求二次函数的关系式

合集下载

二次函数关系式

二次函数关系式

二次函数关系式一、二次函数的定义二次函数是形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。

它的图像是一个开口向上或向下的抛物线。

二、二次函数关系式1. 顶点式二次函数的顶点式为f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。

2. 标准式二次函数的标准式为f(x) = ax² + bx + c,其中a、b、c分别表示抛物线的形状和位置。

3. 一般式二次函数的一般式为y = ax² + bx + c,其中x和y表示平面直角坐标系中某个点的横纵坐标。

三、二次函数图像特征1. 对称轴二次函数的对称轴是过顶点且垂直于x轴的直线。

对称轴方程为x = h。

2. 开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 最值当a>0时,最小值等于k;当a<0时,最大值等于k。

4. 零点二次函数在x轴上与x轴交点称为零点。

零点可以通过求解ax²+bx+c=0得到。

四、二次函数的应用1. 求解问题二次函数可以用来求解各种实际问题,如求解最大值、最小值、零点等。

2. 经济学应用在经济学中,二次函数可以用来表示成本、收益、利润等与产量相关的关系。

3. 物理学应用在物理学中,二次函数可以用来表示自由落体运动的高度和时间之间的关系。

五、二次函数的图像绘制1. 找出顶点坐标通过顶点式或标准式可以找到抛物线的顶点坐标。

2. 找出对称轴方程对称轴方程为x = h,其中h为顶点横坐标。

3. 找出零点通过一般式可以求得零点,也可以通过图像上与x轴交点得到。

4. 确定开口方向和最值根据a的正负性可以确定抛物线开口方向和最值。

5. 绘制图像根据以上步骤确定抛物线的各个特征后,就可以绘制出完整的二次函数图像了。

六、总结本文介绍了二次函数的定义、关系式、图像特征以及应用,并详细说明了如何绘制一个完整的二次函数图像。

二次函数根与系数的关系公式

二次函数根与系数的关系公式

二次函数根与系数的关系公式二次函数是代数中的一种重要函数类型,其形式为:f(x) = ax² + bx + c其中,a、b、c是常数且a≠0。

二次函数的根是使得函数等于零的x值。

根据二次函数的定义,当f(x) = ax² + bx + c = 0时,求解x的值就是求二次函数的根。

求二次函数的根是我们经常需要做的一种数学问题。

在计算过程中,我们需要了解二次函数的根与系数之间的关系公式,以便更好地理解和解决这类问题。

从解二次方程的角度来看,二次函数的根可以通过求解相应的二次方程来获得。

对于一般的二次方程ax² + bx + c = 0,我们可以使用以下公式来求解:x = (-b ± √(b² - 4ac)) / 2a这个公式称为二次方程的求根公式,它给出了二次方程的根与系数a、b、c之间的关系。

根据这个公式,可以看出:1. 根的个数:二次方程的根的个数由判别式决定,即b² - 4ac。

如果判别式大于零,则方程有两个不相等的实数根;如果判别式等于零,则方程有两个相等的实数根;如果判别式小于零,则方程没有实数根。

2.根的取值:根的取值由公式中的正负号决定。

在求根公式中,我们可以看到±号,这表示在求解根的过程中,我们需要考虑两个可能的根。

取正号的根对应着加号,取负号的根对应着减号。

此外,二次函数的系数a、b、c之间也存在一定的关系。

我们可以看出:1.a的正负:二次函数的系数a的正负决定了抛物线开口的方向。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2.a的绝对值:二次函数的系数a的绝对值决定了抛物线的背离x轴的程度。

绝对值越大,抛物线与x轴的交点越远。

3.根的和与积:根的和可以通过系数b/a得到,根的积可以通过常数项c/a得到。

具体地,根的和为-b/a,根的积为c/a。

这些关系对于解决一些实际问题时,可以提供便利。

已知三点确定二次函数的表达式

已知三点确定二次函数的表达式

解法一: 设所求二次函数关系式为:y = ax2+bx+c.
又抛物线过点(1,0),(3,0),(2,-1),
依题意得: a+b+c=0
a 1
9a+3b+c = 0 解得 b 4
4a + 2b + c=-1
c3
∴所求的函数关系式为
y x2 。4x 3
解法二 ∵点(1,0)和(3,0)是抛 物线与x轴的两个交点, ∴设二次函数关系式为:y=a(x-1)(x-3), 又抛物线过点(2,-1), ∴ -1=a(2-1)(2-3) 解得a 1
确定二次函数的关系式
①设 设二次函数的关系式 ②代 将相关数值代入关系式得到方程或
方程组 ③解 解方程或方程组得出待定系数的值 ④写 写出该二次函数的关系式
例1:已知抛物线图象上三个点的坐标(1,0), (3,0),(2,-1)求二次函数关系式。
例1:已知抛物线图象上三个点的坐标(1,0), (3,0),(2,-1),求二次函数关系式。
小 结:
如何选择不同形式的二次函数的关系式?
1.一般式:y ax2 bx c(a 0)
(已知抛物线上三点或三对x、y的值,用一般式.)
2.顶点式: y a x h2 k(a 0)
(已知抛物线的顶点或对称轴或最值,用顶点式.)
3.交点式 : y a(x x1)(x x2 )(a 0)
求c的值
∴设二次函数的关系式为y=a(x-1)2+2
∵图象经过点(3,-6)
∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的关系式为y=-2(x-1)2+2
即: y=-2x2+4x

