数学北师大版八年级下册图形的旋转教学案例
北师大版八年级数学下册3.2《图形的旋转》教案
《图形的旋转》教案教学目标一、知识与技能1.学生通过欣赏生活中的旋转变换现象,认识旋转,理解旋转的基本要素;2.知道平面直角坐标系中点的左右或上下平移与点的坐标变化规律;二、过程与方法1.培养观察图形的能力,能识别旋转中心和旋转角度;2.经历探索图形旋转的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识;三、情感态度和价值观1.通过学生的观察、对比、发现规律,体验教学活动充满探索性和创造性;2.从学生的动手、动脑等多种思维运动中培养和开发学生的多元智能;教学重点探索发现旋转图形的定义以及性质;教学难点体会旋转点,旋转方向,旋转角度在图形设计中重要;教学方法引导发现法、实验探究法课前准备教师准备课件、多媒体学生准备三角板,练习本课时安排2课时教学过程一、导入上面图片反映的是日常生活中物体运动的一些场景.你还能举出一些类似的例子吗?与同伴交流.(1)上面情景中的转动现象,有什么共同的特征?(2)在转动过程中,其形状、大小、位置是否发生变化呢?二、新课在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.如图3-10,△ABC绕点O按顺时针方向旋转一个角度,得到△DEF,点A,B,C分别旋转到了点D,E,F.点 A 与点D 是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角.在这一旋转过程中,旋转中心是什么?旋转角是什么?点O是旋转中心,∠AOD,∠BOE,∠COF都是旋转角.做一做如图3-11,两张透明纸上的四边形ABCD和四边形EFGH完全重合,在纸上选取旋转中心O,并将其固定.把其中一张纸片绕点O旋转一定角度(如图3-12).(1)观察图3-12的两个四边形,你能发现有哪些相等的线段和相等的角?(2)连接AO,BO,CO,DO,EO,FO,GO,HO,你又能发现有哪些相等的线段和相等的角?(3)在图3-12中再取一些对应点,画出它们与旋转中心所连成的线段,你又能发现什么?结论:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.在图3-13(1)~(4)的四个三角形中,哪个不能由△ABC经过平移或旋转得到?(2)不能由△ABC经过平移或旋转得到.例:在图3-14 中,画出线段AB绕点A按顺时针方向旋转60 °后的线段.解:(1)如图3-15,以AB为一边按顺时针方向画∠BAX,使得∠BAX = 60 °.(2)在射线AX上取点C,使得AC= AB.线段AC就是线段AB绕点A按顺时针方向旋转60 °后的线段.做一做如图3-16,△ABC绕点O按逆时针方向旋转后,顶点A旋转到了点D.(1)指出这一旋转的旋转角.(2)画出旋转后的三角形.议一议确定一个图形旋转后的位置,需要哪些条件?旋转中心、旋转方向和旋转角度.三、习题1.如图:画出△ABC绕点C按顺时针方向旋转120°后的对应的三角形.四、拓展1、如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?解:方案一:把正方形ABCD绕点D顺时针旋转90°.方案二:把正方形ABCD绕点C逆时针旋转90°.方案三:把正方形ABCD绕CD的中点O旋转180°.五、小结通过本节课的内容,你有哪些收获?1.旋转的概念2.旋转的三要素3.旋转的性质4.简单的旋转作图。
2021年北师大版数学八年级下册3.2《图形的旋转》教案
2021年北师大版数学八年级下册3.2《图形的旋转》教案一. 教材分析《图形的旋转》是北师大版数学八年级下册第三章《几何变换》的一部分。
本节课主要让学生掌握图形旋转的性质,了解旋转变换在实际问题中的应用。
通过学习,学生能理解旋转的概念,掌握旋转的性质,能运用旋转变换解决一些简单的问题。
二. 学情分析学生在七年级时已经学习了图形的平移,对图形的变换有一定的认识。
但旋转与平移存在很大的差异,学生需要通过实例对比,进一步理解旋转的性质。
此外,学生需要通过操作活动,体会旋转变换在实际问题中的应用。
三. 教学目标1.知识与技能:理解旋转变换的概念,掌握旋转变换的性质,能运用旋转变换解决一些简单问题。
2.过程与方法:通过观察、操作、讨论,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。
四. 教学重难点1.重点:旋转变换的概念,旋转变换的性质。
2.难点:旋转变换在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立知识体系。
2.操作法:学生通过动手操作,直观地感受旋转变换的性质。
3.讨论法:学生分组讨论,分享彼此的想法,培养合作意识。
六. 教学准备1.教学课件:教师准备课件,展示旋转变换的实例和性质。
2.学生活动材料:学生准备剪刀、纸张等材料,进行旋转变换的操作活动。
七. 教学过程1.导入(5分钟)教师通过提问:“同学们,你们知道什么是图形的旋转吗?”引导学生回顾旋转的概念。
然后,教师展示一些实例,如旋转向量、旋转变换在实际问题中的应用等,让学生初步感受旋转变换的特点。
2.呈现(10分钟)教师引导学生观察、分析旋转变换的性质,如旋转变换不改变图形的大小和形状,只改变图形的位置等。
学生通过观察、操作,总结旋转变换的性质。
3.操练(10分钟)学生分组进行旋转变换的操作活动。
教师提供一些实际问题,如旋转变换在几何作图、物体运动等方面的应用,学生运用旋转变换解决问题。
北师大版八年级数学下册《图形的旋转(第2课时)》精品教案
而得到的,则旋转的角度为____________.
