验证性因子分析
信度效度分析结构方程模型验证性因子分析
信度效度分析结构方程模型验证性因子分析信度效度分析结构方程模型是一种统计方法,用于评估一个测量工具(如问卷或量表)的信度和效度。
验证性因子分析是使用结构方程模型的一种方法,用于验证假设的因素结构。
本文将介绍信度效度分析结构方程模型和验证性因子分析的步骤和应用,以及一些相关的注意事项。
首先,我们将介绍信度效度分析结构方程模型的步骤。
该模型可以用于评估测量工具的信度和效度,以确定它是否能够准确地测量所需的概念。
1.确定研究目的和研究问题:在进行分析之前,需要明确研究目的和研究问题。
这将有助于确定所需的测量工具和相关的概念。
2.收集数据:然后,需要收集与研究问题相关的数据。
这可以通过调查问卷、观察或其他适当的方法来实现。
3. 选择合适的统计软件:进行信度效度分析结构方程模型分析时,选择合适的统计软件是很重要的。
一些常用的软件包括AMOS、Mplus和LISREL。
4.构建测量模型:根据所选择的测量工具,构建一个测量模型。
这个模型将包括所需的概念和相关的测量项目。
5. 评估信度:评估信度是评估测量工具的一致性和稳定性。
常用的信度分析方法包括内部一致性(如Cronbach's α系数)和重测信度(如测试-重新测试法)。
6.评估效度:评估效度是评估测量工具的有效性和准确性。
常用的效度分析方法包括内部效度(如因子分析)和外部效度(与其他测量工具或标准进行比较)。
7.进行结构方程模型:一旦信度和效度得到评估,可以进行结构方程建模。
这将用于验证因素结构和模型拟合。
8.评估模型拟合:评估模型拟合是验证性因子分析的关键一步。
常用的指标包括χ²值、自由度、比例指数(CFI)、增量拟合指数(IFI)、均方根误差逼近指数(RMSEA)等。
9.修正模型:如果模型拟合不佳,需要进行适当的修正。
这可能包括删除不显著的路径、修正误差项相关性等。
10.解释和报告结果:最后,需要解释和报告分析结果。
这将包括变量之间的关系、可信度和效度的指标以及任何必要的修正。
验证性因子分析
k
k
k
12
模型拟合优度检验
n n 1 ln( LF ) [ln S tr( SS )] [ln S p] 2 2
n ln( LR ) ln tr S 1 2
H0: Reduced model is indifferent from full model Ha: two models are significantly different Set α=0.2
11
模型的评价
• 一个好的模型就是参数的估计值使得模型隐含的方差协方 差矩阵 (k ) 与样本导出的方差协方差矩阵S充分地接近, 或满足事先给定的标准。 • 令F=F(S, ( ) ) • 它是一个非负函数。F=0,当且仅当S= ( ) ,即模型完全 拟合数据。F被称为拟合函数,它的具体公式取决于方法。 • 验证性因子分析的总体拟合优度的统计假设是: H0:S= ( ) ,即数据完全拟合。 H1:S ( ) ,即数据不完全拟合。
均方根
GFI拟合优度指数 不受样本大小影响, >0.95:good level (goodness of fit index) 可用于不同模型之 >0.90:acceptable level 间的比较。 AGFI 调整后拟合优 度指数 >0.90:good level >0.80:acceptable level
10
模型的参数估计
• 1、估计因子载荷
逐步迭代: k g (k ), k 1,2,... 直到 ( k ) 与S充分的接近。 最后得到的估计为模型的一个非标准参数估计
• 2、 计算标准因子载荷
标准因子载荷消除了纲量的影响,可以用来比较指标对潜在因 子的相对重要性。绝对值越大,指标对潜在因子的贡献越大。 1) 令每个因子的方差为1; 2) 将每个因子与因子载荷在之上的变量间的λ值任选一个, 并固定为1
AMOS做验证性因子分析
AMOS做验证性因子分析验证性因子分析(Confirmatory factor analysis, CFA)是一种统计方法,用于检验研究者构建的理论或假设模型是否与实际数据相吻合。
它是一种多变量分析方法,用于测量和验证潜在因子对观察指标的关系。
在本文中,将介绍如何使用AMOS软件进行验证性因子分析,并说明其步骤和解释结果的方法。
验证性因子分析的步骤如下:1.准备数据:首先,需要准备清洁和格式化的数据集。
确保变量的测量是连续的,并检查是否存在缺失值。
如果存在缺失值,可以选择删除缺失值或使用合适的方法进行缺失值处理。
2.建立模型:在AMOS软件中,创建新项目并选择“新模型”的选项。
在模型中添加指标和潜变量,并指定它们之间的因子关系。
可以使用路径图或列表方式指定模型。
