受力分析之绳、弹簧、细线
专题物理L弹簧和细绳连接体问题
• 解析:由于弹簧处于拉伸状态,物体处于静止状态,可见小车对物体提供水平向左 的静摩擦力,大小为5 N,且物体和小车间的最大静摩擦力Ffm≥5 N;若小车以1 m/s2的加速度向右匀加速运动,则弹簧还处于拉伸状态,其弹力不变,仍为5 N, 由牛顿第二定律可知:F+Ff=ma,Ff=5 N≤Ffm,则物体相对小车仍静止,弹力 不变,摩擦力的大小也不变,选项A、C正确。
• 1.一般思路
• 分析物体此时的受力情况
由牛顿第二定律列方程
瞬时加速度
• 2.两种模型
• (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯 性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的, 即此时弹簧的弹力不突变。
• 在求解瞬时性问题时应注意: • (1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重
正确的是 ( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0
• 思路点拔: 剪断轻绳时,弹簧的弹力不能瞬间发生变化。
•
剪断弹簧时,绳上的拉力在瞬间发生变化。
错误、D正确。
• 例题5 细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不 粘连,平衡时细绳与竖直方向的夹角为53°,如图所示,以下说法正确的是( )
• (已知cos 53°=0.6,sin 53°=0.8) • A.小球静止时弹簧的弹力大小为mg • B.小球静止时细绳的拉力大小为 mg • C.细绳烧断瞬间小球的加速度立即变为g • D.细绳烧断瞬间小球的加速度立即变为 g
高考经典物理模型:绳子受力突变问题
高考经典物理模型:绳子受力突变问题
与绳子相连的物体,如弹簧、细绳等,其基本物理量如弹力、速度、能量等,都有可能发生突变。
这种突变比较隐蔽,容易产生误解,因此我们需要认真理解和把握这类情况,以便在分析和处理类似问题时能够更全面、更准确地考虑问题,从而更好地解决问题。
一、绳子的弹力可能发生突变。
与弹簧不同,细绳的弹力是可变的。
因此,在处理问题时要注意区分细绳和弹簧的不同之处。
例如,在图1所示的问题中,我们需要区分细绳和弹簧的特点,才能正确地解答问题。
在细绳未剪断前,小球所受重力、弹簧的拉力和细绳的拉力是平衡的。
而在细绳剪断后,弹簧的形变不会改变,因此弹力仍保持原值。
小球的加速度方向沿水平向右,与竖直方向夹角为θ。
若弹簧改用细绳,则在OA线
剪断瞬间,细绳OB的形变会突变,小球会有沿圆弧切线方向
的加速度,重力与绳OB的拉力的合力必沿切线方向,夹角为α。
二、与绳子相连的物体,速度可能发生突变。
由于绳子的形变可能发生突变,物体的速度也会随之发生变化。
因此,在处理这类问题时,我们需要仔细分析,以避免出现错误。
例如,在图2所示的问题中,小球从O点正上方以速度v 水平向右弹出,经过一段时间后落到与O点等高的位置。
在这个过程中,小球做平抛运动,速度发生了突变。
我们可以通过计算小球的运动轨迹和速度,求解细绳上的拉力大小。
“绳”与“弹簧”模型对比3页
“绳”与“弹簧”模型对比高中物理教学中经常会遇到细绳(轻杆)、弹簧模型,弄清楚两者的异同点,对于分析物体在某一时刻的瞬时加速度有着关键点作用。
一、两类模型的区别1.刚性绳(或杆)一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复的时间,一般题目中的细绳、轻杆或接触面在不加特殊说明时,均可按此模型处理。
其中杆与绳模型中处理问题也有差别,如杆能承受拉力和压力,而轻绳只能承受拉力(不能起支撑作用)。
绳上的拉力只能沿绳,而杆上的作用力可以沿杆,也可以与杆成任意夹角。
2.弹簧(或橡皮绳)此类模型的特点是形变量大,形变恢复需要较长的时间,在剪断的瞬间可认为弹簧来不及恢复原长,因此弹力大小可近似认为保持不变。