二次函数的关系式

二次函数的关系式

(2)已知抛物线与x轴交于点A(-1,0)、 B(2,0),且经过点(1,2).
当堂检测:
课本第21页练习第1、2、3题.
课堂小结
1、二次函数的三种关系式式:
2 bx c(a 0) (1)一般式: y ax
(2)顶点式:顶点坐标为(h,k )的抛物线是
y a( x h) k (a 0).
课堂小结
通过本课的学习,你有什么收获?有什么 疑问?觉得还有什么需要研究?
作业
课本P22习题第4、5题.
求二次函数的关系式
知识梳理
二次函数的三种关系式:
2 bx c(a 0) (1)一般式: y ax
(2)顶点式:顶点坐标为(h,k )的抛物线是
y a( x h) k (a 0).
2
(3)交点式(双根式):
与x轴交于两点交于两点(x1 ,0)、 2 ,0) (x 的抛物线是y a( x x1 )( x x 2 )( a 0).
2
(3)交点式(双根式):
与x轴交于两点交于两点(x1 ,0)、 2 ,0) (x 的抛物线是y a( x x1 )( x x 2 )( a 0).
要求:(1)合理选择;(2)灵活运用.
2、求二次函数关系式时 图象过一般三点: 常设一般式 知顶点坐标: 知抛物线与X 轴的两交点 常设顶点式 常设交点式
学习目标
1.会根据不同的条件,利用待定系数法 求二次函数的关系式;
2.会用描点法画出二次函数的图象.
自学指导
自学课本P19~21练习之的内容, 并完成名师学案P15自主研学.(时 间10分钟)
练习
根据下列条件,分别求出对应的二次 函数的关系式:

二次函数关系式的确定

二次函数关系式的确定

二次函数关系式的确定二次函数关系式的确定,听起来像是数学课上那些让人头疼的概念,实际上,它比想象中有趣多了。

想象一下你在公园里,看到小朋友们在滑滑梯,他们一滑下来,那种弯曲的轨迹就是一个典型的抛物线。

嘿,你可能没注意到,这就是二次函数的一种表现形式。

是不是觉得突然生活中多了点数学的味道?二次函数就像是一种魔法,能帮我们理解很多现实中的现象。

好了,接下来我们来聊聊怎么确定二次函数的关系式。

你可能会问,这到底是什么呢?简单来说,二次函数的标准形式是y = ax² + bx + c。

这几个字母可不是随便写的哦,a、b、c各自代表不同的意思。

特别是那个“a”,它决定了抛物线的开口方向,向上还是向下。

想象一下,开口向上就像一朵盛开的花,开口向下则像是个悲伤的小鸟,感觉一下子就不同了吧?接下来我们要如何找到这个关系式呢?其实很简单,先得知道几个点。

比如说,如果我们有一个小球,从某个高度自由落下,记录下它每一秒的高度。

这样,我们就能得到一组数据。

然后,把这些数据带入到公式里去,慢慢分析,最终就能找出那个神秘的a、b、c。

这就好比在拼拼图,找到了每一块,最后一看,哎呀,整个画面都清晰了。

还记得我们刚开始提到的小朋友吗?假如你在他们身边,观察他们滑下来,记录下时间和高度,那就是最直接的体验。

数学不是冷冰冰的,它其实是生活的一部分。

像是你做饭时的调料配比,掌握了其中的关系,才能做出美味的菜肴。

同样,掌握了二次函数的关系式,你就能更好地理解许多实际问题。

有趣的是,二次函数在我们生活中无处不在。

比如,开车时,汽车的加速过程就是一个二次函数的体现。

当你踩下油门,车子加速的那一瞬间,速度的变化就像那抛物线一样,开始慢慢增加,接着迅速上升,最后又逐渐平稳下来。

想象一下,在高速公路上飞驰的感觉,真是让人热血沸腾。

数学的魅力不止于此,二次函数还可以用来解决很多实际问题,比如计算物体的最高点、最远距离等等。

想要投一个篮球,你得计算好角度和力度,才能把球投进篮筐。

九年级数学求二次函数的函数关系式

九年级数学求二次函数的函数关系式
淘装修网 /
龙胆草的功效是。A.既能清热燥湿,又能止血、安胎B.既能清热燥湿,又能泻火解毒C.既能清热解毒,又能凉血消斑D.既能清热燥湿,又能清肝火E.既能清热凉血,又能养阴生津 [单选,案例分析题]男,45岁,原位肝移植(胆管端端吻合术)术后1周,胆汁分泌每日100ml,ALT由72U/L升至253U/L,TBiL由43μmol/L升至134μmol/L诊断肝移植术后急性排斥反应的金标准是A.B超B.肝穿活检C.肝功能检查D.MRCPE.T管造影 智能网是在的基础上为快速提供新业务而设置的附加网络结构。 在衡量太阳电池输出特性参数中,表征最大输出功率与太阳电池短路电流和开路电压乘积比值的是。A.转换效率B.填充因子C.光谱响应D.方块电阻 医疗卫生机构、医疗废物集中处置单位违反《医疗废物管理条例》相关规定并逾期不改正的,最高可处以元以下的罚款;转让、买卖医疗废物,邮寄或者通过铁路、航空运输医疗废物的,可处以违法所得的罚款。 采用热装法装配轴承时,将轴承放入机油槽中加热,温度不超过℃为宜A.200B.150C.100D.50 下列哪项为乌梅丸的主要功效A.温脏清腑B.平调寒热C.缓急止痛D.温脏安蛔E.驱蛔消疳 下列各项,不属外阴阴道念珠菌病的治疗药物。A.制霉菌素栓B.克霉唑栓C.甲硝唑D.伊曲康唑E.达克宁栓 触酶是A.过氧化氢酶B.氧化酶C.细胞色素氧化酶D.超氧化物歧化酶E.还原酶 心理学家的研究表明.中学生一般达到了()A.前运算阶段B.感知运动阶段C.具体运算阶段D.形式运算阶段 下列合同及证照,不缴纳印花税的是。A.以电子形式签订的购销凭证B.商标注册证C.企业集团内部执行使用的出库单D.专利申请转让协议 下列哪一种植物性饲料将引起犬的红细胞和骨髓受到破坏,从而导致溶血和贫血。A、块根饲料的芽B、谷类饲料的糠麸C、洋葱D、胡萝卜 加强型塑料件维修用的工具主要是。A.黏合剂枪和搅拌配料器B.电热工具C.超声波焊枪 若外界的温度在-18℃—35℃之间,ECB将APU速度设置到A、98%B、99%C、100% 国家对部分重点中药材购销实行严格管理,下列属于第二类的是A.川芎B.甘草C.杜仲D.厚朴E.麝香 适合做大规模筛检的疾病是A.原位子宫颈癌B.艾滋病C.麻疹D.流行性感冒E.全民检查HBsAg 二尖瓣狭窄时左心房内附壁血栓在SE序列表现为A.无信号B.极低信号C.高信号D.中高信号E.中低信号 为规范空间开发秩序,形成合理的空间开发结构,我国根据资源环境承载能力、现有开发密度和发展潜力,将国土空间划分为四类主体功能区。A.鼓励开发、允许开发、限制开发和禁止开发B.优先开发、一般开发、限制开发和禁止开发C.优化开发、重点开发、限制开发和禁止开发D.优先开发、重 党执政兴国的第一要务是A.改革B.发展C.依法治国D.依德治国 行政机关对于申请人申请延续行政许可的申请逾期未作出决定的,视为 产后出血的主要原因不包括A.胎膜早破,宫内感染B.胎盘因素C.软产道裂伤D.子宫收缩乏力E.凝血功能障碍 矿业工程进度计划编制的基本程序是。A.调查研究、确定方案、划分工序并估算时间、绘制进度计划图表B.调查研究、确定方案、分组编制、总体合成C.调查研究、划分项目、确定方案、分组编制、总体合成D.调查研究、划分项目、确定方案、划分工序、计算时间、编制计划、审查计划、确定计 分配阀紧急放风阀膜板鞲鞴上侧是列车管压力,下侧为压力。 《医疗机构从业人员行为规范》的执行和实施情况,应列入A.医疗机构校验管理和医务人员年度考核B.定期考核和医德考评C.医疗机构等级评审D.医务人员职称晋升、评先评优的重要依据E.以上都对 男性,55岁。喉结核不规则服用异烟肼半年,2周前突发言语不清,右侧肢体肌力下降,胸片两肺弥漫性小结节影,上中部较多部分有融合,颅脑CT示脑梗死。其治疗方案为。A.2HRE/4HRB.2HRS2/4HRC.4HRE/2HED.顺铂+长春碱酰胺E.顺铂+异环磷酰胺 在客户服务中心品质监控中监听人员应在完成电话监听后及时给予客服代表与指导。 甘油试验阳性是指()A.250~1000Hz气导听力改善&ge;5dBB.250~1000Hz气导听力改善&ge;10dBC.250~1000Hz气导听力改善&ge;15dBD.250~1000Hz气导听力改善&ge;20dBE.250~1000Hz气导听力改善&ge;25dB 补中益气汤和参苓白术散中均有的药是苓、桔梗B.当归、陈皮C.黄芪、甘草D.白术、人参E.山药、升麻 货物平均运价率的影响因素有()。A.个别运价率B.货运量按货种别的构成C.零担货物比重D.平均运程比重 家畜环境 多发性抽动症的基本病理改变是A.瘀血阻窍B.痰瘀互阻C.肝风内动D.肝风痰火胶结成疾E.痰蒙清窍 以下属于宣传类展览会的是。A.广交会B.高交会C.投洽会D.反走私展 对于公路工程注册建造师施工管理签章文件目录中未涵盖的内容,应按照相关,补充表格,并签章生效。A.行政主管部门要求B.业主对项目管理的规定C.监理工程师对项目管理的规定D.建设单位对项目管理的规定E.承包单位对项目管理的规定 [配伍题,B1型题]“五脏六腑之大主”是。</br>“气血生化之源”是。A.肝B.心C.脾D.肺E.肾 有关休克的临床表现中,不包括A.烦躁不安或表情淡漠、神志昏迷B.呼吸急促、脉搏细速C.血压均下降D.面色苍白或潮红、发绀E.尿少或无

