最小距离法树状图
树状图计算概率
![树状图计算概率](https://img.taocdn.com/s3/m/83a0e78a0d22590102020740be1e650e52eacfb8.png)
通过构建树状图,投资者可以分析不同投资方案的可能结果,包括收益、损失和风险。在每个节点上 ,可以标注各种事件发生的概率,从而计算出预期收益和风险。这种方法有助于投资者做出更明智的 决策。
案例二:市场占有率预测
总结词
树状图在市场占有率预测中,可以用于分析 市场竞争格局和预测各竞争者的市场份额变 化。
与流程图的比较
总结词
树状图和流程图在某些方面具有相似性,但树状图更适用于表示概率和条件概率的计算 过程。
详细描述
流程图通常用于表示一系列的逻辑步骤和决策过程,而树状图则更适用于表示概率计算 过程中的各种可能性和条件概率。树状图能够更好地展示事件的分支和概率的传递过程。
与矩阵法的比较
总结词
矩阵法在处理多维数据和复杂关系时具有优势,而树状图在表示概率计算过程方面更为直观。
详细描述
通过构建树状图,分析人员可以评估各竞争 者的市场地位、竞争优势和劣势,以及市场 发展趋势。在每个节点上,可以标注各竞争 者的市场份额变化概率,从而预测未来的市 场格局。这种方法有助于企业制定有效的市 场策略。
案例三:风险评估与决策
总结词
树状图在风险评估与决策中,可以用于分析 潜在的风险因素和评估风险发生的概率,以 及制定相应的风险管理措施。
详细描述
通过构建树状图,风险管理人员可以识别潜 在的风险因素和风险事件,评估其发生的概 率和影响程度。在每个节点上,可以标注相 应的风险管理措施,从而制定有效的风险管 理计划。这种方法有助于企业降低风险并提
高运营的稳定性。
THANKS
感谢观看
树状图计算概率
• 树状图概述 • 树状图构建方法 • 树状图计算概率 • 树状图在决策中的应用 • 树状图与其他方法Hale Waihona Puke 比较 • 树状图计算概率的案例分析
应用数理统计课后习题参考答案
![应用数理统计课后习题参考答案](https://img.taocdn.com/s3/m/31aab53e700abb68a882fb6e.png)
习题五1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g)日期重旦量1 5500 5800 5740 57102 5440 5680 5240 56004 5400 5410 5430 54009 5640 5700 5660 570010 5610 5700 5610 5400试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05)解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5.2假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5检验的问题:H。
:i 2 L 5, H i : i不全相等.计算结果:注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所以拒绝H。
,认为不同日期生产的钢锭的平均重量有显著差异2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验解根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 .2假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .日产量操作工查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。
,认为在四种不同催化剂下平均得率无显著差异3试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另一个是温度试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 )解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12.2假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j ,),i 1,2,3,j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应;检验的问题:(1) H i 。
SPSS聚类分析加具体案例
![SPSS聚类分析加具体案例](https://img.taocdn.com/s3/m/26e5abdb0508763231121262.png)
六、聚类分析(一)概述1.聚类分析的目的根据已知数据,计算样本或者变量之间亲疏关系的统计量(距离或相关系数)。
根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的差别较小,而类与类之间的差别较大,最初达到的就是将样本或变量分成若干类。
2.聚类分析的分类3.距离与相似性为了对样本或者变量进行分类,就需要研究样本之间的关系,最常用的方法有两个。
(二)系统聚类1.系统聚类的步骤距离的具体定义及计算方式计算n各样本两两之间的距离将距离接近的数据依次合并为一类,再计算,再合并 画聚类图,解释类与类之间的关系2.亲疏程度度量方法3.系统聚类的分类4.SPSS操作及实例SPSS采用的是凝聚法。
案例:根据30个省的23个主要行业的平均工资情况,通过聚类分析来判断哪些地区平均工资水平高。
SPSS操作及结果:打开SPSS上方菜单栏中的分析->分类->系统聚类选择变量->勾选统计量->在绘制里选择树状图和冰柱图勾选方法(通常使用组间联接)->度量区间->选择标准化方式(全距从0到1)下图为近似矩阵表,标注了相关系数,数值越大,距离越接近下图为聚类分析结果表,第一类表示这是聚类分析的第几步,第二三列表示该步中那几个样本或者小类聚成一类,第四列表示距离,第五六列表示本步骤中参与的是个体还是小类(0表示样本,非0表示第n步生成的小类),第七列表示本步骤的聚类结果将在以下第几步中用到。