3. 参数估计:在参数估计部分,选择适当的估计方法,如最大似然估计(Maximum Likelihood, ML)或广义最小二乘估计(Generalized Least Squares, GLS)。
这些方法可以根据数据集的特点来选择。
4. 模型拟合度检验:进行模型拟合度检验是确认模型的重要步骤。
通过比较实际数据与模型预测数据的吻合程度来评估模型的拟合度。
常用的拟合度指标包括卡方检验值(chi-square)、规范拟合指数(NFI)、增量拟合指数(IFI)和根均方误差逼近指数(RMSEA)。
5.修正模型:如果模型拟合度不佳,需要对模型进行修正。
可以根据修正指标的建议来调整模型,例如删除不明显或不显著的路径,增加或修改潜变量之间的关系。
6.解释结果:解释模型结果是验证性因子分析的重要任务之一、通过对模型参数和估计值的解读来解释实际数据与模型之间的关系。
还可以进行模型比较,比较不同模型之间的差异和优劣。
验证性因子分析的结果通常包括了对模型拟合度的评估和模型参数的解释。
模型拟合度指标可以告诉我们模型与实际数据的吻合程度,例如卡方检验值的显著性、NFI、IFI和RMSEA等指标。
一阶相关模型的验证性因子分析
验证性因子分析(一阶相关模型)案例:用17个项目(X1至X17)了解学生各种学习态度及取向(如是否将成就归因于努力、是否要表现出比他人强、是否要超越自己等)。
项目采用从“十分同意”到“十分不同意”7点量表法进行回答,假设可以将学习态度及取向分为A、B、C、D、E五个维度,分别用4、4、3、3、3个项目进行测量。
测量模型(M A)设定如图1所示:图1使用该量表对350名学生进行测量,获得量表17个构成项目的相关系数矩阵如表1所示:表11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171 12 .34 13 .38 .35 14 .02 .03 .04 15 .15 .19 .14 .02 16 .17 .15 .20 .01 .42 17 .20 .13 .12 .00 .40 .21 18 .32 .32 .21 .03 .10 .10 .07 19 .10 .17 .12 .02 .15 .18 .23 .13 110 .14 .16 .15 .03 .14 .19 .18 .18 .37 111 .14 .15 .19 .01 .18 .30 .13 .08 .38 .38 112 .18 .16 .24 .02 .14 .21 .21 .22 .06 .23 .18 113 .19 .20 .15 .01 .14 .24 .09 .24 .15 .21 .21 .45 114 .18 .21 .18 .03 .25 .18 .18 .18 .22 .12 .24 .28 .35 115 .08 .18 .16 .01 .22 .20 .22 .12 .12 .16 .21 .25 .20 .26 116 .12 .16 .25 .02 .15 .12 .20 .14 .17 .20 .14 .20 .15 .20 .50 117 .20 .16 .18 .04 .25 .14 .21 .17 .21 .21 .23 .15 .21 .22 .29 .41 1 (一)测量模型M A的验证性因子分析LISREL程序一个LISREL程序由三部分组成:数据输入(DA开始)、模型设定(MO开始)、结果输出(OU开始)。
探索性因子分析与验证性因子分析
探索性因子分析与验证性因子分析探索性因子分析与验证性因子分析比较研究湖北武汉杨丹全文:探索性因子分析与检验性因子分析就是因子分析的两种相同形式。
它们都就是以普通因子模型为基础,但它们之间也存有着很大差异。
本文通过对它们展开比较分析,找到其优劣,并对方法论分析提供更多一定的指导依据。
关键词:探索性因子分析、验证性因子分析、结构方程模型现实生活中的事物就是错综复杂的,在现实的数据中,我们经常碰到的就是多元的情况,而不仅仅就是单一的自变量和单一的因变量。
因此必须使用多元的分析方法,而因子分析就是其中一种非常关键的处置降维的方法。
它就是将具备错综复杂关系的变量(或样品)综合为少数几个因子,以重现完整变量与因子之间的相互关系,同时根据相同因子还可以对变量展开分类。
它实际上就是一种用以检验潜在结构就是怎样影响观测变量的方法。
因子分析主要存有两种基本形式:探索性因子分析(exploratoryfactoranalysis)和检验性因子分析(confirmatoryfactoranalysis)。
探索性因子分析(efa)致力于找到事物内在的本质结构;而检验性因子分析(cfa)就是用以检验未知的特定结构与否按照预期的方式产生促进作用。