用.
课堂总结 作业布置
答案:90°
在课堂的最后,我们一起来回忆总结我们这节课所学的知 跟 着 老 师 回 帮助学生
识点:
忆知识,并记 加强记忆
问题、说一说画旋转图形的一般步骤?
忆 本 节 课 的 知识.
(1)确定旋转中心、旋转方向和旋转角;
知识.
(2)将图形中的关键点与旋转中心连接起来,然后按旋
转方向分别将它们旋转一个角度,得到关键点的对应点;
(3)按照原图形的顺序连接这些对应点,所得到的图形 就是旋转后的图形.
基础作业
学 生 课 下 独 检测课上
教材第 79 页习题 3.5 第 1、2 题 能力作业 教材第 80 页习题 3.5 第 3、4 题
立完成.
学习效 果.
C.点 B
D.点 A
巩固知 识.
2.如图,在平面直角坐标系中,点 B,C,E 在 y 轴上,
Rt△ABC 经过变换得到 Rt△ODE,若点 C 的坐标为(0,1),
AC=2.你能说出这种变换的过程吗?
拓展提高
答:△ABC 绕点 C 顺时针旋转 90°,再向下平移 3 个单位
长度.
如图,点 O 是等边三角形 ABC 内一点,∠AOB=110°, 在 师 的 引 导 提高学生
点 A 旋转到了点 D.
握,找出旋转 进一步掌
方 向 和 旋 转 握画旋转
角,然后班内 图形的方
交流.
法.
(1)指出这一旋转的旋转角; (2)画出旋转后的三角形. 解:(1)连接 AO、DO,∠AOD 就是旋转角;
(2)如图所示,作点 B、C 绕点 O 逆时针旋转的对应点 E、F,使∠BOE=∠COF=∠AOD, (3)顺次连接 DE、EF、DF, △DEF 就是旋转后的三角形.
北师大版数学八年级下册:3.2 图形的旋转 教案
出 一 些 具 有 旋 转 现 象 的 生 活 实 例 , 引 出 课 学,学生 画生动形象
题 “图形的旋转”。
感到快
教师板书:3.2 图形的旋转(1)
乐学习。
2.学生切身感
2. 实践操作
2. 学 生 受 到 转 动 现
利用课室现有的物体进行旋转运动,在生活中 蠢 蠢 欲 象,从而产生
还有哪些蕴含旋转运动的现象,举例说明
一、 目标展示, 心中有数.
用 动 画 推广课前展示 的 形 式 学习目标的要 展 示 学 求,是我市课 习 目 标 改的一个特
让 学 生 色,其目的是
更 能 关 课前要让学生
注。
知道本节课要
学什么而做到
心中有数。
二、 自主学习 探究新知
1. 看视频
1. 儿 歌 1.数学来自于
播放动画视频(儿歌“大风车”),引导学生列举 中 有 数 生活,播放动
三、 图 1 小组合作 交流展示
A(E)
D(H)
B(F)
C(G)
图2
O
D A
B
C
(1)观察图 2 的两个三角形,你能发现哪些相 等的线段和相等的角?
(2)连接 AO,BO,CO,DO,EO,FO,你又能发现些 相等的线段和相等的角?
(3)在图 2 中再选取一些对应点,画出它们与
精神上的准 备。
培养学生的动 手能力、观察 能力和探究问 题的能力,以 及与人合作交 流的能力,充 分体现了教师 为主导,学生 为主体的教学 方法。同时以 问题为导引, 逐步对旋转的 性质进行探 究,这样既突 出了重点,又 突破了难点。
∆ABC 经过平移或旋转得到的?
