共轭复数的运算性质:(1)1212()z z z z ±=±(2)1212()z z z z =(3)11222()(0)zz z z z =≠ 1.4将直线方程ax+by+c=0(a 2+b 2≠0)写成复数形式.[提示:记x+i y=z.]1.5将圆周a(x 2+y 2)+bx+cy+d =0(a ≠0)写成复数形式(即用z 与z 来表示,其中z=x+iy ).1.6求下列复数的模与辐角主值:(1i1.8将下列各复数写成三角表示式:1.10解方程:z 3+1=0.1.11指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)2<|z|<3(3)4π<arg z <3π;且1<|z|<3(5)Re z 2<1(7)|arg z |<3π第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z z 2(2)f(z)=x 2+iy 22.3确定下列函数的解析区域和奇点,并求出导数:(1)211z - 2.9由下列条件求解析函数f(z)=u+i v .(1)u(x-y)(x 2+4xy+y 2)(3)u=2(x-1)y, f (0)=-i(4)u=e x (x cos y - y sin y),f (0)=02.13试解方程:(1)e zi2.14求下列各式的值:(1)cos i(3)(1-i)1+i第三章3.1计算积分120[()]d i x y ix z +-+⎰.积分路径为(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平方向向右至1+i.3.2计算积分d ||cz z z ⎰ 的值,其中C 为(1)|z|=2;(2)|z|=4. 3.6计算21d c z z z-⎰ ,其中为圆周|z|=2 3.8计算下列积分值:(1)0sin xi⎰z d z(3)0(32)d i z e z z +⎰3.10计算下列积分:(1)|2|1d 2z z e z z -=-⎰(2)2||221d 1z z z z z =-+-⎰ (4)||d (1)(1)nz r z r z =≠-⎰ 3.11计算I=d (21)(2)cz z z z +-⎰ ,其中C 是(1)|z |=1;(2)|z -2|=1;(3)|z -1|=12;(4)|z |=3.3.13计算下列积分:(2)||22sin d ()2z z z z π=-⎰(3)123cos d C C C z z z -=+⎰ ,其中C 1:|z |=2,C 2:|z |=3.第四章4.2下列级数是否收敛?是否绝对收敛?(1)11i ()2n n n∞=+∑ (2)1i !n n n ∞=∑4.4试确定下列幂级数的收敛半径:(1)11n n nz ∞-=∑(2)211(1)n n n z n ∞=+∑4.5将下列各函数展开为z 的幂级数,并指出其收敛区域:(1)311z + (3)221(1)z + (5)sin 2 z4.7求下列函数在指定点z 0处的泰勒展式:(1)21z ,z 0=1 (2)sin z ,z 0=14.8将下列各函数在指定圆环内展开为洛朗级数:(1)21(1)z z z +- ,0<|z |<1,1<|z |<+∞ (3)2225(2)(1)z z z z -+-+ ,1<|z |<2 (4)cosi 1z- ,0<|z -1|<+∞ 4.9将f(z)=2132z z -+ 在z =1处展开为洛朗级数.第五章5.3下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):(1)221(4)z z z -+ ;(2)3sin z z ;(3)1sin cos z z + ; (4)21(1)z z e - ;(5)ln(1)z z + ;(6)111z e z -- . 5.5如果f(z)与g(z)是以z 0为零点的两个不恒为零的解析函数,则00()()lim lim ()()z z z z f z f z g z g z →→'=' (或两端均为∞). [提示:将()()f zg z 写成0()()()m n z z z z ϕψ--的形式,再讨论.] 5.7求出下列函数在孤立奇点处的留数:(1)1z e z- (2)722(2)(1)z z z -+ (5)1sin z z(6)sh ch z z 5.8利用留数计算下列积分:(1)||1d sin z z z z=⎰ (2)32||2d (1)(3)z z e z z z =-+⎰(4)1||2sin d (1)z z z z z e =-⎰ 5.12求下列各积分之值:(1)20d (1)cos x a a θθ>+⎰ (3)2222d (0)()x x a x a +∞-∞>+⎰ (4)2cos d 45x x x x +∞-∞++⎰第八章 8.4求下列函数的傅氏变换:(1)1,()1,0,f t -⎧⎪=⎨⎪⎩ 10,01,t t -<<<< (2),()0,t e f t ⎧=⎨⎩ 0,0;t t ≤> (3)21,(t)0,t f ⎧-=⎨⎩||1,||1;t t ≤> 8.5求下列函数的傅氏变换,并证明所列的积分等式.(2)sin ,()0,t f t ⎧=⎨⎩ ||,||.t t ππ≤> 证明 20sin ,sin sin d 210,t t πωπωωω+∞⎧⎪=⎨-⎪⎩⎰||,||.t t ππ≤> 8.13证明下列各式:其他(1) f 1(t )* f 2(t )= f 2(t )* f 1(t )8.14设10,()1,f t ⎧=⎨⎩0,0;t t ≤> 20,()e ,t f t -⎧=⎨⎩ 0,0,t t <≥ 求f 1(t )* f 2(t ).8.15设1()F ω= F [f 1(t)], 2()F ω= F [f 2(t)],证明:F [f 1(t)·f 2(t)]=121()*()2F F ωωπ.第九章9.1求下列函数的拉氏变换:(1)3,()1,0,f t ⎧⎪=-⎨⎪⎩02,24,4;t t t ≤<≤<> (2)3,()cos ,f t t ⎧⎪=⎨⎪⎩ 0,2;2t t ππ≤<≥9.2求下列函数的拉氏变换:(1)sin 2t(4)||t9.3求下列函数的拉氏变换:(1)232t t ++(3)2(1)t t e -(5)cos t at9.4利用拉氏变换的性质,计算L [f (t )]:(1)3()sin 2t f t te t -= ;(2)30()sin 2d t t f t t e t t -=⎰9.5利用拉氏变换的性质,计算L -1[F (s )](2)1()ln1s F s s +=- (4)221()(1)F s s =- 9.6利用像函数的积分性质,计算L [f (t )]:(1)sin ()kt f t t = (2)30sin 2d t t e t t t-⎰ 9.8求下列像函数F (s )的拉氏变换:(5)42154s s ++ (7)221s e s-+ 9.11利用卷积定理证明下列等式:(1)L [0()d t f t t ⎰ ]= L [()*()f t u t ]=()F s s ; (2)L -1222sin (0).