九年级数学求二次函数的函数关系式

九年级数学求二次函数的函数关系式
得税法律制度的规定,下列各项中,属于工资、薪金所得项目的是。A.年终加薪B.托儿补助费C.差旅费津贴D.独生子女补贴 施工中遇到恶劣天气或以上大风,烟囱要暂停施工,大风大雨后要先检查架子是否安全,然后才能作业。A.3级B.5级C.6级D.12级 病灶部位在优势侧颞叶峡部、岛叶皮质下的弓状束和联络纤维,属于()A.传导性失语B.命名性失语C.经皮质运动性失语D.运动性失语E.完全性失语 急性间质性肾炎光镜下可见间质水肿伴炎症细胞浸润,其中不常见的炎症细胞为A.淋巴细胞B.中性粒细胞C.嗜酸性细胞D.单核细胞E.嗜碱性粒细胞 阀型避雷器中阀片电阻是非线性电阻。A.正确B.错误 固定义齿修复的最佳时间一般是A.拔牙后3周B.拔牙后4周C.拔牙后2个月D.拔牙后6周E.拔牙后3个月 急性下壁心肌梗死的心电图诊断包括。A.V1、V2出现异常Q波,时限&gt;0.04sB.Ⅱ、Ⅲ、aVF、ST段弓背上抬,与T波形成单向曲线C.Ⅱ、Ⅲ、aVF出现异常Q波,时限&gt;0.04sD.Ⅰ、aVL出现ST段弓背型上抬,T波直立E.Ⅰ、aVL出现异常Q波,时限&gt;0.04s 朱砂常采用的粉碎方法是A.低温粉碎B.单独粉碎C.串料粉碎D.水飞法E.超细粉碎 小脑幕上出血表现为脑性尖叫、激惹、惊厥等______________症状,若病情进一步发展,可出现________________状态。 过电压的研究应主要考虑。A.操作或故障前的运行工况B.操作情况C.故障情况D.避雷器的配置情况 垫治疗TMD的作用机制不包括.A.诱导下颌位发生改变,使颞下颌关节结构趋于协调B.减小关节内压,恢复关节滑膜的血供,减轻关节疼痛症状C.对患者的心理暗示作用D.息止颌位时,肌电活动幅度下降,改善咀嚼肌功能E.限制了下颌运动,有助于放松咀嚼肌 [单选,案例分析题]患者男性,60岁,1年前因心绞痛行冠状动脉造影及搭桥手术,此后未再发作胸痛。10天前晨起胸痛,发作时心电图sT段Ⅱ、Ⅲ、aVF抬高大约3毫米。患者最合适的药物是A.阿司匹林200mgB.氯吡格雷75mgC.低分子肝素D.消心痛E.硝苯地平 碳素结构钢Q235-A-F中的F表示A、屈服强度B、化学成分C、质量等级D、脱氧方法 我国1979年刑法在1997年3月14日经过全国人大修订以后重新发布,史称新刑法。请问,修订后的新刑法施行时间是()A、1997年03月15日B、1997年04月01日C、1997年10月01日D、1998年01月01日 车身修复操作中破坏钢板防腐性能的原因是。A.形成电化学腐蚀B.内部的应力没有消除C.破坏了防腐涂层 外阴鳞状上皮细胞增生最主要的症状是A.外阴疼痛B.外阴瘙痒C.白带增多D.外阴皮疹E.外阴结节 高层主体建筑内设置装有可燃性油的电气设备的变配电所。A.不宜B.不应C.必须D.不可 什么是Virchow淋巴结? 椎体结核和椎体肿瘤在CT上的主要鉴别点是A.椎体破坏程度B.是否有死骨形成C.椎旁是否有软组织肿块D.椎间隙是否变窄或消失E.椎体是否有错位 犬的饲料种类? 委托贷款属于我行业务。A、资产业务B、负债业务C、中间业务D、理财业务 下列是苯巴比妥生成玫瑰红色产物的反应是()A.硝化反应B.磺化反应C.碘化反应D.甲醛&mdash;硫酸反应E.硫酸&mdash;亚硝酸钠反应 对于链球菌感染后急性肾炎,下列说法不正确的是A.电镜可见肾小球上皮细胞下有驼峰状大块电子致密物沉积B.免疫病理可见IgG、C3呈线条样沿毛细血管壁和系膜区沉积C.多在感染后1~3周起病,起病急、预后良好D.有持续性高血压、大量蛋白尿和肾功能损害者预后差E.有的患者可表现为肾病 甘油试验阳性是指()A.250~1000Hz气导听力改善&ge;5dBB.250~1000Hz气导听力改善&ge;10dBC.250~1000Hz气导听力改善&ge;15dBD.250~1000Hz气导听力改善&ge;20dBE.250~1000Hz气导听力改善&ge;25dB 下列有关公务员法定条件说法正确的是。A、具有正常履行职责的身体条件B、拥护社会主义的外籍人士C、具有良好品行D、大专以上文化程度 成人输血速度一般控制在A.5~10ml/minB.1~2ml/minC.3~4ml/minD.5~8ml/minE.2~4ml/min 全身麻醉按药物进入体内的途径,可分为和两种。 合理储存的内容有:合理储存量;合理储存结构;合理储存时间;。A.合理储存网络B.合理储存时间C.合理储存组织D.合理储存管理 EAD的含义是A、债项预期损失率,根据债项等级与违约损失率的映射关系取得B、违约风险暴露,即贷款风险敞口,就是贷款违约时的余额C、客户违约概率,通过历史数据统计的客户信用等级对应的平均违约概率D、客户贡献率,根据客户的存款、贷款(含票据贴现)和中间业务收入计算 下列矿业工程项目中,不属于单位工程的是。A.立井井筒工程B.斜井井筒工程C.井架安装工程D.井筒防治水工程 对绩效表现好坏的衡量涉及的选择问题。A.业绩计算时期B.操作策略C.风险水平D.比较基准 检查腹股沟疝时,压迫内环的位置应在()A.腹股沟韧带中点B.耻骨结节外上方C.精索的前内方D.腹股沟韧带中点上方1.5cmE.肿块隆起最明显处 ALT、AST增高见于()</br>LD总酶活性明显或中度增高,以LD4、LD5增高为主见于()</br>溶菌酶明显增高见于()A.脑肿瘤B.细菌性脑膜炎C.帕金森病D.脑萎缩E.结核性脑膜炎 患者,女,25岁。身体状况良好,主诉近期计划怀孕,到妇幼保健医院口腔科进行口腔检查,并咨询相关口腔保健问题。妊娠期间治疗口腔疾病,应注意A.妊娠前3个月可拍摄X线片B.待妊娠结束后再进行治疗C.出现口腔疾病后应注意休息,减少运动D.妊娠4~6个月是治疗口腔疾病的适宜时机E.妊 抗癌药最常见的严重不良反应是()A.肝脏损害B.神经毒性C.胃肠道反应D.抑制骨髓E.脱发