C
让学生及时巩 固Biblioteka 理解旋转BAA(1)
初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案
第三章 图形的平移与旋转2.图形的旋转(二)本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。
课前热身:1. 旋转的定义: 这个定点称为_____,转动的角称为____.旋转不改变图形的________.2.旋转的基本性质:对应点到旋转中心的距离对应点与旋转中心所连线段的夹角等于旋转前、后的图形图形的旋转是由 和旋转方向和旋转角度决定(注意:请准备好圆规、三角板、量角器和铅笔)3.关于点的旋转(1)点A 绕点O 逆时针旋转60° OA 4.关于线段的旋转(1)画出线段AB 绕着端点A 顺时针旋转60度后的线段(2)画出线段AB 绕着端点O 顺时针旋转90度后的线段 讲授新知:关于三角形的旋转类型一:已知旋转中心与旋转角作旋转后的图形例1.试着画△ABC 绕O 点逆时针旋转60°后所得的三角形.变式.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形A B B A O总结:“旋转”作图的步骤:一连:连接已知点与旋转中心二定:确定旋转方向三量:测量旋转角度四截:在旋转角的另一条边上,以旋转中心为一端点截取等于对应线段长度的线段五画:顺次连接所得的点,从而画出旋转得到的图形例2(格点问题)如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB 的三个顶点O(0,0),A(4,1),B(4,4)均在格点上画出△OAB绕原点O顺时针旋转90°后得到的△OA1B1,并写出点A1的坐标变式(坐标系中的旋转)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(-2,5)的对应点A′的坐标是________.类型二:已知旋转后的图形,反过来寻找旋转中心和旋转角的位置例1.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)变式:如图,四边形ABCD和四边形CDFE是边长相等的两个正方形,其中A、D、F 和B、C、E各成一直线,将正方形ABCD绕着一点旋转一定的角度后与正方形CDFE重合,这样的旋转中心共有多少个?确定旋转中心与旋转角的方法:在图形的旋转过程中,判断谁是旋转中心,要看旋转中心是在图形上还是不在图形上;若在图形上,哪一点在旋转过程中位置没有改变,这一点就是旋转中心;若不在图形上,对应点连线的垂直平分线的交点就是旋转中心,旋转角等于对应点与旋转中心所连线段的夹角.随堂练习:1.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心() A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点B C.点C D.点D课堂小结课后作业:请完成《英才课堂》59~60页1~10题必做,11、12题选做。
图形的旋转教案北师大版八年级数学下册
第三章图形的平移与旋转3.2 图形的旋转教学目标知识与技能1. 学生通过具体实例认识平面图形的旋转,理解旋转的基本要素;2. 掌握旋转的性质并能解决简单的旋转问题;过程与方法学生亲身经历实验操作—观察—发现—猜想—验证—归纳等过程,进一步积累数学活动经验,发展合情推理能力,体会图形运动中的变与不变,培养空间观念;情感态度和价值观1. 运用信息技术等多种教学手段,通过自主学习、小组合作探究的学习方式,全方位、多角度的获取数学知识及研究成果,体验教学活动充满探索性和创造性,感受数学学习的乐趣;2. 通过欣赏图片和动画充分感知数学美,培养学习数学的兴趣和热爱生活的情感。
学情分析在知识方面,学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。
在能力方面,八年级的学生已经有了一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。
在情感与学习风格方面,他们喜欢学习生动活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,用自己的双手来操作,用自己的语言来交流、表达,用自己的心灵去感悟。
教学重点探索旋转的定义以及性质;教学难点旋转性质的应用;教学方法五步循环法、引导发现法、实验探究法课前准备教师准备:课件、图纸、作业清单学生准备:三角板教学过程一、提出问题同学们,如果世界没有旋转会变成什么样子呢,播放视频。
思考:什么是旋转?二、大胆猜想1.画一画(完成得好的可以为小组加分,下同)点线面的旋转2.猜一猜再类比平移的定义,猜测什么是旋转?三、设计方案器材准备实验工具袋(装有量角器,直尺,印好是四边形,水笔,一张白纸)人员分工1.全班分 6 个小组; 2.选出一位小组长,主持小组内活动;3.一位记分员,记录本组得分,每回答一次得十分,最后评出两组最佳;4.一位工具整理员,负责工具整理和卫生清洁;5.组内成员利用实验工具合作探究,分别将答案写在自己的作业单上.实践步骤注意事项切记:边实践操作,边记录数据,得出结论.完成后举手,提早完成的加分.四、动手操作活动准备:每个成员;各小组分工探究(组内成员至少完成一种验证操作,完成本组验证任务的成员,还可进行他组任务)五、得出旋转的定义:在______内,将一个______绕一个______按某个______转动一个______,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.第二个五步循环探究一、提出问题同学们,旋转的性质是什么?二、大胆猜想1.转一转,画一画,量一量(完成得好的可以为小组加分)2.猜一猜旋转的性质有哪些?三、设计方案器材准备实验工具袋(装有量角器,直尺,透明薄膜,水笔,剪刀,一张白纸、计分牌)实践步骤操作方法:如图,两张纸上的四边形ABCD 和四边形EFGH 完全重合,在纸上选取旋转中心O,并将其固定.把其中一张纸片绕点O 旋转一定角度注意事项切记:边实践操作,边记录数据,得出结论.完成后举手,提早完成的加分.四、动手操作五、得出旋转的性质:结论:发现不足,自我修改小组长主持,组内成员轮流分享验证方法. 自己与小组成员交流经验,发现自己操作的不足,加以修改.设计图案【板书设计】第1课时生活中的旋转1、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.投影区2、旋转三要素。