两者之间就是既有联系也有区别的,下面我们就从相同的方面展开分析比较。
一、两种因子分析的相同之处两种因子分析都就是以普通因子模型为基础的。
因子分析的基本思想就是通过变量的相关系数矩阵内部结构的研究,找到能够掌控所有变量的少数几个随机变量回去叙述多个变量之间的有关关系,但在这里,这少数几个随机变量就是不容观测的,通常称作因子。
然后根据相关性的大小把变量分组,使同组内的变量之间相关性较低,但相同组的变量相关性较低。
如图1所示,我们假定一个模型,它表明所有的观测变量(变量1到变量5)是一部分受到潜在公共因子(因子1和因子2)影响,一部分受到潜在特殊因子(e1到e5)影响的。
而每个因子和每个变量之间的相关程度是不一样的,可能某给定因子对于某些变量的影响要比对其他变量的影响大一些。
验证性因子分析
验证性因子分析
验证性因子分析(CFA)是一种用于检验和验证研究模型的统计分析方法。
它是基于因子分析的一种方法,通过考察特征因子和变量之间的关系来评估研究模型的拟合程度。
在进行CFA之前,首先需要构建研究模型。
研究模型是通过将观察变量组织成潜在变量的形式来描述和解释数据之间的关系。
潜在变量表示无法直接观测或测量的概念或构造,例如抽象的概念、心理特征或态度。
CFA的步骤如下:
1. 设定研究模型:根据研究问题和理论基础,确定研究模型的结构和变量之间的关系。
研究模型通常由潜在变量和观察变量组成。
2. 收集数据:收集足够数量的数据来进行CFA分析。
数据可以通过问卷调查、实验或其他适当的方法来收集。
3. 选择统计软件:选择适用于CFA分析的统计软件,例如SPSS、AMOS或LISREL等。
4. 进行模型拟合度检验:使用CFA软件分析数据,并计算出模型的拟合度指标。
常用的拟合度指标包括χ²值、DF(自由度)、CFI (相对拟合指数)、RMSEA(均方根误差逼近指数)等。
5. 修正模型:根据拟合度指标和相关统计量对模型进行修正。
如果模型的拟合度不佳,可以尝试添加或删除某些路径、允许关联错误项、修正模型规范等,以提高模型的拟合度。
6. 验证模型:对修正后的模型进行再次分析,检验拟合度指标是否得到了改善。
如果模型的拟合度满足要求,则可以认为模型通过了验证。
需要注意的是,CFA只能检验给定模型的拟合程度,而不能确定模型的因果关系。
因此,在进行CFA之前,需要有明确的研究假设和理论基础,以便根据统计结果对研究模型进行解释和解释。
效度检验最详细讲解
效度检验
验证性因子分析(confirmatory factor analysis, CFA)是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。
与验证性因子分析CFA相对应的为探索性因子分析,二者的区别在于,验证性因子分析(CFA)用于验证对应关系,探索性因子分析(EFA)用于探索因子与测量项(量表题项)之间的对应关系。
应用情形:如果是成熟的量表,研究者可同时使用验证性因子分析CFA,和探索性因子分析(简称因子分析,EFA)用于验证量表的效度。
如果量表的权威性较弱,通常使用探索性因子分析(EFA)进行探索因子,或者效度检验分析。
验证性因子分析CFA的主要目的在于进行效度验证,同时还可以进行共同方法偏差CMV的分析。
效度有很多种,比如内容效度,结构效度,聚合(收敛)效度,区分效度等。
各个名称的区别说明如下:
如果并非经典量表,通常情况下研究人员会使用探索性因子分析(EFA)进行效度验证,该验证方法一般称作结构效度分析,同时还会使用内容效度进行分析即用文字描述量表的来源设计过程等,用于论证研究量表的有效性。
当然如果还想进一步深入分析,亦可使用CFA进行深入研究。
如果是经典量表需要进行效度验证,其内容效度确认无疑,而且使用探索性因子分析(EFA)进行分析时,也具有良好的结构效度。
所以研究人员更偏好于使用CFA进行深入分析,即进行聚合(收敛)效度和区分效度分析。
验证性因子分析
验证性因子分析验证性因子分析(Confirmatory Factor Analysis, CFA)是一种统计方法,用于检验和验证一个已经构建的多维量表的因子结构和因子载荷是否与预测一致。
其基本原理是在预设的因子结构前提下,通过对观察数据进行分析,确定相关因子的因子载荷是否显著,从而确定因子结构的准确性。
验证性因子分析需要先有理论基础并构建出一个已经测试过的多维量表,然后使用CFA模型对观察数据进行分析。
在该分析中,先构建一个因子模型,并设定各个因子与测量变量之间的关系,然后通过最大似然估计或贝叶斯估计等方法,根据数据对模型的适配度进行统计检验,判断模型是否能够很好地解释数据。