下面是冰柱图和树状图的结果,根据树状图可以看出,如果分为三类的话,第一类包括北京上海,第二类包括天津、广东、浙江、江苏、西藏,剩下的归为一类。
(三)快速聚类(适合大样本聚类)1.快速聚类的步骤指定聚类数目K确定K个初始类的中心(自定义或者根据数据中心初步确定)根据距离最近的原则进行分类根据新的中心位置,重新计算每一记录距离新的类别中心的的距离,并重新分类重复步骤4,直到达到标准2.SPSS操作及实例打开SPSS上方菜单栏中的分析->分类->K-均值聚类选择变量->勾选统计量->定义变量值选择迭代次数->选项(勾选初始聚类中心、每个个案的聚类信息)->定义变量值->保存(勾选聚类成员、聚类中心距离)下图为输出的初始聚类中心下图为最终距离中心,第一类平均工资最高,第二类次之,第三类最低下图为每个聚类中的案例数和聚类成员。
进化树 数学统计-概述说明以及解释
![进化树 数学统计-概述说明以及解释](https://img.taocdn.com/s3/m/4761988d59f5f61fb7360b4c2e3f5727a5e92484.png)
进化树数学统计-概述说明以及解释1.引言文章1.1 概述部分的内容可以是:进化树是生物学中一种重要的工具,用于展示物种之间的进化关系和演化历史。
它是一种树状图结构,将不同物种连接在一起,形成一个分支系统,从而揭示了它们之间的亲缘关系。
数学统计则是一门研究数据收集、分析和解释的学科。
它将数学的方法应用于收集的数据中,通过统计分析来得出结论,并从中推断出总体的特征和规律。
本文将探讨进化树和数学统计在生物学研究中的应用。
首先,我们将介绍进化树的概念和构建方法,包括系统发育学的基本原理和常用的建树算法。
接着,我们将详细介绍数学统计的基本原理和常用的统计方法,包括假设检验、回归分析等。
通过将进化树和数学统计结合起来,研究者可以更准确地推断物种间的进化历史和演化路径,揭示出隐藏在生物物种之间的演化规律和关联性。
这不仅有助于理解生物多样性的形成和演化机制,还能为生物分类学、生态学以及遗传学等领域的研究提供重要的参考和依据。
总之,进化树和数学统计是现代生物学研究中不可或缺的工具。
本文将深入探讨它们的原理、方法和应用,并展望未来在这些领域的发展前景。
通过进一步研究和应用,我们相信进化树和数学统计将为解开生命之谜提供更多的线索和启示。
1.2 文章结构文章结构在本文中,我们将探讨进化树和数学统计这两个重要的主题。
文章将分为引言、正文和结论三个部分。
引言部分将提供一些背景信息和概述,介绍本文的重要性和目的。
我们将讨论进化树和数学统计在生物学和其他领域中的应用,以及它们的潜在影响和意义。
正文部分将深入探讨进化树和数学统计的概念、原理和方法。
在2.1节中,我们将详细介绍进化树的定义、构建和分析方法,包括距离法、最大简约法和贝叶斯推断等。
在2.2节中,我们将介绍数学统计的基本概念和常用方法,例如假设检验、参数估计和回归分析等。
结论部分将对本文进行总结,并展望未来的研究方向。
我们将强调进化树和数学统计在新闻推荐、基因组学和社会网络分析等领域的潜在应用,以及需要进一步研究和发展的问题。
层次聚类最小距离法
![层次聚类最小距离法](https://img.taocdn.com/s3/m/f20ad36359fb770bf78a6529647d27284b7337da.png)
层次聚类最小距离法
层次聚类是一种无监督学习的聚类方法,它将数据点逐步合并成不同的聚类簇,直到达到停止条件为止。
最小距离法(Minimum Distance Method)是层次聚类中的一种常用策略。
最小距离法的步骤如下:
1. 初始化:将每个数据点看作一个单独的簇。
2. 计算距离:计算每个簇之间的距离,常用的距离度量方法包括欧式距离、曼哈顿距离等。
3. 合并最近的簇:找到距离最小的两个簇,并将它们合并成一个新的簇。
4. 更新距离矩阵:更新距离矩阵,将新簇与其他簇之间的距离进行更新。
5. 重复步骤3和步骤4,直到满足停止条件。
停止条件可以是达到指定的簇数目,或者是达到某个预设的相似度阈值。
最小距离法的优点是简单易懂,容易实现。
然而,它也存在
一些缺点,比如对噪声和异常值比较敏感,可能会产生过度合并的问题。
因此,在使用最小距离法进行层次聚类时,需要权衡其优缺点,并根据具体问题选择合适的距离度量方法和停止条件,以获得较好的聚类结果。
第六讲 用树状图或表格求概率-【暑假衔接】2021年新九年级数学暑假精品知识点(北师大版)(原卷版)
![第六讲 用树状图或表格求概率-【暑假衔接】2021年新九年级数学暑假精品知识点(北师大版)(原卷版)](https://img.taocdn.com/s3/m/1a03e232ad51f01dc381f154.png)
第六讲用树状图或表格求概率【学习目标】1、进一步理解当试验次数较大时试验频率稳定于概率.2、会借助树状图和列表法计算涉及两步试验的随机事件发生的概率.【基础知识】1.古典概型(1)古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
(2)古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中m结果,那么事件A发生的概率为P(A)=n2.列表法求概率(1)列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
3.树状图法求概率(1)树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