数学北师大版八年级下册图形的旋转教学案例
《图形的旋转》教学设计宝鸡市清姜路中学孙炜一、教材分析教材地位与作用图形的旋转是北师版八年级数学下册第三章《图形的平移与旋转》第二节的内容,主要研究旋转的定义,旋转的性质及其应用。
本节的主要内容是旋转的概念和性质及其应用。
它是在学生学习了平移和轴对称基础上学习的。
对发展学生的空间观念是一个渗透,是后继学习中心对称图形变换的基础,是空间与图形领域的基础知识,在教材中起着承上启下的作用。
同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。
教学目标教学重点与难点重点:认识旋转,理解旋转的基本特征,理解旋转是由旋转中心和旋转角度所决定的。
难点:对图形进行旋转变换。
二、学情分析本学段的学生独立思考和探索的愿望和能力有所提高,并能在探索的过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法。
在此之前学生已经学习了轴对称、平移两种图形变换,对图形变换已经具有了一定的认识。
存在的困难是空间想象能力不强。
三、学法分析《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。
为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用“动手实践——自主探索——合作交流”的学习方法,使学生积极参与教学过程,在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、归纳、分析等数学思想方法。
四、教学方法和手段(一)教学手段:使用多媒体设备自制三角形旋转教具使用相关的教学软件:FLASH、几何画板等来完成图形旋转变换的演示。
(二)教法分析:本人根据教材和学情的需要,采用“问题情境——建立模型——解释、应用与拓展”的模式展开,让学生经历知识的形成与应用过程,从而更好地理解数学知识的意义。
掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学生学好数学的愿望与信心。
2024北师大版数学八年级下册3.2《图形的旋转》教案
2024北师大版数学八年级下册3.2《图形的旋转》教案一. 教材分析《图形的旋转》是北师大版数学八年级下册3.2的内容。
本节课主要让学生理解旋转的性质,学会用旋转的观点来分析和解决问题。
通过本节课的学习,学生能够掌握图形旋转的定义,理解旋转中心、旋转角、旋转前后的对应点等概念,并能够运用这些概念解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了图形的平移、翻转等变换,对图形的变换有一定的了解。
但学生对旋转的概念和性质可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对坐标系中的旋转问题感到困惑,需要教师进行有针对性的讲解和辅导。
三. 教学目标1.知识与技能:学生能够理解旋转的性质,掌握图形旋转的定义,学会用旋转的观点来分析和解决问题。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,体验成功解决问题的乐趣,增强对数学的兴趣和信心。
四. 教学重难点1.重点:学生能够理解旋转的性质,掌握图形旋转的定义。
2.难点:学生能够理解旋转中心、旋转角、旋转前后的对应点等概念,并能够运用这些概念解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,引导学生主动探索和解决问题。
2.启发式教学法:教师提出问题,引导学生思考和讨论,激发学生的学习积极性和创造力。
3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。
4.归纳总结法:教师引导学生总结旋转的性质和应用,帮助学生形成知识体系。
六. 教学准备1.教学课件:制作课件,包括图片、动画、实例等,帮助学生直观地理解旋转的概念和性质。
2.教学素材:准备一些实际的图形和问题,用于引导学生操作和思考。
3.坐标系图:准备一些坐标系图,方便学生理解和解决坐标系中的旋转问题。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、旋转木马等,引导学生关注旋转现象,并提出问题:“什么是旋转?旋转有哪些特点?”2.呈现(10分钟)教师通过课件呈现旋转的定义和性质,如旋转中心、旋转角、旋转前后的对应点等,并用实例进行解释和演示。
初中数学北师大版八年级下册:图形的旋转以及旋转的性质(教案)
《§3.2.1图形的旋转以及旋转的性质》教学设计【学情分析】八年级学生在此之前已经学习了图形的轴对称和平移变换,经历过探索图形平移性质的过程,已经积累了一定的图形变换的数学活动经验,也有强烈的探索愿望。
但是旋转是初中要求掌握的三种图形全等变换中难度较大的一种,在探索的过程中对学生的观察能力、动手能力、交流归纳能力以及对数学方法的掌握能力要求较高。
因此,对于探究图形旋转的性质,多角度地理解图形旋转的发生过程对学生来说仍会有相当的困难。
【教学任务分析】本节课内容是北师大版八年级下册第三章《图形的平移与旋转》的第二节的第一课时,是在学习完平移、轴对称的基础上学习的又一种图形的变换,不仅为进一步研究图形的中心对称性打下良好基础,而且为学生提供处理几何问题的动态分析方法。
因此,根据概念形成的心理活动过程和课标中对数学学习的要求,本节课采用“问题驱动+活动主线”,让学生“动手做数学”,使学生真正感受“在变中寻找不变”。
【教学目标】1、知识技能:通过具体事例认识平面图形的旋转,探索理解旋转的基本性质。
2、数学思考:在发现、探究的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,体会类比和分类思想,发展学生直观想象能力,观察、分析、抽象概括的思维能力。
3、解决问题:在了解图形旋转的特征,并进一步应用所掌握的这些特征进行旋转变化的学习过程中,让学生从数学的角度认识现实生活中的现象,增强数学的应用意识。
4、情感态度:经历对生活中旋转图形的观察、讨论、实践操作,充分感知数学美,培养学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养合作学习的意识和研究探索的精神。
教学重点:掌握旋转的定义和基本性质,并利用其解决有关旋转的问题。
教学难点:探究图形旋转的性质,多角度地理解图形旋转的发生过程。
教学方法:采用探究发现式教学,自主探究、合作交流与教师启发引导相结合。