二、两种模型的对比例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F2=mg,F1=F2'+mg=2mg。
剪断细线后再分析两个物体的受力示意图,如图3,绳中的弹力F1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图3剪断后m1的加速度大小为2g,方向向下,而m2的加速度为零。
从上述解析过程中,我们不难发现,m1在细线剪断前后受力发生了变化,故其瞬时加速度不同;m2在剪断细线前后,由于弹簧弹力来不及发生变化,所以其瞬时加速度与剪断前相同。
例2如图4所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。
求解下列问题:⑴现将L2线剪断,求剪断L2瞬间物体的加速度。
⑵若将图4中的细线L1改为长度相同、质量不计的轻弹簧,如图5所示,其他条件不变,求剪断L2瞬间物体的加速度。
弹簧弹力受力分析高中
弹簧弹力受力分析(高中)弹簧与其相连接的物体构成的系统的运动状态具有隐蔽性,弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律也较多,分析时该如何切入呢?一、从几个长度关系切入弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
在弹簧的长度发生变化的时候,要搞清弹簧的原长、弹簧的长度、弹簧的形变、弹簧的形变变化、物体的位移等几个量的关系。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、从弹簧的伸缩性质切入弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的起点。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,因而判断出弹力的方向成了解决问题的起点。
三、从弹簧隐藏的隐含条件切入很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。
绳子、弹簧、杆产生的弹力特点
案例1 绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?分析与解答: 为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)
5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。
(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。
(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。
三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。
轻绳、轻杆、轻弹簧三种模型之比较
轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型, 在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。
.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;例1.如图1所示,PQ 是固定的水平导轨,两端 小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮, 轮的摩擦,系统处于静止时,a =37°,片53°,10N,A 重20N, A 与水平导轨间摩擦因数=0.2 ,的摩擦力()A •大小为4N ,方向向左B •大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N解析:要分析A 物体所受摩擦力,必须确定两绳子 的拉力情况。
因为两绳均为轻绳,且滑轮摩擦不计, 绳子两端及其中间各点的张力大小相等,只要对 B 受力分析即可知道绳子拉力大小情况。