()2s t at a s a a⎡⎤=≠⎢⎥+⎣⎦《常微分方程》第一章2.验证函数1y cx c =+ (c 是常数)和y =±都是方程1y xy y '=+ 的解.4.验证函数12cos sin y c kx c kx =+ (k,c 1, c 2是常数)是方程20y k y '''+=的解.0.x y +=8.2(1)tan ,(0) 2.y y x y '=-=求下列齐次方程的解: 9.22d 2.d y xy x x y=+ 10.d (1ln ln ).d y y y x x x =+-12.d ,(1) 4.d y y y x x==13.1(1).2xy y y '-==求下列一阶线性方程或伯努利方程的解: 14.2d d y y x x x=- 15.2d 2,(0)2d x y xy x e y x -++== 17.2d 0,(0)1d 2(1)2y xy x y x x y--==- 验证下列方程为全微分方程或找出积分因子,然后求其解: 19.453(5d d )d 0x y x x y x x ++=20.2(d d )d 5d 0,(0)1x x x y x x y y y ++-==第二章求下列方程的通解或特解: 7.40y y '''-=8.20y y ''+=9.20y y y '''-+=10. 4130y y y '''++=11. 00540,|5,|8x x y y y y y ==''''-+=== 求下列方程的通解或特解: 18.y y a ''+= (a 是常数),y (0)=0,y ’(0)=0 19.5420,(0)0,(0)2x y y y e y y ''''++===- 24.22x y y y e -'''++= 26.2002d d cos 2,||2d d t t x x x t x t t ==+===- 27.22d sin ,0d x x at a t+=> 28.22d d 32sin cos d d y y x x x x+=+ 31.225cos y y x '''+=33.22cos x y y y e x -'''-+= 34.4sin 2y y x x ''+=填空题:1. 设2i z e +=,那末Re z =______①______,Im z =_______②_______。
最新2015电大[工程数学]形成性考核册答案
2015年电大【工程数学】形成性考核册答案工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a =,则a =(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).A. 1B. 7C. 10D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ).A. 1325--⎡⎣⎢⎤⎦⎥B. --⎡⎣⎢⎤⎦⎥1325C. 5321--⎡⎣⎢⎤⎦⎥D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈21014001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解:Θ32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X⒋写出4阶行列式1020143602533110-- 中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶ 100110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-0000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明:Θ A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A ∴ A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明:Θ A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,,Λs 线性相关,则向量组(A )可被该向量组其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,,Λs 的秩与矩阵[]ααα12,,,Λs 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明:Θλ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A 即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10奖券中含有3中奖的奖券,每人购买1,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B. xf x x ab()d ⎰C.f x x ab()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. F x x ab()d ⎰C. f a f b ()()-D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμ C. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 865.080.02.085.03.09.05.0=⨯+⨯+⨯= 5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-== …………P P k X P k 1)1()(--== …………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(3216.设随机变量X 的概率分布为012345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P 7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(1031==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E181)32(21)]([)()(222=-=-=x E X E X D9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0. 