教具学具:课件、硬纸板、圆规、直尺、量角器、学案及实物投影.【教学过程】一、创设情境,引入课题1、演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.2.师:生活中,你见过哪些旋转的现象呢?(生自由阐述)。
北师大版数学八下3.2图形的旋转(教案)
4.旋转在实际应用中的应用:通过实例分析,使学生了解旋转在现实生活中的应用,提高学生解决问题的能力。
5.练习与巩固:设计不同难度的练习题,帮助学生巩固所学知识,提高解题技巧。
二、核心素养目标
1.培养学生的空间观念:通过图形旋转的学习,使学生能够更好地观察和认识几何图形在空间中的位置关系,提高空间想象能力。
此外,课堂总结环节,我感觉到学生们对于今天的学习内容有了较好的掌握,但仍有个别学生对某些知识点存在疑惑。我会在课后及时跟进,确保每位学生都能理解并掌握图形旋转的相关知识。
举例:在讲解旋转中心时,可以用一个具体的图形,如一个矩形,围绕不同的点进行旋转,让学生观察并理解旋转中心的变化对图形旋转效果的影响。在处理旋转角度的难点时,可以通过制作旋转模型或者使用教学软件,让学生直观地看到不同角度旋转的效果,从而加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,玩转盘游戏时,转盘的旋转;或者是自行车的轮子转动。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
-确定旋转角度:学生可能在确定旋转角度时感到困惑,特别是在非整数角度的旋转时。教师应提供直观的工具,如量角器,帮助学生准确测量和确定旋转角度。
-旋转作图的准确性:在实际作图过程中,学生可能会遇到作图不准确的问题,如旋转后的图形位置和角度不正确。教师需要指导学生如何通过逐步调整和校准来提高作图的准确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
北师大版数学八年级下册3.2《图形的旋转》教案2
北师大版数学八年级下册3.2《图形的旋转》教案2一. 教材分析北师大版数学八年级下册3.2《图形的旋转》是初中数学的重要内容,主要让学生理解旋转的性质,学会用旋转来解决实际问题。
本节课的内容与现实生活息息相关,有助于培养学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了图形的平移、缩放等变换,具备了一定的几何图形基础。
但对于旋转的概念和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出旋转的概念,并通过实际操作,让学生感受旋转的性质。
三. 教学目标1.理解旋转的定义,掌握旋转的性质。
2.学会用旋转解决实际问题。
3.培养学生的几何直观能力和数学应用能力。
四. 教学重难点1.旋转的定义和性质。
2.旋转在实际问题中的应用。
五. 教学方法采用“问题驱动”的教学方法,引导学生从实际问题中抽象出旋转的概念,通过实际操作,让学生感受旋转的性质。
在教学过程中,注重启发式教学,鼓励学生主动探究、积极思考。
六. 教学准备1.准备一些实际问题,如地图上的方向判断、钟表时针的旋转等。
2.准备一些几何图形,如正方形、三角形等,用于演示旋转。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如地图上的方向判断、钟表时针的旋转等,引导学生思考这些现象背后的几何变换。
提问:这些现象有什么共同特征?它们属于哪种几何变换?2.呈现(10分钟)介绍旋转的定义和性质。
旋转是指在平面内,将一个图形绕着某一点转动一个角度的变换。
旋转不改变图形的大小和形状,只改变图形的位置。
引导学生通过实际操作,感受旋转的性质。
3.操练(10分钟)让学生分组进行实际操作,选取一些几何图形,如正方形、三角形等,进行旋转。
观察旋转前后的图形,验证旋转的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,内容涉及旋转的定义、性质以及实际应用。
《图形的旋转》公开课教学设计【部编北师大版八年级数学下册】
《图形的旋转》教学设计教学目标L通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质。
2.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。
3.引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学。
教学重难点【教学重点】类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.【教学难点】探索旋转的性质,特别是,对应点到旋转中心的距离相等。
课前准备教师准备课件、多媒体;学生准备;练习本:教学过程第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例, 引出课题:“生活中的旋转”。
向学生展示有关的图片:(1)时钟上的秒针在不停的转动:(并介绍顺时针方向和逆时针方向)(2)大风车的转动:(3)飞速转动的电风扇叶片;(4)汽车上的括水器:(5)由平而图形转动而产生的奇妙图案,第二环节探索新知,形成概念1.建立旋转的概念(1)试一试,请同学们尝试用自己的语言来描述以下旋转。
油釜山占的脂蛀.问题:单摆上小球的转动由位置H转到&它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?ilfa空中二台取的拳北把,电图1:在同一平而内,点乂绕着定点。
旋转某一角度得到点8图2:在同一平面内,线段,括绕着定点。
旋转某一角度得到线段CD;图3:在同一平面内,三角形.43。
绕着定点。
旋转某一角度得到三角形QER观察了上而图形的运动,引导学生归纳图形旋转的概念;像这样,把一个图形绕着某一点。
转动一个角度的图形变换叫做旋转6”加。
〃)。
点0 叫做旋转中心,转动的角叫做旋转角。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
北师大初中八年级数学下册《图形的旋转》教案