如图2所示,B 受重力、两绳拉力F ,、F 2而平衡, 的平衡知识即平行四边形法则可知:F ,=G B S in : =6N , F ,=G B cos 〉=8N 。
再以 A 物体为研 象 ,如图可知,A 物体所受摩擦力为f =F 2 -F^8N -6N =2N ,方向向左。
本题 C 选项符合题意。
(2)软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相 互间作用力的方向总是沿着绳子。
注意轻绳“拉紧”和“伸直”的区别:“拉紧”的轻绳,一定而“伸直”的轻绳,还没有发生形变,没有张力。
例2■物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体 一个力F ,如图所示,二=60,要使两绳都能伸直,求 小范围。
解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将有两个 不计滑 若B 重 则A 受因此 物体由力究对 拉紧,因有张力,A 上施加力F 的大图此,拉力F 的最小值F min ,出现在绳C 恰好伸直无弹力,而绳B 张紧时。
轻绳、轻杆、轻弹簧三种模型之比较
轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。
则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。
图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。
专题:受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。
概析物理刚性绳、弹簧和轻杆的弹力
概析物理刚性绳、弹簧和轻杆的弹力1 刚性绳产生的弹力特点中学物理中刚性绳是以绝对柔软的物体来处理的,它只传递拉力,不能产生支撑力,并且拉力的方向是指向绳的收缩方向。
由于刚性绳是被理想化的模型,处理问题时是不考虑它的弹性形变量,所以刚性绳产生的弹力是可以突变的,即如果使绳子产生弹力的外力消失或变化时,绳的拉力也立即消失或变化。
同样的道理当两根绳子同时作用在物体时,其中一根绳子突然断开,另一根绳子对物体的拉力大小也会发生突变。
所以在分析受绳子作用的物体的受力大小或物体的加速度时,应明确绳子产生的弹力可以突变的特点,先确定外力变化或绳子断开时物体将发生什么运动,再根据运动规律求解相关的物理量。
例如:如图1所示,一个质量为m的小球用两根绳子悬吊处于静止状态,其中AB绳水平,CD绳与竖直方向成θ角,求:(1)剪断AB绳之前CD绳拉力的大小及方向;(2)剪断AB绳的瞬间CD绳拉力的大小和物体的加速度。
分析:(1)剪断AB绳之前小球受力如图2所示,由平衡条件,可得mg与FCD的合力F与FAB的大小相等,方向相反。
所以剪断AB绳之前,CD绳拉力的大小为:,方向沿绳收缩的方向。
(2)剪断AB绳的瞬间,AB绳对小球的拉力FAB突变为零,同时CD绳对小球的拉力FCD大小也立即发生变化,mg与FCD的合力将不再沿水平方向,如图3所示。
小球将作以CD绳为半径的圆弧运动,mg与FCD的合力F合与绳垂直,所以剪断AB绳的瞬间,CD绳拉力的大小为:,加速度大小为:。
2 弹簧产生的弹力特点弹簧可以产生拉伸和压缩的弹力,方向沿弹簧的轴线,指向弹簧要恢复原长的方向,大小。
弹簧产生的弹力是由于显著形变而产生的,形变消失需要一定时间,即当使弹簧产生形变的外力消除或变化的瞬间,弹簧的长度还没有发生变化,这时弹簧产生的弹力可以看成是不变,这是弹簧产生的弹力与刚性绳的一个不同的方面。
例如:上题中,若把CD绳换成如图4所示的弹簧。
求:(1)剪断AB绳之前弹簧弹力的大小;(2)剪断AB绳的瞬间弹簧弹力的大小和小球的加速度。
浅谈绳子与细杆和弹簧的区别
浅谈绳子与细杆和弹簧的区别王磊钢在物理习题中,经常会碰到物体与绳子、细杆和弹簧相连接的问题,在高考中也常出现,而且得分率较低。
本文举例说明以期提高学生对此问题的认识。