在验证性因子分析中,通常通过以下指标来评估模型的适配度:1. 卡方检验(Chi-Square Test):检验观察数据与模型之间的拟合程度,通常考虑的是卡方值和自由度的比值。
较小的卡方值和较大的自由度比值表示较好的拟合程度。
2. 均方根误差逼近指标(Root Mean Square Error of Approximation, RMSEA):此指标反映模型误差的程度,一般认为RMSEA值在0.05以下表示较好的拟合程度。
3. 标准化拟合指数(Comparative Fit Index, CFI)和增量拟合指数(Incremental Fit Index, TLI):这两个指标反映模型与数据的拟合程度,值越接近1表示拟合效果越好。
4. 标准化残差(Standardized Residuals):这个指标可以用来检验模型的统计显著性,较小的标准化残差表示模型比较合理。
通过分析以上指标,我们可以根据验证性因子分析的结果来评估模型的适配度,并判断因子结构是否与预期一致。
如果模型的适配度较好,即各个指标都在接受范围内,说明构建的因子结构是恰当的;如果拟合度较差,我们可能需要重新考虑因子结构或修改测量工具。
验证性因子分析思路总结
目录验证性因子分析 (1)分析步骤 (3)(1)模型设定 (4)(2)模型拟合 (4)( 3 )模型修正 (6)(4)模型分析 (9)验证性因子分析,是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。
尽管因子分析适合任何学科使用,但以社会科学居多。
目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。
验证性因子分析Step1:因子分析类型因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。
探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。
验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。
Step2:分析思路在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:探索性因子分析(EFA)验证性因子分析(CFA )研究测量关系研究测量关系回归分析研究自变量对一个因变量的影响关系路径分析研究多个自变量与多个因变量之间的影响关系适用于非经典量表适用于经典量表y 为定量数据可先用CFA/EFA 确定因子与研究项关系,再进行路径分析结构方程模型包括两部分:结构方程模型研究影响关系及测量关系验证性因子分析和路径分析探索性因子分析:验证因子与分析项的对应关系,索性因子分析。
验证性因子分析:验证因子与分析项的对应关系,性因子分析。
确认测量关系后,后续可进行路径分析系。
检验量表效度,非经典量表通常用探检验量表效度,成熟量表通常用验证/ 线性回归分析研究具体的影响关路径分析:用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。
结构方程模型SEM:包括测量关系和影响关系。
spssau 验证性因子分析
验证性因子分析目录1验证性因子分析基本说明 (2)2 如何使用SPSSAU进行验证性因子操作 (3)3 验证性因子不达标如何办? (9)第1点:效度不达标 (9)第2点:factor loading值过大或过小 (10)第3点:拟合指标不达标 (10)验证性因子分析(confirmatory factor analysis, CFA)是结构方程模型的一种最常见的应用。
验证性因子分析(confirmatory factor analysis, CFA)通常可用于四种用途,一是针对成熟量表进行效度分析,包括结构效度,聚合(收敛效度)和区分效度;二是验证性因子分析可用于组合信度的分析;三是验证性因子分析还可用于进行共同方法偏差CMV检验。
四是使用验证性因子分析进行权重计算;CFA的功能应用如下:验证性因子分析功能如果是使用CFA进行结构效度验证,即测量因子与对应项之间的对应关系情况是否良好,一般查看标准化factor loading即因子载荷系数值即可,如果所有的项标准化factor loading值大于0.7即说明结构效度良好。
当然,如果某项的factor loading值较小,那么可删除该项后再次分析。
如果使用CFA进行聚合效度验证,那么其是测量本应该在同一因子的项确实在该因子里面;其具体测量方式是要求A VE值大于0.5即可;如果出现A VE明显的小于0.5,此时可考虑移项一些载荷系数值较低项后再次分析。