图形的旋转教学目标:1.旋转的定义.2.旋转的基本性质.3.通过具体实例认识旋转,理解旋转的基本涵义.4.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.5.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.6.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.教学重点旋转的基本性质.教学难点探索旋转的基本性质.教学过程Ⅰ.巧设情景问题,引入课题[师]日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景).[生乙]每个物体的转动都是向同一个方向转动.[生丙]钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置有所变化.[师]同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.Ⅱ.讲授新课[师]在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点...同时都按相同的方式转动相同的角度...............在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小........和形状...的特征.好,了解了旋转的基本概念后,我们来看一钟表的指针的旋转情况(出示投影片§3.3 B),大家分组讨论.议一议:如下图所示,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)AO与DO的长有什么关系?BO与EO呢?(4)∠AOD与∠BOE有什么大小关系?[生乙]旋转角还可以是∠BOE.[生丙](2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.[生丁](3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.[生戊](4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.[生己](4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.[师]同学们讨论得非常精彩,也合乎逻辑,看上图,四边形DOEF是由四边形AOBC 绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?[生甲]因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.[生乙]因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.[师]同学们总结得很好,由此我们得到了旋转的基本性质(出示投影片§3.3 C)[师]大家可以画图表示;有的同学带表的话可以观察观察.[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.解:(1)它的旋转中心是钟表的轴心.(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为×20= 120°.[师]同学们通过熟悉的钟表,了解了旋转性质的应用.接下来我们拿出剪刀、白纸和图钉来做一做(出示投影片§3.3 E)(1)剪出两个边长相等的正方形纸片.(2)按下图所示用图钉钉制好.(3)这个图案可以看做是哪个“基本图案”通过旋转得到的?过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.60360。
北师大版数学八年级下册3.2《图形的旋转》教案1
北师大版数学八年级下册3.2《图形的旋转》教案1一. 教材分析北师大版数学八年级下册3.2《图形的旋转》是初中数学中的重要内容,旨在让学生理解旋转的性质,学会用旋转的观点解决实际问题。
本节课的内容包括图形的旋转的定义、旋转的性质、旋转在实际问题中的应用等。
通过学习,学生能够掌握图形旋转的基本知识,培养空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了图形的平移、翻转等知识,对图形的变换有一定的了解。
但旋转与平移、翻转有所不同,学生可能对旋转的理解和应用存在一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,用生动形象的例子和实际问题帮助学生理解和掌握旋转的知识。
三. 教学目标1.知识与技能:让学生理解图形的旋转的定义和性质,学会用旋转的观点解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极参与的精神。
四. 教学重难点1.教学重点:图形的旋转的定义和性质,旋转在实际问题中的应用。
2.教学难点:对旋转的理解和应用,特别是旋转在实际问题中的解决方法。
五. 教学方法1.情境教学法:通过生动形象的例子和实际问题,激发学生的学习兴趣,引导学生理解和掌握旋转的知识。
2.启发式教学法:引导学生主动思考、积极参与,培养学生的空间想象能力和逻辑思维能力。
3.合作学习法:鼓励学生之间的交流与合作,培养学生的团队精神和沟通能力。
六. 教学准备1.教学素材:准备一些关于图形旋转的实际问题,以及与旋转相关的图片、模型等。
2.教学工具:准备好多媒体设备,如投影仪、电脑等,以便进行教学演示和讲解。
七. 教学过程1.导入(5分钟)利用生活中的一些实例,如旋转门、风扇等,引导学生了解旋转的概念,激发学生的学习兴趣。
提问:同学们,你们在生活中见过哪些旋转的现象?这些现象有什么共同特点?2.呈现(15分钟)通过多媒体展示一些关于图形旋转的图片和模型,引导学生观察和思考图形的旋转过程。
北师大版八年级下册数学教案设计:3.2图形的旋转
《图形的旋转》教学设计一、教材的地位与作用图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。
教材中从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中具有旋转特点的事物,进而探索其性质,是培养学生思维能力、树立运动变化观点的良好素材。
同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,它不仅为本章后续学习对称图形、中心对称图形做好准备,而且也为今后学习“圆”的知识内容做好铺垫。
二.学情分析认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。
能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。