现分别谈谈绳子与细杆和弹簧所起的作用的区别。
一、绳子与细杆例1. 如图1所示,装有架子的小车,用细线拖着小球在水平地面上向左加速运动,加速度的大小为a,求绳子与竖直方向的夹角θ的正切值。
解析:对小球作受力分析,如图2所示,物体仅受重力mg和绳子拉力T的作用,把T沿竖直方向和水平方向作正交分解,对竖直方向和水平方向分别应用牛顿第二定律,得:即消去T得:例2. 置于水平面上的小车,有一弯折的细杆,弯折成角度θ,如图3所示,其另一端固定了一个质量为m的小球,问:当车子以加速度a向左加速前进时,细杆对小球作用力的大小。
解析:有的同学会从例题1得到启发,对小球作受力图如图3所示,认为作用力F的方向和例题1一样,应该沿杆子向上即与竖直方向夹角为θ,这样就可由几何关系得:,或因而觉得题目所给的条件有多余。
作这样的分析,问题出在没有区分绳子与细杆对小球作用力的特点,绳子的拉力一定沿绳子的收缩方向,而杆的作用力不一定沿杆子的方向。
例如当小车或小球的加速度为零时,细杆对小球的作用力的大小就为mg,方向竖直向上,而不是沿杆子方向与竖直方向成θ角。
正确的解答由受力图4,即可得出F的大小为:F的方向由其与竖直的方向的夹角的正切表示,即绳子与细杆的另一个区别是:绳子只会给小球拉力,而细杆却还可以给小球支持力。
例如:当用长为的绳子系着一个小球,在竖直平面内做圆周运动,小球在最高点时速度必须满足。
但是如果是用一根细杆连接着一个小球,在最高点小球的速度可以为零,因为细杆可以支撑小球与重力平衡。
二、绳子与弹簧例3. 如图5所示,一质量为m的物体系于长度分别为的轻弹簧和细绳上,的一端悬挂在天花板上,与竖直方向的夹角为水平拉直,物体处于平衡状态,现将剪断,求剪断瞬时物体的加速度。
经典高三物理模型绳子、弹簧和杆产生的弹力特点 知识点分析
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
专题受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆
模型3:轻弹簧 轻弹簧的质量可忽略不计,可以被压缩或拉伸。 其弹力的主要特征是: ①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力; ②轻弹簧各处受力大小相等,且与弹簧形变的方向相反; ③轻弹簧产生的弹力是连续变化的,不能发生突变,只能 渐变(除弹簧被剪断外); ④在弹性限度内,弹力的大小与弹簧的形变量成正比,即 F=kΔx,其中k为弹簧的劲度系数,Δx为弹簧的伸长量或缩 短量。
由于杆AB不可转动(即是“固 定杆”),所以杆所受弹力的方向 不一定沿杆AB方向.由于B点处是 滑轮,它只是改变绳中力的方向, 并未改变力的大小,滑轮两侧绳 上的拉力大小均是100 N,夹角为 120°,故滑轮受绳子作用力即是 两拉力的合力。
总结: 1.什么是活结,什么是死结? 2.什么是活动杆,什么是固定杆? 2.它们各有什么特点?
②绳上任何一个横截面两边相互作用的拉力叫做“张 力”,因此轻绳只有两端受力时,任何一个横截面上的张力 大小都等于绳的任意一端所受拉力的大小,即同一轻绳张力 处处相等,且与运动状态无关.
③轻绳的弹力大小可发生突变.
模型2:轻杆 轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数 非常大,可认为在受外力作用时形变极微小,看作不可伸 长或压缩. 其弹力的主要特征是: ①轻杆既可产生压力、也可产生拉力,且能产生侧向 力(力的方向不一定沿着杆的方向); ②轻杆各处受力大小相等,且与运动状态无关; ③轻杆的弹力可发生突变.
分析:
TC mg 50N
TB cos mg
TA A
mg 50
TB cos
62.5N 0.8
TA TB sin 62.5 0.6 37.5N
B TB θ θ O
mg
例2.轻绳AB一段固定于A点,另一端自由。在绳中某处O点 打结系另一轻绳OC,下挂一质量为m的物体。现保持O点的 位置不变,在OB段由水平方向缓慢转到竖直方向的过程中, 拉力F和绳OA的张力变化?