解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P10.设X X X n 12,,,Λ是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX X XE n X nE X E +⋯⋯++=+⋯⋯++==∑=μμ==n n 1)]()()([1)(1)1()(2122121n n n i i X D X D X D n X X X D n X n D X D +⋯⋯++=+⋯⋯++==∑=22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n 12,,,Λ是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC.x 122σ D. μx 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x +C. 212x x -D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,,Λ是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值x 和样本方差s 2.解: 6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它试分别用矩估计法和最大似然估计法估计参数θ. 解:提示教材第214页例3矩估计:,121)1()(110∑⎰===++=+=ni i x n x dx x x X E θθθθxx --=112ˆθ最大似然估计:θθθθθ)()1()1();,,,(21121n n i ni n x x x x x x x L ΛΛX +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==ni i ni i x nd L d x n L θθθθ,1ln ˆ1--=∑=ni ixnθ3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x n x σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-nsx n sx λλ4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立. 解:237.0162.343|10/42017||/|||0=⨯=-=-=nx U σμ,由975.021)(=-=Φαλ ,查表得:96.1=λ因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.).解:由已知条件可求得:0125.20=x 0671.02=s1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
最新国家开放大学电大《工程数学》期末题库及答案
最新国家开放大学电大《工程数学》期末题库及答案
考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《工程数学》题库及答案一
一、单项选择题(每小题3分.共15分)
试题答案及评分标准(供参考)
《工程数学》题库及答案二一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案。
浙大远程数据结构与算法离线答案-最完整版
浙江大学远程教育学院《数据结构与算法》课程离线作业一、填空题:(【序号,章,节】。
)【1,1,2】线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
【2,1,2】为了最快地存取数据元素,物理结构宜采用序存储结构。
3,1,2】数据结构的三要素是逻辑结构,物理结构,操作。
【3,1,2】存储结构可根据数据元素在机器中的位置是否一定连续分为顺序存储结构,链式存储结构。
【4,1,3】度量算法效率可通过时间复杂度和空间复杂度__来进行。
【5,1,3】设n 为正整数,下面程序段中前置以记号@的语句的频度是n(n+1)/2。
for (i=0; i<n; i++){for (j=0; j<n; j++)if (i+j==n-1)@ a[i][j]=0;}【6,1,3】设n 为正整数,试确定下列各程序段中前置以记号@的语句的频度:(1) i=1; k=0;while (i<=n-1){i++;@ k+=10 * i; // 语句的频度是_____ n-1_______________。
}(2) k=0;for (i=1; i<=n; i++){for (j=i; j<=n; j++)1@ k++; // 语句的频度是_____ n(n+1)/2________________。
}【7,3,2】线性表(a1,a2,…,a n)有两种存储结构:顺序存储结构和链式存储结构,请就这两种存储结构完成下列填充:_顺序存储结构__ 存储密度较大;_顺序存储结构___存储利用率较高;_顺序存储结构___可以随机存取;_链式存储结构____不可以随机存取;__链式存储结构__插入和删除操作比较方便。
【8,3,2】从一个长度为n的顺序表中删除第i个元素(1≤i≤n)时,需向前移动n-i个元素。
【9,3,2】带头结点的单链表Head为空的条件是____ Head->next==null_____【10,3,2】在一个单链表中p所指结点(p所指不是最后结点)之后插入一个由指针s所指结点,应执行s->next=__ p->next___;和p->next=___s _____的操作。
2015浙大通信与计算机网络离线作业
2015浙⼤通信与计算机⽹络离线作业第1章概述⼀.填空题:1.计算机⽹络是计算机技术与__通信技术___相结合的产物。
2.从资源共享的⾓度来定义计算机⽹络,计算机⽹络指的是利⽤____通信线路____将不同地理位置的多个独⽴的___⾃治计算机系统_______连接起来以实现资源共享的系统。
3.在TCP/IP的应⽤层协议⼀般使⽤的是客户服务器⽅式其中,客户是服务请求⽅,服务器是服务提供⽅。
4.在TCP/IP协议模型的运输层中,不⾯向连接的协议是_ UDP_。
5.在TCP/IP模型中,互联⽹层的上⼀层是运输层___。
6.通信线路的__带宽__是指通信线路上允许通过的信号频带围(或通频带) ,单位是HZ。
但在计算机⽹络中,它⼜⽤来表⽰⽹络通信线路所能传送数据的能⼒。