如果使用CFA进行区分效度验证,那么其是测量不应该同一因子的项确实不在同一因子下面;测量方式有两种,第一种是看A VE平方根号值与相关系数值进行PK,如果说A VE平方根号值全部大于相关系数值,意味着聚合性明显更强,说明具有区分效度;区分效度时还有一种测量方式是使用HTMT值,该指标一般小于0.9即可,但该指标要求相对较严格,使用较少。
如果使用CFA进行信度分析,那么使用组合信度系数CR值测量即可,一般CR值大于0.7即可。
SPSS验证性因子怎么做?附案例讲解一文搞懂
验证性因子分析1、作用验证性因子分析(confirmatory factor analysis, CFA)是用于测试一个因子与相对应的测度项之间的关系是否符合研究者所设计的理论关系的一种研究方法,可用于调查问卷的量表分析。
2、输入输出描述输入:至少两项或以上的定量变量或有序的定类变量。
输出:测量因子与变量之间的对应关系是否符合研究者所设计的理论关系。
3、案例示例案例:理科班的 100 名同学的语文、数学、英语、物理、生物、化学成绩,然后研究者想要验证他们的语文、英语成绩是否可以反映理科班的文科成绩水平,他们的数学、物理、生物、化学成绩是否可以反映理科班的理科成绩水平。
4、案例数据验证性因子分析案例数据模型要求为至少两项或以上的定量变量或有序的定类变量,其中数学、物理、化学、生物为一个因子,语文和英语为一个因子。
5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;Step4:选择【验证性因子分析】;Step5:查看对应的数据数据格式,【验证性因子分析】要求特征序列至少两项或以上的定量变量或有序的定类变量。
在因子 1 拖入需验证的变量。
Step6:当涉及到多个因子时,点击【创建因子】.Step7:在因子 2 拖入需验证的变量。
Step8: 点击【开始分析】,完成全部操作6、输出结果分析输出结果 1:因子基本汇总表图表说明: 上表展示了样本频数的统计情况,包括样本中各个因子的字段频数、总计、总样本频数,CFA分析要求总样本数据最少要是因子内个别量表的5倍以上,且一般情况下至少需要200个样本。
结果分析:样本数据集共有因子数量 2 个,变量数 6 个,样本数 200 满足验证性因子分析基本数据要求。
输出结果 2:因子载荷系数表图表说明:上表为模型的因子载荷系数表格,包括潜变量、分析项、非标准载荷系数、z检验结果等。
测量关系时第一项会被作为参照项,因此不会呈现P值等统计量。
验证性因子分析思路总结
目录验证性因子分析 (1)分析步骤 (3)(1)模型设定 (4)(2)模型拟合 (4)(3)模型修正 (6)(4)模型分析 (9)验证性因子分析,是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。
尽管因子分析适合任何学科使用,但以社会科学居多。
目前有很多软件都可以非常便利地实现验证性因子分析,本文将基于SPSSAU系统进行说明。
验证性因子分析Step1:因子分析类型因子分析可分为两种类型:探索性因子分析(EFA)和验证性因子分析(CFA)。
探索性因子分析,主要用于浓缩测量项,将所有题项浓缩提取成几个概括性因子,达到减少分析次数,减少重复信息的目的。
验证性因子分析与探索性因子分析相似,两者区别只在于探索性因子分析(EFA)用于探索因子与测量项之间的对应关系,验证性因子分析(CFA)用于验证结果与理论预期是否一致。
Step2:分析思路在实际研究中,验证性因子分析常会与结构方程模型、路径分析等方法联系到一起,对于不熟悉概念的研究人员容易搞混这些方法,下表对这几种方法进行简单说明:探索性因子分析(EFA)研究测量关系适用于非经典量表验证性因子分析(CFA)研究测量关系适用于经典量表回归分析研究自变量对一个因变量的影响关系y为定量数据路径分析研究多个自变量与多个因变量之间的影响关系可先用CFA/EFA确定因子与研究项关系,再进行路径分析结构方程模型研究影响关系及测量关系结构方程模型包括两部分:验证性因子分析和路径分析●探索性因子分析:验证因子与分析项的对应关系,检验量表效度,非经典量表通常用探索性因子分析。
●验证性因子分析:验证因子与分析项的对应关系,检验量表效度,成熟量表通常用验证性因子分析。
确认测量关系后,后续可进行路径分析/线性回归分析研究具体的影响关系。
●路径分析:用于研究多个自变量与多个因变量影响关系;如果因变量只有一个,可以使用线性回归分析。
●结构方程模型SEM:包括测量关系和影响关系。
验证性因子分析报告
验证性因子分析报告引言验证性因子分析(CFA)是一种统计方法,用于评估测量模型的适配性和建立因子与观测变量之间的关系。
本报告旨在介绍CFA的步骤和思考过程,以及如何解释和应用CFA结果。