绳、杆、弹簧模型有关问题的归类 物理 初中 力学模型
高中物理受力分析一、物体受力分析方法:把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力。
2、受力分析的几个步骤.①灵活选择研究对象 ②对研究对象周围环境进行分析:③审查研究对象的运动状态: ④根据上述分析,画出研究对象的受力分析图; 3、受力分析的三个判断依据: ①从力的概念判断,寻找施力物体; ②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中用整体法比较方便,但整体法不能求解系统的内力。
2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用。
三、例题与练习:例1、分析物体A 的受力A B A 、B 都静止AA 静止A 、B 都静止(绳竖直、光滑)例2、例3、如图所示,水平传送带上的物体。
(1)随传送带匀速运动 (2)传送带由静止起动如图,倾斜传送带上的物体(1)向上匀速运输 (2)向下匀速运输例4、如图所示,各图中,物体总重力为G ,请分析砖与墙及砖与砖的各接触面间是否有摩擦力存在?如有大小是多少?例5A、B 、C 都静止 分析C 所受力 a 、b 、c 都静止 分析a 所受力 (A 静止) C (A 、B 一起匀速向右运动)B(A 静止) v绳、杆、弹簧模型有关问题的归类分析一、三种模型弹力产生的特点:细绳只能发生拉伸形变,即只能提供因收缩而沿轴向里的弹力,但弹力的产生依赖于细绳受到的外力和自身的运动状态。
经典高中物理模型--绳子、弹簧和杆产生的弹力特点
1.如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2.如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3.如图所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。在图所示中,。所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。则可知小球的加速度方向沿水平向右,即与竖直成角,其大小为。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg与F2的合力与F1大小相等,方向相反,可以解得F1=mgtgθ。
(2)剪断后瞬间,绳OA产生的拉力F1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化, 这时F2将发生瞬时变化,mg与F2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F合=mgsinθ,所以a=gsinθ。
绳子、弹簧和杆产生的弹力特点
模型特点:
1.轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。这时F2不发生变化,故mg与F2的合力仍然保持不变,与F1大小相等,方向相反,如图(4)所示,所以F合= F1=mgstgθ,
弹簧受力分析
弹簧受力分析弹簧受力分析是物理学中一个重要的研究领域,其原理与力学有着密切的关系。
在弹簧中,弹性力是一种恢复力,可以使物体恢复到其原始形状或位置。
通过对弹簧的受力分析,我们可以更好地理解弹簧的性质和应用。
弹簧是一种具有弹性的物体,通常由金属制成。
在弹簧中,分子之间存在着吸引力和排斥力,这种相互作用力可以产生弹力。
当外力作用于弹簧上时,分子之间的相互作用力会使弹簧发生形变,同时也会产生一个恢复力。
这个恢复力与形变的大小成正比,形成了弹簧的特性。
弹簧受力分析的基本原理是胡克定律,即弹簧的弹力与形变成正比。
根据胡克定律,我们可以得出以下的公式:F = k * x,其中 F 是弹力,k 是弹簧的劲度系数,x 是形变的大小。
根据这个公式,我们可以看出弹力与形变成正比,且劲度系数 k 可以视为弹簧的刚度。
当形变没有超过弹簧的弹性极限时,这个公式是成立的。
弹簧受力分析可以应用于很多领域,其中一个重要的应用是弹簧测力计。
弹簧测力计是一种用于测量物体受力的设备,通过弹簧受力分析原理可以精确地测量力的大小。
测力计的工作原理是将待测力作用于弹簧上,弹簧产生形变,通过测量形变的大小来计算力的大小。
这种测力方法可以广泛应用于工程、科学和医学等领域。
除了测力计,弹簧还有许多其他的应用。
例如,弹簧在汽车悬挂系统中起到缓冲和减震的作用,通过弹簧的弹性来吸收道路不平和车辆行驶过程中的震动。
此外,弹簧还可以用于储能装置,如机械钟表的发条,通过扭曲弹簧将机械能转化为弹性势能储存起来。
在进行弹簧受力分析时,我们需要注意一些相关的因素。
首先,弹簧的材质和尺寸会对其受力特性产生影响,不同的材料和尺寸会导致不同的弹性力。
其次,外力的方向和大小也会对弹簧的形变和恢复力产生影响,这需要根据具体情况进行分析。
弹簧受力分析不仅在理论研究中起着重要的作用,也在各个实际应用中发挥着重要的作用。
通过对弹簧受力分析的深入研究,可以帮助我们更好地理解弹簧的性质和应用,为相关设备的设计和优化提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受力分析之绳、弹簧、细线
1.光滑的水平面上有一质量m=1㎏的小球,小球与水平轻弹簧和水平面成︒=30θ的角的轻绳的一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断绳的瞬间,小球的加速度大小及方向如何?此时轻弹簧的弹力与水平面对球的弹力的比值是多少?(210s m g =)
2.如下图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,
( ) A.都等于2g B.2g 和0
C.()B B m g m m 2A +和0
D.0和()B B m g m m 2A +
3.如下图所示,车厢内光滑的墙壁上,用线拴住一个重球。
车静止时,线的拉力为T ,墙对球的支持力为N ,车向右做加速运动时,线的拉力为T ´,墙对球的支持力为N ´。
求(1)T ´____T ,N ´_____N 。
(2)若墙对球的支持力为0,则物体的运动状态可能是_________或_________。
4.如下图所示,小球m 用两根绳子拉着,绳子OA 水平。
问: (1)若将绳子OA 剪断瞬间,小球m 的加速度大小、方向如何? (2)若将绳子OB 剪短瞬间,小球m 的加速度大小、方向如何?