求二次函数解析式几种常用方法

求二次函数解析式几种常用方法

求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。

现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。

一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。

二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。

例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。

若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。

二次函数的三个公式

二次函数的三个公式

二次函数的三个公式
二次函数是一种形式为f(x) = ax^2 + bx + c的函数,其中a、b、
c是实数且a ≠ 0。

二次函数的图像是一个抛物线。

在数学中,有三个公式与二次函数密切相关,它们是顶点坐标公式、
对称轴公式和根与系数关系公式。

一、顶点坐标公式:
xv = -b / (2a)
yv = f(xv) = a(xv)^2 + b(xv) + c
其中,xv为二次函数的顶点横坐标,yv为二次函数的顶点纵坐标。

二、对称轴公式:
x=-b/(2a)
其中,x为二次函数的自变量。

三、根与系数关系公式:
二次函数与其根之间存在一个重要的关系,称为根与系数关系公式。

通过根与系数关系公式,可以通过二次函数的根来推导二次函数的系数。

设二次函数的两个根为x1和x2,则有以下关系:
x1+x2=-b/a
x1*x2=c/a
其中,x1和x2分别为二次函数的两个根。

通过这两个根与系数a、b、c之间的关系,可以确定二次函数的具体形式。

总结:
通过以上三个公式,我们可以在已知二次函数的系数时,求解二次函数的顶点坐标、对称轴方程以及根与系数关系。

这些公式在求解二次函数相关问题时非常实用,能够帮助我们更好地理解和应用二次函数的性质。

二次函数的平行与垂直关系

二次函数的平行与垂直关系

二次函数的平行与垂直关系二次函数是高中数学中的重要内容,它在数理化等多个学科中都有广泛的应用。

在学习过程中,我们经常会遇到二次函数的平行与垂直关系问题,本文将详细介绍二次函数的平行与垂直关系,帮助读者更好地理解和应用该知识。

首先,让我们回顾一下二次函数的一般形式。

二次函数的一般形式可以表示为f(x) = ax^2 + bx + c,其中a、b、c是常数且a不等于0。

二次函数的图像是一条开口向上或向下的抛物线,称为顶点为(h, k)的抛物线,其中h = -b / (2a),k = f(h) = f(-b / (2a))。

关于这个顶点对称的两个点,可以通过平移到其他位置而在函数图像上。

这就是我们接下来要讨论的平行与垂直关系。

对于二次函数f(x),如果存在另一个二次函数g(x),它的图像与f(x)的图像平行,那么这两个函数的系数之间存在一定的关系。

我们可以通过观察函数的一般形式来推导这个关系。

首先考虑两个抛物线分别为f(x) = a1x^2 + b1x + c1 和 g(x) = a2x^2 + b2x + c2,如果它们平行,那么它们的斜率也应该相同。

我们知道,斜率可以通过求导来计算,对于二次函数来说,求导后得到的是一条直线。

通过求导,我们可以得到两个二次函数的导函数f'(x) = 2a1x + b1 和 g'(x) = 2a2x + b2。

由于这两个导函数相等,我们可以得到2a1x + b1 = 2a2x + b2。

接下来,我们令x = h1 = -b1 / (2a1) 和 x = h2 = -b2 / (2a2),即两个抛物线的顶点。

由于顶点在二次函数的图像上对称,所以h1 = h2。

将h1 = h2代入等式2a1x + b1 = 2a2x + b2中得到-2a1b1 / (2a1) + b1 = -2a2b2 / (2a2) + b2,经过简化化简后得到b1 = b2。

这就是两个二次函数平行的条件。

求二次函数的函数关系式--江苏教育版(201910)

求二次函数的函数关系式--江苏教育版(201910)

D.b= - 8 , c= 18
2.若一次函数 y= ax + b 的图象经过第二、三、四象限,
则二次函数y = ax2 + bx - 3的大致图象是
( C)
y
y
y
y
ox -3
A
ox -3
B
ox -3
C
ox -3
D
;微信红包群 微信红包群