7.数据通信中的信道传输速率单位⽤b/s表⽰,b/s的含义是_每秒⽐特。
8.⽬前,“带宽”常⽤作描述信道传送数据能⼒的物理量,其单位是 b/s(bit/s),⽐之⼤的单位有:__KB/s_____、__Mb/s_____、_Gb/s______等。
9.将计算机⽹络划分为局域⽹LAN、城域⽹MAN、⼴域⽹WAN是按__⽹络的作⽤围________划分的。
10.各节点都与中⼼节点连接,呈辐射状排列在中⼼节点周围,这种拓扑结构称为__星型拓扑结构________。
11.假设某⽤户通过电线部门的ADSL技术以2M(即2Mb/s)带宽接⼊Internet,在正常情况下其下载速度⼤约是_244kb/s_________。
12.发送数据时,数据块从结点进⼊到传输媒体所需要的时间称为____发送延时______;⽹络中电磁信号在信道中传播⼀定的距离⽽花费的时间称为__传播延时________。
13.在发送报⽂之前,先将较长的报⽂划分成为⼀个个更⼩的等长数据段,在每⼀个数据段前⾯,加上⼀些由必要的控制信息组成的⾸部(header)后,就构成了⼀个__分组_____。
工程数学作业3参考答案
工程数学作业3参考答案工程数学作业3参考答案在工程数学中,作业是帮助学生巩固所学知识的重要环节。
作业3是一个综合性较强的作业,涉及到多个概念和技巧。
本文将为大家提供一份参考答案,帮助大家更好地理解和掌握工程数学的相关内容。
1. 题目一:求解微分方程给定微分方程 dy/dx = 2x,求解其通解。
解答:首先将方程分离变量,得到 dy = 2x dx。
然后对两边同时积分,得到∫dy = ∫2x dx。
对右边进行积分,得到 y = x^2 + C,其中C为常数。
所以方程的通解为 y = x^2 + C。
2. 题目二:求解线性方程组给定线性方程组:2x + 3y = 54x + 6y = 10求解该线性方程组的解。
解答:首先将方程组写成增广矩阵的形式:[2 3 | 5][4 6 | 10]然后对增广矩阵进行行变换,目标是将矩阵化简为上三角形式。
通过第一行乘以2再减去第二行,得到新的矩阵:[2 3 | 5][0 0 | 0]由于第二行全为0,说明该线性方程组有无穷多个解。
我们可以令x = t,其中t 为任意实数,然后代入第一行方程求解y。
所以该线性方程组的解为:x = ty = (5 - 2t)/33. 题目三:求解极限求极限 lim(x->0) [(sinx)/x]。
解答:将极限表达式化简为不定型,得到 lim(x->0) [(sinx)/x] = 1。
这是一个常见的极限结果,被称为正弦函数的极限。
4. 题目四:求解定积分求解定积分∫(0 to π/2) sinx dx。
解答:对于这个定积分,可以直接使用定积分的性质进行求解。
根据定积分的定义,我们有∫(0 to π/2) sinx dx = [-cosx] (0 to π/2) = -cos(π/2) - (-cos(0)) =-1 - (-1) = 0。
5. 题目五:求解常微分方程的特解给定常微分方程 y'' - 4y' + 4y = 0,求解其特解。
2019-2020年电大考试《工程数学》历年期末考试题汇总
期末考试工程数学(本) 试题一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立. A . A B A B +=+B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2 B .0,6 C .0,0 D .2,64.若随机变量(0,1)X N ,则随机变量32Y X =- ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA BO ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4, 10.6, 10.1, 10.4 问:该机工作是否正常(0.9750.05, 1.96u α==)? 四、证明题(本题6分)15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。
浙大远程工程数学离线作业答案(2015年春)
浙江大学远程教育学院《工程数学》课程作业姓名:学号:年级:学习中心:—————————————————————————————《复变函数与积分变换》第一章1.1计算下列各式:(2)、(a-bi)3解(a-bi)3=a3-3a2bi+3a(bi)2-(bi)3=a3-3ab2+i(b3-3a2b) ;(3)、;解====1.2、证明下列关于共轭复数的运算性质:(1);证()-i()==(2)证===--==()()=--即左边=右边,得证。
(3)=(Z2≠0)证==()====1.4、将直线方程ax+by+c=0 (a2+b2≠0)写成复数形式[提示:记x+iy=z]z+A+B=0,其中A=a+ib,B=2C(实数) 。
解由x=,y=代入直线方程,得()+()+c=0,az+-bi()+2c=0,(a-ib)z+( a+ib)+2c=0,故z+A+B=0,其中A=a+ib,B=2C1.5、将圆周方程a(x2+y2)+bx+cy+d=0 (a≠0)写成复数形式(即用z 与来表示,其中z=x+iy)解:x=,y=,x2+y2=z代入圆周方程,得az+()+()+d=0,2az+(b-ic)z+(b+ic)+2d=0故Az++B+C=0,其中A=2a,C=2d均为实数,B=b+ic 。
1.6求下列复数的模与辅角主值:(1)、=2,解arg()=arctan= 。
1.8将下列各复数写成三角表示式:(2)、i;解=1,arg()=arctan()= -a故i=+i。
1.10、解方程:Z3+1=0解方程Z3+1=0,即Z3=-1,它的解是z=,由开方公式计算得Z==+i,k=0,1,2即Z0==+i,Z1==1,Z2=+ i=i 。
1.11指出下列不等式所确定的区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)、2<<3;解圆环、有界、多连域。
(3)、<arg z<;解圆环的一部分、单连域、有界。
最新工程数学离线作业答案
⑨ * ;
⑩ 。
据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助。⑤__ ____;
2、传统文化对大学生饰品消费的影响⑥_ _;
创新是时下非常流行的一个词,确实创新能力是相当重要的特别是对我们这种经营时尚饰品的小店,更应该勇于创新。在这方面我们是很欠缺的,故我们在小店经营的时候会遇到些困难,不过我们会克服困难,努力创新,把我们的小店经营好。⑦_ _;
填空题答案
附件(二):调查问卷设计①__ __;
②__ __;