步骤一:确定研究目的和假设在进行CFA之前,首先需要明确研究目的和假设。
研究目的可以是验证一个已有的理论模型,或者建立一个新的测量模型。
假设可以是具体的关系假设或者差异假设。
步骤二:选择合适的测量工具和样本第二步是选择合适的测量工具和样本。
测量工具可以是问卷调查、观察或者其他形式的测量工具。
样本的选择应该具有代表性,并且具备足够的样本量以支持结果的可靠性。
步骤三:建立测量模型建立测量模型是CFA的核心步骤。
首先,确定要测量的潜在因子,并选择合适的观测变量。
然后,建立一个初始模型,将观测变量与潜在因子进行关联。
在建立模型时,需要考虑因子间的相关性以及观测变量的量表信度。
步骤四:评估模型适配性一旦建立了测量模型,接下来需要评估模型的适配性。
常用的适配性指标包括卡方检验、比较合适度指数(CFI)、增量合适度指数(IFI)和根均方误差逼近指数(RMSEA)。
这些指标可以帮助研究者判断模型是否与实际数据拟合良好。
步骤五:检验因子负荷和因子间关系一旦模型的适配性得到确认,接下来需要检验因子负荷和因子间的关系。
因子负荷指观测变量与潜在因子之间的关系强度,可以通过标准化回归系数来度量。
因子间关系可以通过检验路径系数或者相关系数来判断。
步骤六:解释和应用CFA结果最后一步是解释和应用CFA的结果。
根据因子负荷和因子间关系的方向和强度,可以对测量模型进行解释,并验证研究假设。
此外,CFA结果还可以用于改进测量工具或者探索其他相关问题。
结论验证性因子分析是一种强大的统计方法,可以用于评估测量模型的适配性和建立因子与观测变量之间的关系。
通过明确研究目的和假设,选择合适的测量工具和样本,建立测量模型,评估模型适配性,检验因子负荷和因子间关系,并解释和应用CFA结果,研究者可以得出可靠的结论,并推动理论和实践的发展。
验证性因子分析的讲解
结构方程模型另一方法——PLS
偏最小平方模型PLS(Wald,1982) 《模型构建方法与结构方程建模——与张建平同志
商讨》一文中旨在将结构方程模型与LISREL的 概念区分开而具体介绍
当研究目的是理论检验且先验理论知识充足时, 更宜采用LISREL;当研究目的是因果预测应用, 且理论知识非常缺乏时,则PLS更加适合。
数表示) Σ(Θ^):根据样本估计出Θ^后得到的协方差矩阵
目的
S——Σ Σ(Θ^)——Σ(Θ) 估计出参数,使得Σ(Θ^)逼近S,即使得Σ(Θ)
逼近Σ
参数估计 模型识别 模型评价等具体细节原理 教材CH9
应用举例
《外资企业跨文化适应模式分析结构方程建模》
谢谢
Байду номын сангаас
基本思想的差异
EFA
CFA
主要是为了找出影响观测 变量的因子个数,以及各 个因子和各个观测变量之 间的相关程度
主要目的是决定事前定义 因子的模型拟合实际数据 的能力
CFA原理分析
教材P170 参数:λij,ξi的方差、协方差φij,δ的方差θii Θ:全体位置参数组成的向量 Θ^: Θ的估计 Σ:X在总体中真实的协方差矩阵(9.3) S:X在样本的协方差矩阵(可代替Σ ) Σ(Θ):由模型推出的整体协方差矩阵(9.4由各参
amos_验证性因子分析步步教程
应用案例1第一节模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos7软件2进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
一、模型构建的思路本案例在著名的美国顾客满意度指数模型(ASCI)的基础上,提出了一个新的模型,并以此构建潜变量并建立模型结构。
根据构建的理论模型,通过设计问卷对某超市顾客购物服务满意度调查得到实际数据,然后利用对缺失值进行处理后的数据3进行分析,并对文中提出的模型进行拟合、修正和解释。
二、潜变量和可测变量的设定本文在继承ASCI模型核心概念的基础上,对模型作了一些改进,在模型中增加超市形象。
它包括顾客对超市总体形象及与其他超市相比的知名度。
它与顾客期望,感知价格和顾客满意有关,设计的模型见表7-1。
模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是结果变量,前提变量综合决定并影响着结果变量(Eugene W. Anderson & Claes Fornell,2000;殷荣伍,2000)。
1关于该案例的操作也可结合书上第七章的相关内容来看。
2本案例是在Amos7中完成的。
3见spss数据文件“处理后的数据.sav”。
2.1、顾客满意模型中各因素的具体畴参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小围甄别调查的结果,模型中各要素需要观测的具体畴,见表7-2。