【考点剖析】考点一:利用概率公式进行计算的棋盘,在棋盘方格内随机放入棋子,且每一方格内最多放入一枚棋子.例1.一个33(1)如图①,棋盘内已有两枚棋子,在剩余的方格内随机放入一枚棋子,这三枚棋子恰好能在同一条直线上的概率为__________;(2)如图②,棋盘内已有四枚棋子,在剩余的方格内随机放入两枚棋子,求仅有三枚棋子恰好能在同一条直线上的概率.考点二:列表法或树状图法求概率例2.某校准备从八年级(1)班、(2)班的团员中选取两名同学作为十四运的志愿者,已知(1)班有5名团员(其中男生3人,女生2人),(2)班有4名团员(其中男生1人,女生3人).(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;(2)如果分别从(1)班、(2)班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.考点三:游戏公平性问题例3.相约西安,筑梦全运,为迎接十四运,学校开展了运动会志愿者选拔活动.小亮和小贾都很优秀,一同报名参加了选拔活动,但只有一个参加名额.现通过抽卡片的方式决定谁去参加,规则如下:现有两组卡片,第一组为正面分别写有字母X、Y、Z的三张卡片,第二组为正面分别写有字母X、Y、Y、Z的四张卡片,这些卡片除正面字母外其余均相同.将卡片正面朝下洗匀,随机抽一张,记下字母后放回,称为抽卡片一次.(1)若小贾从第二组中抽卡片15次,其中9次抽出的卡片上写有字母Y,求这15次抽出的卡片上写有字母Y的频率;(2)小亮从第一组中抽卡片一次,小贾从第二组中抽卡片一次,若两人抽出的卡片上的字母相同,则小亮去参加;否则,小贾去参加.请问这种抽卡片的方式对两人是否公平?用列表或画树状图的方法说明理由.考点四:几何概率问题例4.如图,在3×3的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.考点五:统计与概率综合问题例5.某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)补全条形统计图,并求出扇形统计图中类别C所对应扇形的圆心角度数.(2)类别A的4名学生中有3名男生和1名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,求所选取的2名学生中恰好有1名男生、1名女生的概率.【真题演练】1.下列表述中,正确的是()A.“任意一个五边形的外角和是540°”是必然事件B.抛掷一枚质地均匀的硬币100次,正面朝上的次数正好为50次C.抛掷两枚质地均匀的银币,正好一枚正面朝上,一枚反面朝上的概率为1 2D.“367人中至少有两人的生日相同”是随机事件2.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在阴影部分的概率是()A.38B.12C.59D.583.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有()种不同的可能?A.12 B.6 C.5 D.24.一个盒子里装有除颜色外都相同的3个球,其中2个红球,1个白球.现从盒子里随意摸出1个不放回,再摸出1个,两次均摸到红球的概率是()A.13B.12C.23D.565.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同6.小明参加了一个抽奖游戏:一个不透明的布袋里装有1个红球,2个蓝球,4个黄球,8个白球,这些小球除颜色外完全相同.从布袋里摸出1球,摸到红球、蓝球、黄球、白球可分别得到奖金30元、20元、5元和0元,则小明摸一次球得到的平均收益是________元.7.随着高铁、地铁的大量兴建以及铁路的改扩建,我国人民的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出人车站,每个车站都修建了如图所示的出入闸口.某车站有四个出入闸口,分别记为A、B、C、D.(1)一名乘客通过该站闸口时,求他选择A闸口通过的概率;(2)当两名乘客通过该站闸口时,请用树状图或列表法求两名乘客选择相同闸口通过的概率.8.小明的爸爸拿回一张电影票,儿子小明和妹妹小利都想去看电影,于是爸爸给他们出了一个主意,方法是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,则小明去看电影,否则小利去看电影.(1)你认为爸爸这个方法是否合理?请用概率的知识解释原因.(2)若使方法公平,你认为该如何修改这个方法?9.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后不放回...,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).(2)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n的值.10.为了减缓学生中考前的心理压力,某班学生组织了一次拔河比赛,裁判员让甲乙两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.11.新冠疫情以来,各地政府为活跃消费市场,释放消费潜力,各商家采取各种促销以此来对冲疫情影响.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券(若指向边界则重转),凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.12.为迎接建党100周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录这8次成绩(单位:分),并按成绩从低到高整理成如下表所示,由于表格被污损,甲的第5个数据看不清,但知道甲的中位数比乙的众数大3.甲78 79 81 82 x 88 93 95乙75 80 80 83 85 90 92 95(1)求x的值;(2)现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.13.一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.14.2021年6月26日是第34个国际禁毒日,为了解同学们对禁毒知识的掌握情况,学校开展了禁毒知识讲座和知识竞赛,从全校1600名学生中随机抽取部分学生的竞赛试卷进行调查分析,测试结果分为“优秀”、“良好”、“合格”、“一般”四类,并绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有______人,估计该校1600名学生中“合格”的学生有______人;(2)请补全条形统计图(提示:要标上人数);(3)被调查的学生中,前4名学生有2名男生1B,2B和2名女生1G,2G,若再从这4名学生中随机抽取2人代表学校参加教育局组织的禁毒演讲比赛,请用画树状图或列表的方法,求恰好抽到1名男生和1名女生的概率.