5.如下图所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量之比是1:2:3。
设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬间,木块A 和B 的加速度分别是。
、________==B A a a
6.如下图所示,以水平向右的加速度a 向右加速前进的车厢内,有一光滑的水平桌面,在桌面上用轻弹簧连接质量均为m 的两小球相对车静止。
当剪断绳子瞬间,A 、B 两球加速度分别为(取向右方向为正方向)。
、________==B A a a
A B C
Ⅰ 2 Ⅱ
7.物体2121A A B B 、和、的质量均为m ,21A A 、用刚性轻杆连接,21B B 、用轻质弹簧连接。
两个装置都放在水平的支托物上,处于平衡状态,突然迅速地撤去支托物,让物体下落,在撤去支托物瞬间,21A A 、所受合外力分别是21A A F F 和,21B B 、所受到的合外力分别为2B 1B F F 和。
则( ) A.mg F F mg F F B B A A 2,0,2,02121==== B.mg F F mg F mg F B B A A 2,0,,2121==== C.mg F mg F mg F F B B A A ====2121,,2,0
D.mg F mg F mg F mg F B B A A ====2121,,,
8.如下图所示,三个质量相同的小球彼此用轻弹簧Ⅰ、Ⅱ连接,则: (1)线被切断的瞬间,求每个球的加速度 (2)若切断弹簧Ⅱ,求每个球的加速度 (3)若切断弹簧Ⅰ,求每个球的加速度
3
1
Q
B P
乙
A 甲
9.如下图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连接后,悬挂在天花板上。
若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度判断正确的是( ) A.剪断P 处瞬间,g a a B A ==,0 B.剪断P 处瞬间,0,2==B A a g a C.剪断Q 处瞬间,0,0==B A a a D.剪断Q 处瞬间,g a g a B A ==,2
10.如下图所示,两根完全相同的弹簧下挂一质量为m 的小球,小球与地面间有细线相连,处于静止状态。
细线竖直向下的拉力大小为2mg ,若剪断细线,则剪断细线的瞬间小球的加速度( ) A.g a =,方向向上 B.g a =,方向向下 C.g a 2=,方向向上 D.g a 2=,方向向上
11.如下图所示,物体甲、乙质量均为m ,弹簧和悬线的质量忽略不计。
当悬线被烧断的瞬间,则甲、乙的加速度( ) A.甲是0,乙是g B.甲是g,乙是g C.甲是0,乙是0 D.甲是2g ,乙是g
12.如下图所示,自由下落的小球开始接触竖直放置的弹簧被压缩到最短的过程中,小球的速度和所受合力的变化情况是()
A.合力变小,速度变小
B.合力变小,速度变大
C.合力先变小后变大,速度先变大后变小
D.合力先变小后变大,速度先变小后变大
1. (1)g a 3=,水平向左;(2)3
2. D
3. (1)=,>;(2)向左加速,向右减速
4. (1)θsin g a =,垂直OB 斜向下;(2)g a =,竖直向下
5. g a a B A 5.1,0==
6. a a a a B A -==,
7. B
8. (1)0,3321===a a g a ; (2)向下向上,g a g a a ===321,0 (3)02,0321===a g a a 向下, 9.B 10.C 11.B 12.C。