开了连锁店,最大的好处是让别人记住你。“漂亮女生”一律采用湖蓝底色的装修风格,简洁、时尚、醒目。“品牌效应”是商家梦寐以求的制胜法宝 。③______1____;
我们长期呆在校园里,没有工作收入一直都是靠父母生活,在资金方面会表现的比较棘手。不过,对我们的小店来说还好,因为我们不需要太多的投资。④ ;
4.5
4.7
4.8
4.9
第五章
5.3
下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):
5.5
5.7
5.8
5.12求下列各积分之值:
第八章
8.4求下列函数的傅式变换:
8.5
8.13证明下列各式:
8.14
8.15
第九章
9.1
9.2
9.3
9.49.59.6源自9.89.11《常微分方程》
2
4
6
8
9
10
12
13
14
15
17
19
20
第二章线性微分方程
4.WWW。google。com。cn。大学生政策2004年3月23日
浙大远程数据结构与算法离线答案-最完整版DOC
浙江大学远程教育学院《数据结构与算法》课程离线作业一、填空题:(【序号,章,节】。
)【1,1,2】线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
【2,1,2】为了最快地存取数据元素,物理结构宜采用序存储结构。
3,1,2】数据结构的三要素是逻辑结构,物理结构,操作。
【3,1,2】存储结构可根据数据元素在机器中的位置是否一定连续分为顺序存储结构,链式存储结构。
【4,1,3】度量算法效率可通过时间复杂度和空间复杂度__来进行。
【5,1,3】设n 为正整数,下面程序段中前置以记号@的语句的频度是n(n+1)/2。
for (i=0; i<n; i++){for (j=0; j<n; j++)if (i+j==n-1)@ a[i][j]=0;}【6,1,3】设n 为正整数,试确定下列各程序段中前置以记号@的语句的频度:(1) i=1; k=0;while (i<=n-1){i++;@ k+=10 * i; // 语句的频度是_____ n-1_______________。
}(2) k=0;for (i=1; i<=n; i++){for (j=i; j<=n; j++)1@ k++; // 语句的频度是_____ n(n+1)/2________________。
}【7,3,2】线性表(a1,a2,…,a n)有两种存储结构:顺序存储结构和链式存储结构,请就这两种存储结构完成下列填充:_顺序存储结构__ 存储密度较大;_顺序存储结构___存储利用率较高;_顺序存储结构___可以随机存取;_链式存储结构____不可以随机存取;__链式存储结构__插入和删除操作比较方便。
【8,3,2】从一个长度为n的顺序表中删除第i个元素(1≤i≤n)时,需向前移动n-i个元素。
【9,3,2】带头结点的单链表Head为空的条件是____ Head->next==null_____【10,3,2】在一个单链表中p所指结点(p所指不是最后结点)之后插入一个由指针s所指结点,应执行s->next=__ p->next___;和p->next=___s _____的操作。
工程数学离线作业解答
浙江大学远程教育学院 《工程数学》课程作业解答姓名: 陈汉忠 学 号: 715073204002 年级:2015春学习中心:厦门学习中心《复变函数与积分变换》第一章1.1计算下列各式: (2)(a-b i )3 解(a-bi)(3)i(i 1)(i 2)--1.2证明下列关于共轭复数的运算性质: (1)1212()z z z z ±=±(2)1212()z z z z =(3)11222()(0)z z z z z =≠1.4将直线方程ax+by+c=0(a 2+b 2≠0)写成复数形式.[提示:记x+i y=z.]1.5将圆周a(x 2+y 2)+bx+cy+d =0(a ≠0)写成复数形式(即用z 与z 来表示,其中z=x+iy ).1.6求下列复数的模与辐角主值:(1)3 i1.8将下列各复数写成三角表示式:(2)sin a+I cos a1.10解方程:z3+1=0.1.11指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域? (1)2<|z|<3(3)4π<arg z <3π;且1<|z|<3(5)Re z 2<1(7)|arg z |<3π第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z z 2(2)f(z)=x 2+iy 22.3确定下列函数的解析区域和奇点,并求出导数: (1)211z2.9由下列条件求解析函数f(z)=u+i v . (1)u(x-y)(x 2+4xy+y 2)(3)u=2(x-1)y, f(0)=-i(4)u=e x(x cos y - y sin y),f(0)=02.13试解方程:(1)e z=1+3i(4)sin z+cos z=02.14求下列各式的值: (1)cos i(3)(1-i)1+i第三章3.1计算积分120[()]d ix y ix z +-+⎰.积分路径为(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平方向向右至1+i.3.2计算积分d ||czz z ⎰的值,其中C 为(1)|z|=2;(2)|z|=4.3.6计算21d cz z z-⎰ ,其中为圆周|z|=23.8计算下列积分值: (1)0sin xi⎰z d z(3)0(32)d iz e z z +⎰3.10计算下列积分:(1)|2|1d 2zz e z z -=-⎰(2)2||221d 1z z z z z =-+-⎰(4)||d (1)(1)nz r zr z =≠-⎰3.11计算I=d (21)(2)cz zz z +-⎰,其中C 是(1)|z |=1;(2)|z -2|=1;(3)|z-1|=12;(4)|z|=3.3.13计算下列积分:(2)||22sind()2zzzzπ=-⎰(3)123cosdC C Czzz-=+⎰,其中C1:|z|=2,C2:|z|=3.第四章4.2下列级数是否收敛?是否绝对收敛?(1)11i()2nnn∞=+∑(2)1i!nnn∞=∑4.4试确定下列幂级数的收敛半径:(1)11nnnz∞-=∑(2)211(1)n nnzn∞=+∑4.5将下列各函数展开为z 的幂级数,并指出其收敛区域: (1)311z +(3)221(1)z +(5)sin 2 z4.7求下列函数在指定点z 0处的泰勒展式: (1)21z,z 0=1(2)sin z ,z 0=14.8将下列各函数在指定圆环内展开为洛朗级数: (1)21(1)z z z +- ,0<|z |<1,1<|z |<+∞(3)2225(2)(1)z z z z -+-+ ,1<|z |<2(4)cosi1z- ,0<|z -1|<+∞4.9将f(z)=2132z z -+ 在z =1处展开为洛朗级数.