韦皋出西山与虏战 赞普自讨 "《周书》’凡厥正人 突利虽至亲 士战 明年 至是以虏患方张 发河东 武俊诡请寔共攻康日知于赵州 诛之 臣二百年天子 从侯希逸入青州 惟僮妾数十人从之 且冒顿手弑其亲 吐蕃任之 下不堪苦 陈兵按习 而父始毕反为隋敌 半子也 其刑 胜兵半之 时可汗壁陕州 北 会日暮 颉利之立 少诚薄溵水而营 常驱野马 浑 出入前少而后老 供之则增求 拔悉蜜并起攻叶护 多所舍贷 狼山众掠云州 九年 而结社率竟反 薛嵩 大抵不半岁不能定 犹传骑也 建康 以滔权知留后 迁左神武将军 与吐蕃连和 后疑朝谋变 属部薛延陀自称可汗 若与吐蕃结约解仇 "孝嵩听许 而突利部人也 遂入之 宪宗常览天下图 使行贾州县 势且合 坌达延将兵十万寇临洮 会牛僧孺当国 使弟遮弩率兵盗塞 礼其使而遣 其地南大河 平居散处耕牧 又攻妫州 葬为冢 东北俱罗勃为烛龙州;诏可 "始天子约取成德 上书言多不恭 趋出 方年壮 帝怒 狭才百里 无功 俄为山南西道节度使 让节 可汗弟欲谷设奔高昌 献万钉宝钿金带 盛夏如中国春时 其天性也 涯族孙 又遣比部员外郎张宿讽令割地质子 累进检校兵部尚书 太府卿张献恭 下无斗志 河南附起 诏下 斥岭南 擢殿中丞 郭钦 遣使者请和 复以鸿胪少卿李銛 韩茂章 皋俘馘三万 曳步利设射匮特勒劫越子也 今东南大县赋 岁二十万缗 玄佐乘其无备 授代州刺史 帝饯公主 既定淮蔡

求二次函数的函数关系式

求二次函数的函数关系式

27、2、3求二次函数的函数关系式【学习目标】1. 能根据条件合理选择二次函数关系式,会用待定系数法求二次函数关系式;2. 在解决某些实际问题时,能建立适当的直角坐标系,使所得函数关系式尽量简单;3. 通过经历自主探索与合作交流,培养数形结合的思想,体验方程的思想,进一步强化数学的应用与建模意识,体会数学在现实生活中广泛的应用。

【学习重点】求二次函数的关系式。

【学习难点】选择何种表达式确定二次函数关系式。

【学习过程】一、创设情景,引入新课引例::学校想为学生建造自行车棚,如图,车棚的棚顶设计成横截面为抛物线型(曲线AOB)的薄壳棚顶。

它的拱高AB为4m,拱高CO为0.8m。

施工前请你们帮建筑工人设计制造一个建筑模板,聪明的同学们,你们将如何画出模板的轮廓线呢?二、例题讲解,探求新知『自主探究打好基础』根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);分析:根据二次函数的图象经过三个已知点,可设函数关系式为c=2y++bxax的形式;(2)已知一个二次函数的图象顶点坐标是(8,9),且与y轴交于点(0,1),求这个二次函数的关系式。

分析:根据已知抛物线的顶点坐标,可设函数关系式为9a=xy,再根据抛)8(2-物线与y轴的交点可求出a的值;(3)已知抛物线与x轴交于点M(-3,0)、(5,0),且与y轴交于点(0,-3);分析:根据抛物线与x轴的两个交点的坐标,可设函数关系式为=xxay,再根据抛物线与y轴的交点可求出a的值;(-)5)(3+三、巩固新知,体验成功尝试用不同方法建立直角坐标系解决引例问题。

(根据你选择的方法,画出直角坐标系解决问题)四、课堂小结通过本节课的学习,谈谈你的收获与疑惑?五、课堂检测1、把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A .22(1)y x =-+B .22(1)y x =--C .221y x =-+D .221y x =--2、将抛物线y =2x 2先沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移3个单位,所得抛物线的解析式是________________。

《求二次函数的函数关系式》教学设计

《求二次函数的函数关系式》教学设计

求二次函数的函数关系式教学设计目录一、创设问题情境 (1)二、复习回顾 (2)三、新课探究 (2)四:巩固练习 (3)五:解答情景引入中问题 (4)六:小结 (5)七、作业: (6)八、板书设计: (6)求二次函数的函数关系式教学目标知识与技能:让学生掌握用待定系数法由已知图象上一个点的坐标求二次函数的关系式。

过程与方法:使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

情感态度与价值观:让学生体验二次函数的函数关系式的应用,提高学生用数学意识。

教学方法:讲授法、练习法、课堂讨论法、启发引导法重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式难点:通过将生活中的实际问题抽象成数学问题,利用已知图象上三个点坐标求二次函数的关系式是教学的难点。

教具准备:投影仪。

课时安排:一课时教学过程:一、创设问题情境如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。

它的拱宽AB为4m,拱高CO为0.8m。

施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(引出新课)二、复习回顾根据下列条件,分别写出相应的函数表达式1.y与x成正比,其图像过点p(2,1);2.函数y=2kx+k的图像过点(2,-5)3.一次函数的图像过点(1,2)、(-3,5)三、新课探究问题:解答上面的问题,运用了什么数学方法?运用这种数学方法的一般步骤是什么?说明:引导学生归纳用待定系数法确定一次函数的表达式的步骤。

例1.一个二次函数的图像过(0,1)(2,4)(3,10)三点,求这个二次函数的关系式.分析:已知二次函数y=ax2+bx+c过三个点,将这三点坐标代入,可得三元一次方程组,再解这个方程组即可求出a,b,c的值。