三、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月在校某超市有购物体验的学生。
调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。
问卷容包括7个潜变量因子,24项可测指标,7个人4正向的,采用Likert10级量度从“非常低”到“非常高”本次调查共发放问卷500份,收回有效样本436份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
验证性因子分析步骤
1. 定义因子模型
2. 搜集数据
3. 获得协方差矩阵或相关系数矩阵 4. 模型估计 5. 模型评价 6. 选择模型
7
1 验证性因子分析
CFA属于结构方程模型 (SEM with latent variables)的子模型,CFA分析的数学原理 与统计程序,都是SEM的特殊应用。 CFA:必須有特定理论依据或概念构架作为 基础,然后藉由数学语言来确认该理论所导 出的计量模型是否合理适当。 CFA的参数估计采用“最大似然估计”,而 非矩阵分解,其优点在于
R =
16
X1 = λ11ξ1 + λ12ξ2 + δ1 X2 = λ21ξ1 + λ22ξ2 + δ2 X3 = λ31ξ1 + λ32ξ2 + δ3 Y1 = λ41ξ1 + λ42ξ2 + δ4 Y2 = λ51ξ1 + λ52ξ2 + δ5
探索性因子分析模型
X1 = λ11ξ1 + δ1 验证性因子分析模型 X2 = λ21ξ1 + δ2 X3 = λ31ξ1 + δ3 Y1 = +λ42ξ2 + δ4 Y2 = +λ52ξ2 + δ5 Corr(ξ1,ξ2) = φ12, var(ξ1)=φ11, var(ξ2)=φ22
corr ( X 3 , Y X 2 5 ) corr (311 3 , 52 2 5 ) 31corr (1 , 2 )52
corr(X 1 , X 1 ) 11 1,
2 11
corr(X 2 , X 2 ) 22 1,
信度:观测变量与潜变量之间的相关程度(>0.70) 效度:可分下列两种
收敛效度(convergent validity):对相同特性 (construct, concept, or research variables)使用 不同衡量方法(Likert scale, Stapel scale, or semantic differential),所得结果高度相关。 区分效度(discriminant validity):不同构念 (construct) 彼此之间确实不相同。
22
评价指标
2 2 ln L ln L R F
指标 χ2 卡方值
说明 χ2易受样本量大小影响,当样本 量较大时,易导致拒绝零假设, 因此建议与其它指标同时评价。
零假设: the proposed model fits as well as a perfect model
0.5461 corr ( X 1 , X 3 ) corr (111 1 , 311 3 ) 1131 0.714
corr ( X 1 , Y X 1 4 ) corr (111 1 , 42 2 4 ) 11corr (1 , 2 ) 42 .. 1112 42 0.203 0.2852 corr ( X 1 , Y X 2 5 ) corr (111 1 , 52 2 5 ) 11corr (1 , 2 )52 .. 1112 52 0.2701 0.095 corr ( X 2 , X 3 ) corr (211 2 , 321 3 ) 2131 0.4509 0.685
13
Slight ____
Slight ____
Quite ____
Exremely ____ Limited Selection
2 验证性因子分析的基本过程
理论构建 模型设定 模型识别 模型估计 模型评价 模型修正
14
φ12
ξ1
ξ2
X1
x2
x3
y2
y2
δ1
δ2
δ3
δ4
δ5
12
Multitrait–multimethod matrix (多重特質多重方法)
1. 李克特尺度(Likert scale):
Strongly Generally Moderately Moderately Generally Strongly Agree Agree Agree Disagree Disagree Disagree “Selection is wide.” ____ ____ ____ ____ ____ ____ 2. 语言差异尺度: Extremely Quite Wide Selection ____ ____ 3. 史德培尺度: +3 ___ +2 ___ +1 ___ Wide Selection -1 ___ -2 ___ -3 ___