【过关检测】1.一个不透明的盒子中装有5个红球和3个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件;B.摸到白球是不可能事件;C.摸到红球和摸到白球的可能性相等;D.摸到红球比摸到白球的可能性大.2.如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.1 B.12C.13D.233.不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.4.不透明的袋子里装有红、黑、白三种颜色的小球,它们质地、形状完全相同,从袋子中随机抽取一个小球,记事件A为“抽到红球”,事件B为“抽到红球或黑球”,若()1 2P A=,则()P B的取值范围是____________.5.一杯子中,盛有红、黄两种豆子、将豆子搅拌均匀,从中随机抓起一把豆子,其中红豆20粒,黄豆100粒.若杯中约有30000粒豆子,试估计杯中约有______粒红豆.6.春节前夕,小丽的奶奶给孩子们准备了一些红包,这些红包的外观相同,其中有1个红包装的是100元,有3个红包装的是50元,剩下的红包装的是20元.若小丽从中随机拿出一个红包,里面装的是20元的红包的概率是45,则装有20元红包的个数是______________.7.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜;若指针落在分界线上,则需要重新转动转盘甲获胜的概率是______.8.将4张印有我国传统节日“春节”“元宵节”“清明节”“中秋节”(卡片的形状、大小、质地都相同)的卡片放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“春节”的卡片的概率为_________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的2张卡片中,印有相同节日的概率(请用画树状图法或列表法求解).9.已知不等式组34? 42 33x xx x+>⎧⎪⎨≤+⎪⎩(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为非负数的概率.10.某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.11.小丽和小华想利用摸乒乓球游戏决定谁去参加市里举办的喜迎建党一百周年以“学党史、悟思想、办实事、开新局”为主体的演讲比赛,游戏规则是:在一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1-234,,,-,搅匀后,一人先从中随机摸出一个球(不放回),另一人再从余下的3个球中摸出一个球,若摸出的两个小球上的数字之和为偶数,则小丽去,否则小华去参赛.(1)用列表法或树状图法,求小丽参赛的概率;(2)你认为这个游戏公平吗?请说明理由.12.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.13.某中学开展迎十四运主题宣传活动,给同学们分发十四运吉祥物卡片:A 卡片“金金”;B 卡片“羚羚”;C 卡片“熊熊”;D 卡片“朱朱”,要求每名学生必须选择且只能选择其中一张卡片,学校随机抽查了部分学生,对他们的卡片选择情况进行了统计,并绘制了两幅不完整的统计图. 请根据统计图提供的信息解答下列问题: (1)此次共抽查了______名学生; (2)请通过计算补全条形统计图;(3)现有甲,乙两名同学选卡片,求他们选择同一张卡片的概率.14.为提升学生的数学素养,某学校开展了“数学素养”竞赛活动.九年级1200名学生参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表,根据表中所给信息,解答下列问题: 成绩x (分)分组频数 频率6070x ≤< 150.307080x ≤< a0.408090x ≤< 10 b 90100x ≤<50.10()1表中___ _ _ ,b = _;()2这组数据的中位数落在_____ _范围内;()3若成绩不小于80分为优秀,请估计九年级大约有多少名学生获得优秀成绩?()4竞赛中有这样一道题目: 如图,有两个转盘,A B 、在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘,A B 、当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”概率是19,则转盘B 中标有数字1的扇形的圆心角的度数是 .。
树状图方法
![树状图方法](https://img.taocdn.com/s3/m/1dcc719dbd64783e08122b27.png)
树状图方法
我们要做的
空
学习
实践总结
目录
树状图的定义和适用范围基本结构
分析步骤
关键方法
案例
一、树状图的定义和适用范围
树状图是一种自下而上的、针对问题查找原因并进行解决的系统化方法
它包括问题提出、调查真相、原因分析、实验验证、制定措施、实施、总结、达成目标等八个步骤
它适用于各种问题的解决,并延伸到完成一个具体的任务或达成一个目标。
二、基本结构
①树根
二、基本结构
①问题或任务
二、基本结构
①什么问题
①什么问题
②还原事实真相
四、关键方法
1、开放性和逻辑性(真相)
2、鱼骨图(全面)
3、优选法(效率)
4、规范性
五、案例分享
⏹(总结-固化-流程-习惯)
⏹酶制剂采用托盘包装案例
心若改变,你的态度跟着改变;态度改变,你的习惯跟着改变;习惯改变,你的性格跟着改变;性格改变,你的人生跟着改变;在顺境中感恩,在逆境中心存。
喜乐,认真活在当下。
精品课件!
精品课件!