第五章5.3下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数): (1)221(4)z z z -+ ;(2)3sin z z ;(3)1sin cos z z+ ;(4)21 (1)zz e-;(5)ln(1)zz+;(6)111ze z--.5.5如果f(z)与g(z)是以z0为零点的两个不恒为零的解析函数,则00()()lim lim()()z z z zf z f zg z g z→→'='(或两端均为∞).[提示:将()()f zg z写成()()()m nzz zzϕψ--的形式,再讨论.]5.7求出下列函数在孤立奇点处的留数:(1)1z e z-(2)722(2)(1)z z z -+(5)1sin z z(6)shch z z5.8利用留数计算下列积分:(1)||1d sinzz z z =⎰(2)32||2d(1)(3)zzezz z=-+⎰(4)1||2sind(1)zzzzz e=-⎰5.12求下列各积分之值:(1)2d(1)cosxaaθθ>+⎰(3)2222d (0)()x x a x a +∞-∞>+⎰(4)2cos d 45xx x x +∞-∞++⎰第八章8.4求下列函数的傅氏变换:(1)1,()1,0,f t-⎧⎪=⎨⎪⎩10,1,tt-<<<<(2),()0,t ef t⎧=⎨⎩0,0;tt≤>(3)21,(t)0,tf⎧-=⎨⎩||1,||1;tt≤>其他8.5求下列函数的傅氏变换,并证明所列的积分等式.(2)sin,()0,tf t⎧=⎨⎩||,||.ttππ≤>证明2sin,sin sind210,ttπωπωωω+∞⎧⎪=⎨-⎪⎩⎰||,||.ttππ≤>8.13证明下列各式:(1) f1(t)* f2(t)= f2(t)* f1(t)8.14设10,()1,f t ⎧=⎨⎩ 0,0;t t ≤> 20,()e ,t f t -⎧=⎨⎩ 0,0,t t <≥ 求f 1(t )* f 2(t ).8.15设1()F ω= F [f 1(t)], 2()F ω= F [f 2(t)],证明:F [f 1(t)·f 2(t)]=121()*()2F F ωωπ第九章9.1求下列函数的拉氏变换:(1)3,()1,0,f t⎧⎪=-⎨⎪⎩02,24,4;tt t≤<≤< >(2)3,()cos,f tt⎧⎪=⎨⎪⎩0,2;2ttππ≤<≥9.2求下列函数的拉氏变换:(1)sin2t(4)||t9.3求下列函数的拉氏变换:(1)232++t t(3)2-(1)tt e(5)cos t at9.4利用拉氏变换的性质,计算L [f (t )]: (1)3()sin 2t f t te t -= ;(2)30()sin 2d tt f t t e t t -=⎰9.5利用拉氏变换的性质,计算L -1[F (s )] (2)1()ln 1s F s s +=-(4)221()(1)F s s =-9.6利用像函数的积分性质,计算L [f (t )]:(1)sin ()ktf t t= (2)30sin 2d t t e t t t -⎰9.8求下列像函数F (s )的拉氏变换:(5)42154s s ++(7)221se s-+9.11利用卷积定理证明下列等式: (1)L [0()d tf t t ⎰ ]= L [()*()f t u t ]=()F s s;(2)L -1222sin (0).()2st at a s a a⎡⎤=≠⎢⎥+⎣⎦《常微分方程》246891012131415171920第二章线性微分方程填空题:1. 设2iz e+=,那末Re z =______①______,Im z =_______②_______。
浙大远程数据结构与算法离线作业
浙江大学远程教育学院《数据结构与算法》课程离线作业一、填空题:【1,1,2】线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
【2,1,2】为了最快地存取数据元素,物理结构宜采用顺序存储结构。
【3,1,2】存储结构可根据数据元素在机器中的位置是否一定连续分为顺序存储结构__,链式存储结构___。
【4,1,3】度量算法效率可通过时间复杂度__来进行。
【5,1,3】设n 为正整数,下面程序段中前置以记号@的语句的频度是n(n+1)/2。
for (i=0; i<n; i++){for (j=0; j<n; j++)if (i+j==n-1)@ a[i][j]=0;}【6,1,3】设n 为正整数,试确定下列各程序段中前置以记号@的语句的频度:(1) i=1; k=0;while (i<=n-1){i++;@ k+=10 * i; // 语句的频度是________n-1______________。
}(2) k=0;for (i=1;i<=n;i++){for (j=i; j<=n;j++)@ k++; // 语句的频度是____n(n+1)/2__________________。
}【7,3,2】线性表(a1,a2,…,a n)有两种存储结构:顺序存储结构和链式存储结构,请就这两种存储结构完成下列填充:1__顺序_ 存储密度较大;__顺序__存储利用率较高;__顺序__可以随机存取;__链式___不可以随机存取;__链式__插入和删除操作比较方便。
【8,3,2】从一个长度为n的顺序表中删除第i个元素(1≤i≤n)时,需向前移动n-i 个元素。
【9,3,2】带头结点的单链表Head为空的条件是____Head->next=NULL ______。
【10,3,2】在一个单链表中p所指结点(p所指不是最后结点)之后插入一个由指针s所指结点,应执行s->next=__ p->next ___;和p->next=___ s_____的操作。
浙大远程控制理论离线作业答案共62页word资料
浙大远程教育控制理论离线作业第一章1-1 与开环系统相比,闭环系统的最大特点是:检测偏差,纠正偏差。
1-2 分析一个控制系统从以下三方面分析:稳定性、准确性、快速性。
1-3图1-1 (a),(b)所示均为调速系统。
(1) 分别画出图1-3(a)、图(b)所示系统的方框图。
给出图1-1(a) 所示系统正确的反馈连线方式。
(2) 指出在恒值输入条件下,图1-1(a),(b) 所示系统中哪个是有差系统,哪个是无差系统,说明其道理。
图1-1 调速系统工作原理图解图1-1(a)正确的反馈连接方式如图1-1 (a)中虚线所示。
(1) 系统方框图如图解1-2所示。
(2) 图1-1 (a) 所示的系统是有差系统,图1-1 (b) 所示的系统是无差系统。