factor loadings matrix
Λ=
λ31 0 0
2 22
factor correlation matrix
1 ψ12 ψ21 1
19
corr ( X 1 , X 2 ) corr (111 1 , 211 2 ) 1121 0.5902 0.722
RMR 残差平方根
反应理论假设模型 整体残差
<0.05, 越接近0越好
用于分析影响变量或支配变量的共同因子有几个, 且各因子本质为何的一种统计方法 是一类降维相关分析技术,考察一组变量(指标) 之间的协方差或相关系数结构,并用于解释这些 变量与少数因子(潜变量)之间的关系 事先未知,确定因子的维数 ——探索性因子分析(EFA) 根据某些理论或其他先验知识对可能的个数或因 子结构作出假设 ——验证性因子分析(CFA)
2 21
corr(X 3 , X 3 ) 33 1,
2 31
corr(X 4 , X 4 ) 44 1,
2 42
corr(X 5 , X 5 ) 55 1
2 52
21
模型拟合优度检验
n n 1 ln( LF ) [ln S tr ( SS )] [ln S p] 2 2
3
概念间的关系
4
探索性与验证性因子分析的比较
EFA CFA 理论构架在分 因素分析后的 須先有特定的理 析过程中所扮 产物 论观点作为基础, 演的角色 再决定该构架是 否适合 理论构架在分 析过程中所扮 事后 事前 演的检验时机
5
探索性因子分析的分析步骤
1. 收集观测变量。 2. 获得协方差阵(或相关系数矩阵) 3. 确定因子个数:Kaiser准则、Screen检验 依据具体的假设,决定因子个数; 用尽可能少的因子解释尽可能多的方差。 4. 提取因子:主成分法、最小二乘法、最大似然法 5. 因子旋转: 因子载荷阵的不唯一性,可对因子进行旋转,使因子结构 朝合理方向趋近。 旋转方法:正交、斜交旋转等,常用方差最大化正交旋转 6. 解释因子结构:依据因子载荷大小作出解释,并赋予因子特 定含义 7. 因子得分:公共因子代表原始变量,更利于描述研究对象的 特征 6
0.2377 .. 2112 42 0.246
corr ( X 2 , Y X 1 4 ) corr ( 211 2 , 42 2 4 ) 21corr (1 , 2 )42
corr ( X 2 , Y X 2 5 ) corr (211 2 , 52 2 5 ) 21corr (1 , 2 )52 .. 2112 52 0.181 0.2269 .. 3112 42 0.2349 0.170 .. 3112 52 0.2203 0.113
20 Y14 , Y corr ( X X 0.585 2 5 ) corr (42 2 4 , 52 2 5 ) 42 52 0.6759
corr ( X 3 , Y X 1 4 ) corr ( 311 3 , 42 2 4 ) 31corr (1 , 2 )42
图2 两因子模型的路径图 父母社会经济地位与学生业绩
15
2.1 Intuition
验证性因子分析时应优先采用“协方差矩 阵”,而非相关系数矩阵。
1.0000 0.5902 0.5461 0.2852 0.2701 1.0000 0.4509 1.0000 0.2377 0.2349 1.0000 0.2269 0.2203 0.6759 1.0000
17
CFA模型的尺度不定性 (scaling indeterminancy)
Var(ξi)与所有的λij的值不能同时决 定,两者有抵换关系 尺度不定性的解决方法: 1. 令每个因子的方差为1; 2. 将每个因子与因子载荷在之上的变量间 的λ值任选一个,并固定为1
18
λ11 λ21
0 0 0 λ42 λ52
提供模型拟合优度统计量 提供参数估计的标准误
8
1.1 CFA的应用
(一)检验因子模型的拟合优度
透过验证性因子分析,可针对特定的因子模型评 价拟合优度,并验证其理论构架。
例:研究者欲研究父母的社会经济地位如何影响学生在学 校和工作中的表现,采用问卷调查了3094名学生
5个指标: X1是母亲的学历等级(1~6) X2是父亲的学历等级(1~6) X3是父母的工资总收入等级(1~10) Y1是学生的大学学分等级(1~4) Y2是学生毕业5年后的工资等级(1~10)
9
单因子模型(测量模型)
父母社 经地位
λ1 X1 δ1 λ2 X2 δ2 λ3 X3 δ3
观测变量 潜在变量 路 相 径 关
10
Table 1 相关系数矩阵
X1 X2 X3 Y1 Y2
X1 1.0000 0.5902 0.5461 0.2852 0.2701