情感与学习风格分析:他们喜欢学习生动活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,用自己的双手来操作,用自己的语言来交流、表达,用自己的心灵去感悟。
三、教学目标在新课程改革背景下的数学教学应以学生的发展为本,学生的能力培养为主,同时从知识教学、技能训练等方面,根据《新课程》对本节课内容的要求及本节课的学习结果类型,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:知识目标(1)了解生活中旋转现象的广泛存在;(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角;(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;能力目标通过观察、操作、交流、归纳等过程,培养学生的动手能力、观察能力、探究问题的能力以及与人合作交流的能力。
经历探索图形在旋转变换中的变化情况的过程,体会旋转变换对研究图形变化的重要性。
北师大版八年级数学下册优秀教学案例3.2图形的旋转
3.了解旋转与平移、轴对称的关系,能进行区分和运用。
在教学过程中,我会通过生动的实例、形象的操作,引导学生深入理解旋转的定义和性质。例如,通过展示风车的旋转、钟表的指针旋转等生活中的实例,让学生感受旋转现象,理解旋转的定义。同时,设计富有挑战性的练习,让学生在实际操作中掌握旋转变换的方法,提高解决问题的能力。
五、案例亮点
本节课作为北师大版八年级数学下册“图形的旋转”的优秀教学案例,具有以下五个亮点:
1.生活实例导入,激发学生兴趣
本节课以生活中的旋转现象为切入点,通过展示风车、钟表等实例,引导学生关注旋转现象,激发学生学习兴趣。这种方式充分体现了“从生活中来,到生活中去”的教学理念,使学生感受到数学与生活的紧密联系,有助于提高学生的学习积极性。
三、教学策略
(一)情景创设
1.利用多媒体展示生活中的旋转现象,如风车、钟表等,引导学生关注旋转现象,激发学习兴趣。
2.设计有趣的数学问题,如“旋转后的图形是否改变大小和形状?”等,引发学生思考。
3.创设实践操作环节,如让学生自己动手制作旋转变换的教具,增强学生的直观感受。
在情景创设环节,我会注重运用多媒体手段,以生动形象的方式展示旋转现象,激发学生的学习兴趣。例如,通过展示风车的旋转、钟表的指针旋转等生活中的实例,让学生感受旋转现象,理解旋转的定义。同时,我会设计有趣的数学问题,引导学生思考,引发他们的求知欲。
(二)过程与方法
1.通过观察、操作、对比等方法,让学生在实践中探究旋转的性质和旋转变换的方法。
2.培养学生的空间想象能力、逻辑思维能力和创新能力,使他们在数学学习过程中感受到乐趣,提高学习积极性。
在教学过程中,我会注重引导学生通过观察、操作、对比等方法,自己去发现和总结旋转的性质。例如,在讲解旋转的性质时,可以让学生自己动手操作,观察图形在旋转变换过程中的变化,从而引导学生自己发现旋转的性质。同时,我会鼓励学生积极参与讨论,表达自己的观点,培养他们的逻辑思维能力和创新能力。
北师大版八年级数学下册《图形的旋转(第1课时)》精品教案
《图形的旋转(第1课时)》精品教案风力发电钟表游乐场中的摩天轮归纳:在平面内,将一个图形绕着一个定点按某个方向转动一个角度.这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角注意:旋转不改变图形的形状和大小.练习1:下列运动属于旋转的是()即:旋转中心、旋转角、旋转方向介绍:如图所示,△ABC 绕点O 按顺时针方向旋转一个角度,得到△DEF ,点A 、B 、C 分别旋转到了点D 、E 、F ,点A 与点D 是一组对应点,线段AB 与线段DE 是一组对应线段,∠BAC 与∠EDF 是一组对应角.在这一旋转过程中,点O 是旋转中心,∠AOD 、∠BOE 、∠COF 都是旋转角.追问:你还能找出其他的对应点、对应线段、对应角吗?练习2:如图所示,△ABC 是直角三角形,延长AB 到D ,使BD =BC ,在BC 上取BE =AB ,连接DE .△ABC 旋转后能与△EBD 重合.那么:旋转中心是______;旋转的角度是________;AC 的对应边是________;∠A 的对应角是________;点C 的对应点是________.答案:点B ,90°,ED ,∠BED ,点D做一做:如图1所示,两张透明纸上的四边形ABCD 和四边形EFGH 完全重合,在纸上选取旋转中心O ,并将其固定.把其中一张纸片绕点O 旋转一定角度(如图2).(1)观察图2中的两个四边形,你能发现有哪些相等的线段和相等的角?学生认真听老师的讲解,并积极思考,并回答老师的问题.学生独立完成练习题,然后班内交流.学生按要求操作,然后与同伴讨论后班内交流.认识在旋转过程中的对应点、对应线段、对应角及旋转中心和旋转角.进一步理解旋转的相关概念.探究旋转的性质.答案:AB =EF ,BC =FG ,CD =GH ,AD =EH ∠A =∠E ,∠B =∠F ,∠C =∠G ,∠D =∠H(2)连接AO ,BO ,CO ,DO ,EO ,FO ,GO ,HO ,你又能发现有哪些相等的线段和相等的角?答案:AO =EO ,BO =FO ,CO =GO ,DO =HO ∠AOE =∠BOF =∠COG =∠DOH(3)在图2中再取一些对应点,画出它们与旋转中心所连成的线段,你又能发现什么?答案:对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都相等,都等于旋转角.追问:改变透明纸上所両图形的形状,再试一试,你发现的结论有变化吗?归纳:旋转的性质一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.注意:旋转前后的两个图形全等.练习3:如图所示,(1)~(4)的四个三角形中,哪个不能由△ABC 经过平移或旋转得到?答:图(2)不能.学生认真听老师的归纳.学生完成练习题后,认真听老师的讲评.理解旋转的性质体会应用旋转解决实际问题的过程.课堂练习1.如图,△ABC 按顺时针方向旋转到△ADE 的位置,以下关于旋转中心和对应点的说法正确的是()A .点A 是旋转中心,点B 和点E 是对应点B .点A 是旋转中心,点C 和点E 是对应点C .点C 是旋转中心,点B 和点D 是对应点学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.D .点D 是旋转中心,点A 和点D 是对应点答案:B2.如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B ′处,此时,点A 的对应点A ′恰好落在BC 的延长线上,下列结论错误的是()A .