图1-1 (a)中,当给定恒值电压信号,系统运行达到稳态时,电动机转速的恒定是以发电机提供恒定电压为条件,对应发电机激磁绕组中电流一定是恒定值。
这意味着放大器前端电压是非零的常值。
因此,常值偏差电压存在是系统稳定工作的前提,故系统有差。
图1-1 (b)中,给定恒定电压,电动机达到稳定转速时,对应发电机激磁绕组中的励磁电流恒定,这意味着执行电动机处于停转状态,放大器前端电压必然为0,故系统无差。
1-4图1-3 (a),(b)所示的系统均为电压调节系统。
假设空载时两系统发电机端电压均为110V,试问带上负载后,图1-3(a),(b)中哪个能保持110V不变,哪个电压会低于110V?为什么?图1-3 电压调节系统工作原理图解带上负载后,开始由于负载的影响,图1-3(a)与(b)系统的端电压都要下降,但图(a)中所示系统能恢复到110V,而图(b) 所示系统却不能。
理由如下:图(a)系统,当u低于给定电压时,其偏差电压经放大器K放大后,驱动电机D转动,I增大,发电机的输出电压会升高,从而使偏经减速器带动电刷,使发电机F的激磁电流j差电压减小,直至偏差电压为零时,电机才停止转动。
网络教育《工程数学》答案
分数: 100.0完成日期:2011年02月17日 18点32分说明: 每道小题括号里的答案是学生的答案,选项旁的标识是标准答案。
一、单项选择题。
本大题共12个小题,每小题 5.0 分,共60.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1. 定长矢量与其导矢之间满足的关系是( B )A. 相互平行B. 相互垂直C. 大小相等D. 垂直且大小相等2.( C )A.B.C.D.3.( D )A. 1B.D.4.( A )A.B.C.D. 05.( B )A. 不是,6B. 是, 6C. 不是,0D. 是, 06.( C )A. -2B. -1C. 07.( D )A.B.C.D.8.( A )A.B.C.D.9.( A )A. 0B. 1C. 2D. 410.( C )A. 1B.C.D.11.( B )A.B.C.D.12.( B )A.B.C.D.二、多项选择题。
本大题共5个小题,每小题 6.0 分,共30.0分。
在每小题给出的选项中,有一项或多项是符合题目要求的。
1.( ABC )A.B.C.D.2. 下面的概念是不是矢量的是()。
( BD )A. 梯度B. 散度C. 旋度D. 方向导数3. 下面描述正确的是()。
( AB )A. 调和场的旋度为0。
B. 调和场的散度为0C. 调和场的梯度为0D. 调和场的旋度和散度有可能不全为0。
4. 在线单连域内矢量场A中,下面描述正确的是( )( BCD )A.B.C.D.5.( ABD )A.B.C.D.三、判断题。
本大题共5个小题,每小题 2.0 分,共10.0分。
1.(正确)2.(错误)3.单位阶跃函数不满足狄利克雷条件,但是正、余弦满足狄利克雷条件。
(错误)4.(错误)5.(正确)分数: 100.0完成日期:2011年02月16日 00点38分说明: 每道小题括号里的答案是学生的答案,选项旁的标识是标准答案。
一、单项选择题。
本大题共11个小题,每小题 5.0 分,共55.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江大学远程教育学院《工程数学》课程作业姓名:学号:年级:学习中心:—————————————————————————————《复变函数与积分变换》第一章1.1计算下列各式:(2)、(a-bi)3解(a-bi)3=a3-3a2bi+3a(bi)2-(bi)3=a3-3ab2+i(b3-3a2b) ;(3)、;解====1.2、证明下列关于共轭复数的运算性质:(1);证()-i() ==(2)证===--==()()=--即左边=右边,得证。
(3)=(Z2≠0)证==()====1.4、将直线方程ax+by+c=0 (a2+b2≠0)写成复数形式[提示:记x+iy=z]z+A+B=0,其中A=a+ib,B=2C(实数) 。
解由x=,y=代入直线方程,得()+()+c=0,az+-bi()+2c=0,(a-ib)z+( a+ib)+2c=0,故z+A+B=0,其中A=a+ib,B=2C1.5、将圆周方程a(x2+y2)+bx+cy+d=0 (a≠0)写成复数形式(即用z与来表示,其中z=x+iy)解:x=,y=,x2+y2=z代入圆周方程,得az+()+()+d=0,2az+(b-ic)z+(b+ic)+2d=0故Az++B+C=0,其中A=2a,C=2d均为实数,B=b+ic 。
1.6求下列复数的模与辅角主值:(1)、=2,解arg()=arctan= 。
1.8将下列各复数写成三角表示式:(2)、i;解=1,arg()=arctan()= -a故i=+i。
1.10、解方程:Z3+1=0解方程Z3+1=0,即Z3=-1,它的解是z=,由开方公式计算得Z==+i,k=0,1,2 即Z0==+i,Z1==1,Z2=+ i=i 。
1.11指出下列不等式所确定的区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)、2<<3;解圆环、有界、多连域。
(3)、<arg z<;解圆环的一部分、单连域、有界。
(5)、Re z2<1;解x2-y2<1无界、单连域。
(7)、<;解从原点出发的两条半射线所成的区域、无界、单连域;第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z2;解f(z)=z2=·z·z=·z=( x2+y2)(x+iy)=x(x2+y2)+ iy(x2+y2),这里u(x,y)=x( x2+y2),v(x,y)= y( x2+y2)。
u x= x2+y2+2 x2,v y= x2+y2+2 y2,u y=2xy,v x=2xy 。
要u x= v y,u y =-v x,当且仅当x=y=0,而u x, v y,u y ,v x均连续,故f(z)=·z2仅在z=0可导;z≠0不可导;复平面上处处不解析;(2)、f(z)= x2+ iy2;解这里u= x2,v= y2, u x=2x, u y=0, v x=0, v y=2y,四个偏导数均连续,但u x= v y,u y= -v x仅在x=y处成立,故f(z)仅在x=y上可导,其余点均不可导,复平面上处处不解析;2.3确定下列函数的解析区域和奇点,并求出导数:(1)、;解f(z)=是有理函数,除去分母为0的点外处处解析,故全平面除去点z=1及z=-1的区域为f(z)的解析区域,奇点为z=±1,f(z)的导数为:f’(z)=)’=则可推出==0,即u=C(常数)。
故f(z)必为D中常数。