谢谢!。
SPSS19.0之聚类分析
![SPSS19.0之聚类分析](https://img.taocdn.com/s3/m/be146b32580216fc700afd9b.png)
1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。
1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。
开始每个样品自成一类。
2.选择对称矩阵中的最小非零元素。
将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。
3.计算G1与其他样品距离。
重复以上过程直到所有样品合并为一类。
我们在SPSS中实现最短距离分析非常简单。
单击“”-->“”-->“”。
将弹出如图1-1所示的对话框,设置相应的参数即可。
图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。
在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。
在绘制中选择绘制“树状图”。
单击确定,得到以下结果。
聚类表阶群集组合系数首次出现阶群集下一阶群集1 群集 2 群集 1 群集 21 21 28 .211 0 0 102 12 24 .465 0 0 63 2 27 .491 0 0 54 13 20 .585 0 0 95 2 14 .645 3 0 66 2 12 .678 5 2 77 2 7 .702 6 0 88 2 25 .773 7 0 99 2 13 .916 8 4 1110 21 29 1.085 1 0 1211 2 18 1.106 9 0 12表1-2 聚类过程我们可以通过更加形象直观的树状图来观察整个聚类过程和聚类效果。
如图1-2所示,最短距离法组内距离小,但组间距离也较小。
分类特征不够明显,无法凸显各个省份的能源消耗的特点。
但是我们可以看到广东省能源消耗组成和其他省份特别不同,在其他方法中也显现出来。
12 2 21 1.115 11 10 13 13 2 17 1.360 12 0 14 14 2 26 1.564 13 0 15 15 2 22 1.627 14 0 16 16 2 5 1.649 15 0 17 17 2 8 1.877 16 0 18 18 2 16 3.027 17 0 19 19 2 30 3.543 18 0 20 20 2 11 4.930 19 0 21 21 2 4 5.024 20 0 22 22 2 10 6.445 21 0 24 23 1 9 8.262 0 0 26 24 2 15 10.093 22 0 25 25 2 23 10.096 24 0 26 26 1 2 10.189 23 25 27 27 1 6 11.387 26 0 28 28 1 3 13.153 27 0 29 2911932.36728图1-2 最短距离法聚类图1.1.2 组间联接聚类组间联接聚类法定义为两类之间的平均平方距离,即。
聚合层次聚类法-概述说明以及解释
![聚合层次聚类法-概述说明以及解释](https://img.taocdn.com/s3/m/3f3d4107e418964bcf84b9d528ea81c759f52e78.png)
聚合层次聚类法-概述说明以及解释1.引言1.1 概述聚合层次聚类法是一种常用的聚类算法,它属于层次聚类的一种。
在聚类分析中,聚类算法是一种将相似的数据对象归为一类的方法。
而聚合层次聚类法通过计算数据对象之间的相似性来构建聚类的层次结构。
该算法不需要预先指定聚类的数量,而是通过自动发现数据对象之间的相似性来进行聚类。
聚合层次聚类法的主要思想是将每个数据对象看作一个初始聚类,然后逐步合并相似性最高的聚类直到达到停止条件。
合并聚类的方法通常有两种:一是通过计算两个聚类之间的距离来决定哪些聚类可以合并,二是通过计算聚类的相似度来确定是否可以合并。
聚合层次聚类法的优点是它可以反映出数据对象之间的相对距离,可以揭示出数据的层次结构。
在聚合层次聚类法的应用中,它可以用于多个领域。
例如,在生物学中,聚合层次聚类法被广泛应用于基因表达数据的分析。
通过聚合层次聚类,研究人员可以发现基因表达的模式和相关基因簇。
在推荐系统中,聚合层次聚类法可以用于用户行为数据的聚类,从而为用户提供个性化的推荐。
在市场分析中,聚合层次聚类法可以用于对消费者行为进行聚类,以便企业更好地了解市场细分和消费者需求。
综上所述,聚合层次聚类法是一种有效的聚类算法,它可以自动发现数据对象之间的相似性,并构建聚类的层次结构。
它在生物学、推荐系统、市场分析等领域都有广泛的应用。
在接下来的内容中,我们将详细介绍聚合层次聚类法的原理和应用,并进行深入的讨论。
1.2 文章结构本文将围绕聚合层次聚类法展开详细的论述。
文章分为三个主要部分:引言、正文和结论。