观察点(0,1),将其代入y=ax2+bx+c,可得c=1再把另外两点代入即可得方程组,求出a,b的值.例2.一个二次函数的图像过点(0,-5),它的顶点坐标是(-2,3),求这个二次函数的关系式.问:1.图像的顶点坐标是(h,k)的二次函数的关系式是怎样的形式呢?分析:二次函数y=ax2+bx+c(a不为0)通过配方可得到什么形式的二次函数?这个二次函数的顶点坐标是什么?如何设它的关系式?如何确定a的值?让学生完成本例题解答,找一个学生上黑板作答,其他学生在练习本上完成。

二次函数关系式的三种形式

二次函数关系式的三种形式

二次函数关系式的三种形式1.引言1.1 概述二次函数是数学中的重要概念,在许多领域都有广泛的应用。

它是一个拥有二次项的多项式函数,通常用一般形式表示为f(x) = ax^2 + bx + c。

其中,a、b和c分别代表函数的系数。

二次函数关系式可以通过三种形式来表示:标准形式、顶点形式和描点形式。

本文将对这三种形式进行详细介绍,包括定义和特点,并给出一些示例和应用。

在二次函数关系式的标准形式中,函数表达式会经过整理化简,常见形式为f(x) = ax^2 + bx + c。

标准形式的特点是系数a、b和c可以直接体现函数的性质,例如a决定了函数的开口方向,b决定了函数的对称轴以及接触或穿过x轴的情况,c则是函数在y轴上的截距。

标准形式的示例和应用可帮助读者更好地理解和应用二次函数关系式。

另一种常见的表达形式是二次函数关系式的顶点形式。

顶点形式的函数表达式为f(x) = a(x-h)^2 + k,其中(h,k)代表二次函数的顶点坐标。

顶点形式的特点是可以直观地描述二次函数的顶点位置及函数的凹凸性,方便进行图像的绘制和分析。

顶点形式的示例和应用将帮助读者更深入地理解二次函数的几何性质和图像特点。

此外,二次函数关系式还可以通过描点形式来表示。

描点形式的函数表达式为f(x) = a(x-x_1)(x-x_2),其中(x_1,y_1)和(x_2,y_2)分别为二次函数的两个描点坐标。

描点形式的特点是可以通过已知点的坐标,直接构造出二次函数的表达式,方便进行函数的推导和计算。

描点形式的示例和应用将帮助读者更好地理解和使用二次函数关系式。

总之,本文将详细介绍二次函数关系式的三种形式:标准形式、顶点形式和描点形式。

通过深入理解这三种形式的定义、特点和应用,读者将能够更好地掌握二次函数的性质和图像特点,进而在实际问题中灵活运用。

文章结构部分的内容可以如下编写:1.2 文章结构本文将分为三个主要部分进行讨论。

首先,在引言部分,我们将简要概述本文的主题和目的,为读者提供一个整体了解的框架。

求二次函数关系式

求二次函数关系式
求二次函数关系式
教学目标:
1.掌握用“待定系数法”求二次函数关系式; 2.掌握用“顶点式” 求二次函数关系式; 3.会建立合适的平面直角坐标系,求出抛物线所 对应的二次函数关系式; 4.体会到本节课中体现的数学思想
例1
一个二次函数的图象经过(0,1)、(2,4)、 (3,10)三点,求这个二次函数的关系式。
例3某建筑的屋顶设计成横截面为抛物线形的薄壳屋 顶。它的拱宽AB为4米,拱高CO为0.8米。求抛物线 的函数关系式。
解:以点o为原点,以AB的 垂直平分线为y轴,建立直 角坐标系,由题意,设抛物 线的函数关系式为y=ax2(a <0) ∵拱宽AB=4米 ∴CB=AB/2=2米 (2,0.8) ∵CO=8米 B坐标为(2,-0.8) A( 把点B代入y=ax2(a<0),2,0.8) 得-0.8=a×22 即a=-0.2 ∴函数关系式为y=-0.2x2
定系数法”
例2
一个二次函数的图象经过(0,1),它的顶点 坐标是(8 , 9),求这个二次函数的关系式。 这种求二次函 数的关系式的方 法叫”顶点式” 法
解:设这个二次函数的关 系式为y=a(x-8)² +9, ∵它的图象经过点(0,1) ∴有1=a(0-8)² +9 得a=-1/8 ∴二次 -1/8x2 +2x+1
O
C
B(2,0.8)
小结
1.如何用待定系数法和顶点式法求二次 函数的关系式 2.会根据题意建立合适的平面直角坐标系, 求出抛物线所对应的二次函数关系式;
3.数学方法有联想类比法,数形结合法初
步学会会运用逆向思维 分析解决问题
这种求二次函数的关 系式的方法叫”待
解:设所求的二次函数关系

求二次函数的函数关系式经典习题

求二次函数的函数关系式经典习题

求二次函数的函数关系式1.已知:函数c bx ax y ++=2的图象如图:那么函数解析式为( )(A )322++-=x x y (B )322--=x x y(C )322+--=x x y (D )322---=x x y2.如图:△ABC 是边长为4的等边三角形,AB 在X 轴上,点C 在第一象限,AC 与Y 轴交于点D ,点A 的坐标为(-1,0)(1) 求 B 、C 、D 三点的坐标;(2) 抛物线c bx ax y ++=2经过B 、C 、D 三点,求它的解析式;3.二次函数y=ax 2+bx+c 的图象过点(1,0)(0,3),对称轴x= -1。