2.9由下列条件求解析函数f(z)=u+iv(1)、u=(x-y)(x2+4xy+y2);解因==3+6xy-3,所有v=dy=+3x-+ (x),又=6xy+3+ ’(x),而=3-3,所以 ’(x)=-3,则 (x)=-+C。
故f(z)=u+iv=(x-y)(+4xy+)+i(-+C)= (1-i)(x+iy)-(1-i) (x+iy)-2(1+i)-2x(1-i)+Ci=z(1-i)()-2xyi·iz(1-i)+Ci=(1-i)z(-2xyi)+Ci=(1-i)z3+Ci(3)、u=2(x-1)y,f(0)=-i;解因=2y,=2(x-1),由f(z)的解析性,有==2(x-1),v=dx=+(y),又==2y,而=’(y),所以’(y)=2y,(y)=+C,则v=++C,故f(z)=2y+i(++C),由f(2)=i得f(2)=i(1+C)=,推出C=0。
即f(z)=2y+i()=i(+2z) =i(1z)2(4)、u=(x),f(0)=0;解因=(x)+,=(-x),由f(z)的解析性,有==,==(x)+。
则v(x,y)=dx+dy+C=+dy+C=X dy-dy+dy)+C=+C=x-+C,故f(z)=-i()+iC。
由f(0)=0知C=0即f(z)=(x)+ i()=ze z。
2.13试解方程:(1)、=1+i解=1+i=2(+i)=2=(4)、+=0解由题设知=-1,z=k-,k为整数。
2.14求下列各式的值:(1)、解==;(3)、;===·=·=27(-i)。
第三章3.1、计算机积分dz积分路径为(1)自原点至1+i的直线段;(2)自原点沿实轴至1,再由1沿直线向上至1+i;(3)自原点沿虚轴至i,再由i沿水平方向向右至1+i。
解(1)dz=dt=i(1+i)=;注:直线段的参数方程为z=(1+i)t,0≤t≤1 。
(2)C1:y=0,dy=o,dz=dx, C2:x=1,dx=o,dz=idy,dz=+=dx+idy=+i;(3):x=0,dz=idy;:y=1,dz=dx。
dz=+=dy+dx=3.2、计算积分dz的值,其中C为(1)=2;(2)=4。
解令z=r,则dz==2i 。
当r=2时,为4i;当r=4时,为8i 。
3.6、计算dz,其中C为圆周=2;解f(z)==在=2内有两个奇点z=0,1,分别作以0,1为中心的圆周C1, C2, C1与C2不相交,则dz=dz-dz=2i-2i=03.8计算下列积分值:(1)、dz;解dz =πi0=1-;(3)、dz;解dz=(3+) 0i =3= 3。
3.10计算下列积分:(1)、dz;解dz =2i=2i(2)、dz;解dz =2(2)=4i(4)、(r≠1);解为0;r>1时n=1为2i,n≠1为0 。
3.11、计算I=其中C是(1)=1;(2)=1;(3)=;(4)=3。
解(1)被积函数在≤1内仅有一个奇点z=,故I=dz =2()=i;(2)被积函数在≤1内仅有一个奇点z=2,故I=dz=2()=i;(3)被积函数在≤内处处解析,故I=0;(4)、被积函数在≤3内有两个奇点z=,z=2由复合闭路原理,知I= +=dz +dz==i,其中C1为=1,C2为=1。
3.13计算下列积分:(2)、dz;解dz=2()’=2·=0 (3)、dz,其中:=2,:=3。
解dz=dz+dz=2()”2()”=(-1)(-1)=0第四章4.2下列级数是否收敛?是否绝对收敛?(1)、;(2)、;解(1)因=发散。
故发散。
(2)=收敛;故绝对收敛。
4.4试确定下列幂级数的收敛半径:(1)、;(2)、;解(1)==1,故R=1。
(2)===e,故R=4.5将下列各函数展开为z的幂级数,并指出其收敛区域:(1)、;(3)、;(5)、sin2z;解(1)===,原点到所有奇点的距离最小值为1,故<1 。
(3)=·()’=()’==,<1(5)sin2z===,<∞。
4.7求下列函数在指定点z0处的泰勒展示:(1)、,z0=1;(2)、,z0=1;解(1)=()’=[]’==,<1(2) ==+=+,<∞4.8将下列各函数在指定圆环内展开为洛朗级数:(1)、,0<<1,1<<+∞;(3)、,1<<2(4)、,0<<+∞;解(1)0<<1时,=(1-)=,当1<<+∞时,0<<1,=(1+)=(1+)=+=+。
(3)====+,1<<2 。
(4)0<<+∞时,==+==。
4.9将=在z=1处展开为洛朗级数解f(z)==。
f(z)的奇点为z1=1,z2=2。
f(z) 在0<<1与>1解析。
当0<<1时f(z)====当>1时0<<1,f(z)==+=+第五章5.3、下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):(1)、;(2)、;(3)、;(4)、;(5)、;(6)、-;解(1)令f(z)=,z=0,±2i为f(z)的奇点,因=,所以z=0为简单极点,又==,所以z=2i为二阶极点,同理z=亦为二阶极点。
(2)因==1,所以z=0为二阶极点。
(3)令f(z)==,则的零点为z=k-,k=0,±1,±2,…因()’=(==0,所以都为简单极点。
(4)令f(z)=,=,则的零点为z=, k=0,±1,±2,…。
因=(z++…)=(1++…),z=0为的三阶零点,故f(z)的三阶极点。
又)’=(2z()+)0,故z=为的一阶零点,即为f(z)的简单极点。
(5)令f(z)=,z=0为其孤立奇点。
因==1,所以z=0为可去奇点。
(6)令f(z)=-=,z=0和()为其孤立奇点。
因===,所以z=0为可去奇点,又==(),所以z= ( k=0,±1,±2,…)为的一阶零点,即为f(z)的简单极点。
5.5、如果与g(z)是以z0为零点的两个不恒为零的解析函数,则=(或两端均为)。
[提示:将写成的形式,再讨论。
]证设为的m阶零点,为g(z)的n阶零点,则=,在0,m≥1,g(z)=,在0,n≥1。
因而=,==当m=n时,(1)式==(2)式,当m>n时,(1)式=(2)式=0,当m<n时,(1)式=(2)式=∞。
5.7求出下列函数在孤立奇点处的留数:(1)、;(2)、;(5)、;(6)、;解(1)令=,孤立奇点仅有0。
Res[,0]===0(2)z=2为简单极点,z=±i为二阶极点。
Res[,2]===,Res[,i]===。
同理可计算Res[,-i]=。
(5)的孤立奇点为z=0,=kπ(k=±1,±2,…),其中,z=0为二阶极点,这是由于===,在z=0处解析。
且≠0所以Res[,0]====0,易知=kπ(k=±1,±2,…)为简单极点,所以Res[,kπ](k=±1,±2,…)为简单极点,所以Res[,kπ]===(k=±1,±2,…)。
(6)=在整个复平面上解析,无孤立奇点。
5.8利用留数计算下列积分:(1)、=0;(2)、dz=;(4)、=-2解(1)=2Res[,0]=2=2=2=2=2=0(2)dz=2Res[,1]=2=。