在引言部分,我们将首先介绍本文的背景和动机,概述聚合层次聚类法的基本原理和应用领域,并明确本文的目的和重要性。
接下来,在正文部分,我们将分为两个小节来探讨聚合层次聚类法。
首先,在2.1小节中,我们将详细介绍聚合层次聚类法的原理,包括其基本概念、算法步骤和数学模型等。
通过对聚合层次聚类法的深入剖析,读者将能够清楚地了解该方法的运作机制和关键要素。
列表法与树状图法-初中数学知识点
![列表法与树状图法-初中数学知识点](https://img.taocdn.com/s3/m/b7482a75b0717fd5370cdc8e.png)
列表法与树状图法
1.列表法与树状图法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
1 / 1。
小学数学5种画图法解应用题,孩子轻松理解题意
![小学数学5种画图法解应用题,孩子轻松理解题意](https://img.taocdn.com/s3/m/f4d07f91be1e650e53ea99a1.png)
小学数学5种画图法解应用题,孩子轻松理解题意如果一个学生学会了画应用题,可以有把握地说,他一定学会了解应用题。
“画图法“可以说是帮助学生理解题意,解决应用题最有效的工具!下面一一举例:一、线段图法例:两个小同学折纸鹤,小红折的数量比小丽的3倍还多5个,她俩一共折了53个,问两个人分别折了多少个?根据题意作图:解析:看这个线段图,很容易发现53-5,得出的结果再平均分成4份,其中的1份就是小丽折的纸鹤个数。
列式计算:小丽折的个数:(53-5)÷4=12(个),小红折的个数:12 ×3+5=41(个)。
二、平面图法例:有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
解析:这道题可以画长方形图来具象化,长表示A,宽表示B,那么两数的积就是长方形的面积。
图片A、B原来两数用长方形图a表示,当A增加12即长增加12,宽不变,即B不变,如图b;当B增加12即宽增加12,长不变,也就是A不变,如图c。
所以:长方形的宽也就是B=72÷12=6,长方形的长也就是A=120÷12=10,那么,A、B的积为6×10=60。
三、立体图法例:把一个正方体切成两个长方体,表面积就增加了8平方米。
原来正方体的表面积是多少平方米?根据题意作图:图片解析:由图可知,增加的8平方米,就是正方体的2个面,每个面的面积是8÷2=4(平方米),则正方体的表面积是:4×6=24(平方米)。
四、列表图法例:有一个5分币,4个2分币,8个1分币。
要拿9分钱,有几种拿法?根据题意作图:由列表图,可以清楚看到共有7种拿法。
五、树状图法例:小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清就随便穿了两只。
小明正好穿的是同一双袜子的可能性是多少?解析:假设2双袜子为A袜、B袜,那么4只袜子分别是A1、A2、B1、B2,根据题意作图:由树状图可知,2双袜子任意搭配有12种情况,其中同一双的情况有4种,所以小明穿同一双袜子的的可能性是4/12,也就是1/3。
初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件
![初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件](https://img.taocdn.com/s3/m/71c9220ff11dc281e53a580216fc700abb68523f.png)
4
(4,1) (4,2) (4,3) (4,4)
由表格可知(x,y)所有可能出现的结果共有16种; (2)这个游戏对双方公平,理由如下:由列表法可知,在16种可能出
现的结果中,它们出现的可能性相等. ∵x+y为奇数的有8种情况,∴P(甲获胜)=
8 16
1, 2
∵x+y为偶数的有8种情况,∴P(乙获胜)= 8 1 ,
红赢;若点数之和是其他数,则两人不分胜负,那么( B )
A.小晶赢的机会大
B.小红赢的机会大
C.小晶、小红赢的机会一样大 D.不能确定
拓展提高
有三张不透明的卡片,除正面写有不同的数字外,其他 均相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张, 并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从 中随机抽取一张,上面标有的数字记作一次函数表达式中的b.
布),所以小颖获胜的概率为 3 1 93
因此,这个游戏对三人是公平的.
新知讲解
做一做:小明和小军两人一起做游戏,游戏规则如下: 每人从1、2、…、12中任意选择 一个数,然后两人各掷一次质地均匀 的骰子,谁事先选择的数等于两人掷 得的点数之和谁就获胜;如果两人选 择的数都不等于掷得的点数之和,就 再做一次上述游戏,直至决出胜负。 如果你是游戏者,你会选择哪个数?