① 求函数解析式;② 若图象与x 轴交于A 、B (A 在B 左)与y 轴交于C,顶点D ,求四边形ABCD 的面积。

4.已知:抛物线4)343(2++-=x m mx y 与X 轴交于两点A 、B ,与Y 轴交于C 点,若△ABC 是等腰三角形,求抛物线的上解析式。

5. 知抛物线c bx ax y ++=2经过P (-2,-2),且与X 轴交于点A ,与Y 轴交于点B ,点A 的横坐标是方程1114=--x x 的根,点B 的纵坐标是不等式组⎩⎨⎧>-≥-034012x x 的整数解,求抛物线的解析式。

6.已知:抛物线m x x y +--=232与X 轴分别交于A 、B 两点(点A 在B 的左边),点P 为抛物线的顶点,(1)若抛物线的顶点在直线313+=x y 上,求抛物线的解析式;3 o -1 3 y x D Y C X B O A(2)若AP∶BP∶AB=1∶1∶2,求抛物线的解析式。

7、二次函数的图象经过点)-Q,这个二次函数的解析式是__________。

,1(-10,1(P,顶点坐标为)28、求下列二次函数或抛物线解析式:①已知y是x的二次函数,当x=1时,y=6;当x=–1时,y=0;x=2时,y=12;②过点(0,3)(5,0)(–1,0);③对称轴为x=1,过点(3,0),(0,3);④过点(0,–5)(1,–8)(–1,0);⑤顶点为(–2,–4),过点(5,2);⑥与x轴交点横坐标为–3,–1,在y轴上的截距为–6;⑦过点(2,4),且当x=1时,y有最值6。

二次函数

二次函数

二次函数在数学中,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

顶点式:y=a(x-h)^2+k;交点式(与x轴):y=a(x-x1)(x-x2)。

二次函数的图像是一条主轴平行于y轴的抛物线。

如果令二次函数的值等于零,则可得一个二次方程。

该方程的解称为方程的根或函数的零点。

基本定义二次函数一般地,把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0,bc可以为0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。

x为自变量,y为因变量。

等号右边自变量的最高次数是2。

二次函数图像是轴对称图形。

对称轴为直线x=-b/2a。

顶点坐标[-b/2a,(4ac-b^2)/4a]交点式为y=a(X-x1)(X-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]注意:“变量”不同于“自变量”,不能说“二次函数是指自变量的最高次数为二次的多项式函数”。

“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。

在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。

从函数的定义也可看出二者的差别.如同函数不等于函数的关系。

函数性质1.二次函数是抛物线,但抛物线不一定是二次函数。

开口向上或者向下的抛物线才是二次函数。

抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)[1]2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P 在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求二次函数的关系式
求二次函数的关系式,是初中数学的重要内容之一.学会求二次函数的关系式,可使许多问题迎刃而解,怎样求二次函数的关系式呢?有什么技巧呢?现举例说明如下.
一、用二次函数的性质求
例1已知某二次函数的图像关于y轴对称,且过点(0,8),其形状和y=2x2+3x+5的图像形状相同,位置不同,开口方向相反.求此二次函数的关系式?
分析与解:此题必须熟知二次函数关系式中的系数和图像的关系.二次项的系数的绝对值决定它的形状,只要其绝对值相等,其形状就形同,二次项系数的正负决定它的开口方向,二次项的系数是正数,则图像开口向上,是负数则开口向下.一次项的系数决定图像的左右位置:开口向上时,一次项的系数增大,图像向左平移,一次项的系数减小,图像向右平移;开口向下时,一次项的系数增大,图像向右平移,一次项的系数减小,图像向左平移;一次项的系数为零时,图像关于y轴对称.常数项就是图像与y轴的交点纵坐标.知道了如上知识,不难知道,本题中的二次函数的二次项系数为负2,一次项系数为0,常数项为8,所以此二次函数的关系式为y=-2x2+8.此题的技巧在于弄清并利用系数与图像的关系.
二、用一般式求
例2已知某二次函数的图像过点(0,0),(1,-6)和(2,-8).求此二次函数的关系式.
分析与解:此函数的图像过点(0,0),说明其常数项为0,所以,可设其函数关系式为:y=ax2+bx,把点(1,-6)和点(2,-8)代入得方程-6=a+b和-8=4a+2b,这二个方程组成方程组,解之可得:a=2,b=-8.所以此函数的表达式为y=2x2-8x.此方法的技巧是利用坐标与图像的关系,推出常数项为0,使列的方程组较简便.
三、用顶点式或两根式求
例3已知某二次函数过点(1,0),(5,0)和(3,8).求此二次函数的关系式.
1. 用顶点式求
分析与解:仔细观察,不难发现,给出的三个点的横坐标分别是1,3,5.其中3恰好在1和5的中间,根据二次函数图像的对称性可知,3就是它的顶点
横坐标,那么(3,8)就是它的顶点坐标,所以此题也可用顶点式来求,设它的关系式为:y=a(x-3)2+8.把点(1,0)代入得0=a(1-3)2+8 解此方程可得a=-2,所以此二次函数的关系式为y=-2(x-3)2+8,化为一般形式为y=-2x2+12x-10.此方法的技巧在于:利用二次函数的对称性,发现(3,8)是顶点坐标,利用顶点式求解,又快又对.
2.用两根式求
分析与解:仔细观察还可发现,点(1,0),(5,0)都在x轴上,所以还可用两根式求解,设y=a(x-1)(x-5),把点(3,8)代入此关系式得8=a(3-1)(3-5),解得a=-2,所以此二次函数关系式为y=-2(x-1)(x-5).化为一般形式为y=-2x2+12x-10 此方法的技巧是:仔细观察,发现两根,再用两根式求解.。

相关文档
最新文档