∠BCB ′=∠ACA ′B .∠ACB =2∠BC .∠B ′CA =∠B ′ACD .B ′C 平分∠BB ′A ′答案:C拓展提高如图,在△ABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE .求证:△ACD ≌△BCE .证明:∵线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,∴∠DCE =90°,CD =CE .又∵∠ACB =90°,∴∠ACB =∠DCE .∴∠ACD =∠BCE .∵AC =BC ,∴△ACD ≌△BCE (SAS).在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析一道中考题:(2018·青岛)如图,将线段AB 绕点P 按顺时针方向旋转90°,得到线段A 'B ',其中点A 、B 的对应点分别是点A '、B ',则点A '的坐标是()在师的引导下完成中考题.体会所学知识在中考试题运用.A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)答案:D课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题1、什么是旋转,旋转的三要素是什么?答案:在平面内,将一个图形绕着一个定点按某个方向转动一个角度.这样的图形运动称为旋转.旋转三要素:旋转中心、旋转角、旋转方向问题2、旋转的性质有哪些?答案:(1)旋转前后的两个图形全等.(2)一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第77页习题3.4第1、2题能力作业教材第78页习题3.4第3、5题学生课下独立完成.检测课上学习效果.。
北师大版数学八年级下册《图形的旋转作图》教案1
北师大版数学八年级下册《图形的旋转作图》教案1一. 教材分析《图形的旋转作图》是北师大版数学八年级下册的一章内容,主要让学生了解图形的旋转性质,学会用旋转作图的方法,以及应用旋转性质解决实际问题。
本章内容在几何学习中占有重要地位,为学生深入学习几何提供基础。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如点、线、面的基本性质,以及图形的对称性质。
但部分学生对图形的旋转性质及旋转作图方法的理解和应用还不够熟练,需要在教学中加以引导和练习。
三. 教学目标1.理解图形的旋转性质,掌握旋转作图的方法。
2.能够运用旋转性质解决实际问题,提高解决问题的能力。
3.培养学生的空间想象力,提高图形变换能力。
四. 教学重难点1.教学重点:图形的旋转性质,旋转作图的方法。
2.教学难点:运用旋转性质解决实际问题,灵活运用旋转作图方法。
五. 教学方法1.采用问题驱动法,引导学生探究图形的旋转性质。
2.利用几何画板软件,动态展示图形的旋转过程,增强直观感受。
3.设计丰富的练习题,让学生在实践中掌握旋转作图方法。
4.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关的几何图形,如正方形、矩形等。
2.准备几何画板软件,用于展示图形的旋转过程。
3.准备练习题,涵盖不同难度的题目。
七. 教学过程导入(5分钟)1.复习平面几何的基本知识,如点、线、面的基本性质,图形的对称性质。
2.提问:同学们,你们知道什么是图形的旋转吗?图形的旋转有哪些性质?呈现(10分钟)1.利用几何画板软件,展示一个正方形沿某条直线旋转的过程。
2.引导学生观察旋转前后的正方形,发现旋转的性质。
3.总结图形的旋转性质:旋转不改变图形的形状和大小,只改变图形的位置。
操练(15分钟)1.让学生动手操作,尝试用旋转作图的方法,将一个正方形旋转一定角度后,画出旋转后的图形。
2.分组讨论,交流旋转作图的方法和经验。
3.选取部分学生的作品,进行展示和评价。
北师大版八年级数学(下)教案:3.2.1图形的旋转
课题:3.2.1图形的旋转课型:新授课年级:八年级教学目标:1.通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.2.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.3.引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.教学重点与难点:重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.课前准备:教师:多媒体课件。
教学过程:一、创设情境,引入新课在我们的生活中存在着许多运动形式,大家来想一下,我们生活中主要还有什么运动形式(平移除外)?处理方式:向学生展示有关生活中的旋转,引导学生感知旋转的特点.引出课题:3.2.1图形的旋转(教师板书).设计意图:从学生熟悉的现实生活出发,在教学中创设问题情境,开门见山引入新课,并且引导学生从实际生活中去体会旋转应用的广泛性,提高了学生的学习兴趣.二、合作探究,形成概念活动1:建立旋转的概念 思考:(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千、车轮在转动过程中,其形状、大小、位置是否发生变化呢? 处理方式:结合旋转着的图形,小组合作尝试用自己的语言来描述旋转的特点,在此基础上归纳出旋转的概念: 在同一平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
教师说明:这个定点叫做旋转中心,转动的角叫做旋转角。
强调:旋转的决定因素( 三要素):旋转中心、 旋转角、 旋转方向。
感知:旋转不改变图形的形状和大小,只改变图形的位置。
活动2:认识旋转(1) 秋千的转动由位置A 旋转45°到B ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?(2)在同一平面内,线段AB 旋绕90°得到线段CD ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?(3) 在同一平面内,三角形ABC 绕着某定点旋转100°得到三角形DEF ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?抽象出点的旋转AB(图1)O抽象出线的旋转·OABCD(图2)处理方式:结合具体问题,重点引导学生认识旋转的三个要素:旋转中心、旋转方向和旋转角度。