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
中考链接
1
2
3
4
1 解:(1)列表如下: 2
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)
3
北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率
![北师大版 初三数学 九年级上册 3.1 用树状图或表格求概率](https://img.taocdn.com/s3/m/16b6177a7cd184254a353510.png)
用树状图或表格求概率学习用树状图和列表法计算涉及两步实验的随机事件发生的概率.重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率. 难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎨⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎩必然事件事件确定事件不可能事件概率随机事件列表法概率计算树状图法用频率估计概率一、用树状图求概率当一次试验要涉及3个或更多的因素时,为了不重复不漏掉地列出所有可能的结果,通常采用树状图.重点注意:画树状图时,每个“分支”的意义不同,但它们具有相同的等可能性,因此不能忽略任何一种情况,更不能遗漏任何一种情况(不重不漏). 二、用表格求概率在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可以通过列举试验结果的方法,分析出随机事件发生的概率,当一次试验要涉及两个因素(例如摇两个骰子)并且可能出现的结果数目较多时,为了不重复不漏掉地列出所有可能的结果,通常采用表格求概率.重点注意:用表格求概率的适用范围是: (1)某次试验仅涉及两个因素; (2)可能出现的结果数目较多. 用树状图与表格求概率的联系与区别 联系:用树状图或表格求概率的共同前提是: (1)各种情况出现的可能性是相等的; (2)某事件发生的概率公式均为P(A)=各种种情况出现的次某事件发事件发生;(3)在列出并计算各种情况出现的总次数和某事件发生的次数时不能重复也不能遗漏. 区别:当随机事件包含两步时,尤其是转盘游戏问题,当其中一个盘被等分成2份以上时,选用表格比较方便,当然此时也可用树状图;当随机事件包含三步或三步以上时,用树状图方便,此时难以列表.注意:在用表格求随机事件发生的概率时,要注意列表时数据或事件的顺序不能相互混淆,如(1,2)与(2,1)不是相同的事件,尽管在有些情况下它们的意义或结果是相同的.如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.(2,3)考点1 用树状图求概率【例1】 甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?【变式1】经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率: (1)三辆车全部继续直行 (2)两辆车右转,一辆车左转 (3)至少有两辆车左转在用树形图树形图与具【变式2】 某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛,八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛组合,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?练1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1,2,3,4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上的数字之积为偶数的概率是( )A.14B.12C.34D.56练2.某中学为迎接建党九十八周年,举行了以“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A.12B.13C.14D.16练3.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38B.58C.23D.12练4.有两部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择一部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果).考点2 用表格求概率【例2】同时掷两个质地均匀的骰子,计算下列事件的概率: (1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2.【变式1】某联欢会上,组织者为活跃气氛设计了以下转盘游戏:A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上是4,5,7(两个转盘除表面数字不同外,其他完全相同).选择2名同学分别转动A 、B 两个转盘,停止后指针所指数字较大的一方为获胜者,另一方需表演节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.【变式2】在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?4 游戏转盘B游戏转盘A A练1.某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的同学恰为一男一女的概率是( )A.13B.23C.49D.59练2.小亮、小莹、大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.16练3.今年某市为创评“全国文明城市”,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部的姓名分别写在四张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的三张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________.(2)请用列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.考点3. 频率估计概率类型【例3】在一个不透明的袋子里装有3个黑球和若干个白球,它们除颜色不同外其余都相同.在不允许将球倒出来数的前提下,小明为估计袋中白球个数,采用如下办法:从中随机摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色……不断重复上述过程,小明共摸球1000次,其中200次摸到黑球.根据上述数据,小明估计袋子中白球有________个.【变式1】为了估计湖里有多少条鱼,先从湖里捕捞100条鱼做上标记,然后放回湖里去,经过一段时间,带有标记的鱼完全混合于鱼群后,第二次再捕捞125条,发现其中2条有标记,那么由此可估计湖里大约有___________条鱼【变式2】在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A 、15个B 、20个C 、30个D 、35个练1.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .练2.一只不透明的袋中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和.记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表:0.34 0.330.33 解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.练3.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 ( )个黄球.考点4. 几何频率【例4】小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.练1.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.练2.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是( )A .21B.32 C .43 D .54练3.为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域内的频率稳定在常数0.25附近,请你估计不规则区域的面积.【当堂检测】1.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球.用列表法写出所有可能的结果.2.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从甲、乙、丙三个口袋中各随机地取出1个小球.你能写出所有可能的结果吗?第4题图3.两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是__________.4.小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种.5.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1)从盒子中取出一个小球,小球是红球;2)从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;3)从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同.6. 在一个不透明的布袋里装有4个标号分别为1,2,3,4的小球,它们的材质、形状、大小等完全相同,小凯从布袋里随机取出1个小球,记下数字为x,小敏从剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点P的坐标(x,y).(1)请你用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.【演练方阵】一、填空题:1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 . 二、选择题:1、同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4) 2、 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转)正数的概率为( )A .18B .16C .14D .123.从长为3,5,7,10是( )A .14B .12C .34D .1三、解答题:1、有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2、有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?3. 在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.4. 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.甲乙。
高中数学知识方法树状图
![高中数学知识方法树状图](https://img.taocdn.com/s3/m/87ea246508a1284ac85043e5.png)
正余弦定理综合
运用边角互化功能解决解三角形的具体题型
运用正余弦定理解决与几何图形结合的题型 基本几何知识
用正余弦定理处理实际生活问题
平均变化率 瞬时变化率
导数的定义
导数的加法与减法法则 导数的乘法与除法法测
常见函数的导数 复合函数求导
导数的几何意义
求切线方程
切线中含参求值问题 旋转动直线问题
简单的离散型随机变量分布列的求法 离散型随机变量的均值与方差的求法及其性质
利用排列组合求解随机变量取值及对应概率 利用数字特征解决实际应用问题
两角和与差的正余弦公式
两角和与差的正切公式 两角和差公式的运用 辅助角公式的推导及其应用 辅助角公式的运用
倍半角公式的推导
倍半角公式的运用 积化和差公式 和差化积公式
三角恒等变换及化简求值 三角函数的恒等式证明 三角恒等变换的综合问题
正弦定理及其推导
正弦定理的应用
余弦定理及其推导
余弦定理的应用
余弦定理的应用
轨迹问题 定点定值问题 弦长与面积问题
弦长与面积问题
共线比例问题 角度相关问题
四级名称 平方差公式 完全平方差公式 立方差公式 二次根式的概念 分母有理化 二次根式的意义 用零点分段法化简绝对值或求值 提公因式法
公式法 十字相乘法 分组分解法 判别式与根个数的关系 因式分解法
配方法 求根公式法 韦达定理内容
映射的概念与象与原象
映射的个数 利用一一映射解题
函数的概念 数集的区间表示法
简单的函数求值 相同函数的判断
定义域的分类 具体函数的定义域 抽象函数的定义域 定义域已知求参数范围
值域的概念
二次函数的值域
SPSS19实战之聚类分析
![SPSS19实战之聚类分析](https://img.taocdn.com/s3/m/da6dd84ecf84b9d528ea7a7f.png)
SPSS19.0实战之聚类分析这篇文章与上一篇的回归分析是一次实习作业整理出来的。
所以参考文献一并放在该文最后。
CNBlOG网页排版太困难了,又不喜欢live writer……聚类分析是将物理或者抽象对象的集合分成相似的对象类的过程。
本次实验我将对同一批数据做两种不同的类型的聚类;它们分别是系统聚类和K-mean聚类。
其中系统聚类的聚类方法也采用3种不同方法,来考察对比它们之间的优劣。
由于没有样本数据,因此不能根据其数据做判别分析。
评价标准主要是观察各聚类方法的所得到的类组间距离和组内聚类的大小。
分析数据依然采用线性回归所使用的标准化后的能源消费数据。
1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。
1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。
开始每个样品自成一类。
2.选择对称矩阵中的最小非零元素。
将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。
3.计算G1与其他样品距离。
重复以上过程直到所有样品合并为一类。
我们在SPSS中实现最短距离分析非常简单。
单击“”-->“”-->“”。
将弹出如图1-1所示的对话框,设置相应的参数即可。
图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。
在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。
在绘制中选择绘制“树状图”。
单击确定,得到以下结果。
1.表表1-1 数据汇总我们的数据经过预处理,所以缺失值个数为0.2. 由于相关矩阵过于庞大,无法在文档中贴出,得到的是一个非相似矩阵。
表1-2是样品聚类过程。
样品21和28在第一步合并为一类,它们之间的非相关系数最小,为0.211。
在下一次合并是第十步。
在第五步的时候,样品2、27、14组成一类,出现群集,样品个数为3。
聚类分析
![聚类分析](https://img.taocdn.com/s3/m/a82305a0ba0d4a7303763a26.png)
聚类分析(一)聚类分析基本概念(1)有若干个变量(或指标),例3-1的2个变量是样本均值和样本标准差;例3-2的变量是对式样、图案、颜色、材料的态度;例3-3的变量是销售增长、销售利润和新客户销售额;例3-4的变量是出生率、死亡率和婴儿死亡率;…。
这些变量称为自变量或聚类变量。
(2)有若干次观测,每次观测值由若干个数值组成,每次观测值称为1个个体或1个样品:例3-1其观测次数共有4次(甲、乙、丙、丁),其观测值都是2个值组成:第1次观测(第1个有5次观测(53-6将(31(也有用相(2>K均值聚230,20,10,0 1.26502,0.63251,0.00000,-0.63251,-1.26502;1.26502,0.63251,0.00000,-0.63251,-1.26502是3,2,1,0,-1的标准化。
X2标准化后也得到1.26502,0.63251,0.00000,-0.63251,-1.26502。
标准化后的数与单位无关。
系统聚类从“统计>多变量>观测值聚类”进入观测值聚类框;点间距离,类间距离根据情况选取。
动态聚类从“统计>多变量>K均值聚类”进入K均值聚类框;点间距离固定为Euclidean,类间距离固定为质心法,无需再选取。
(1)欧氏距离欧氏(Euclidean )距离定义为:ij d =,(,1,)i j n = (3-2)欧氏距离是聚类分析中使用最广泛的距离,上式也称为简单欧氏距离。
另一种常用的形式是平方欧氏距离,即取上式的平方,记为2ij d 。
平方欧氏距离的优点是,因为不再计算平方根,不仅理论上简单,而且提高了计算机的运算速度。
(2)Pearson 距离1,,)n , (3-3)其中k V 个变量的方差。
这个距离考虑到了各个变量的不同标准差,但未考虑各变量间可能存在的相关。
(3,)n (3-4)平方绝对值距离是对上式取平方。
(4当变量之间不相关时效果较好,如果变量i j i j (3-5)有时为了避免开平方,称-1i j i j (X -X )'S (X -X )为平方马氏距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
案例中差异度的发展
第400页,图表8.51
多元统计分析方法—教师用书
类分配的举例(人造黄油)
第400页,图表8.52
多元统计分析方法—教师用书
十种被研究的品牌(受测总体)的属性判断的平均值和方差
第401页,图表8.53
多元统计分析方法—教师用书
两类的F和t值
第403页,图表8.54
多元统计分析方法—教师用书
聚类分析的SPSS命令
第404页,图表8.55
多元统计分析方法—教师用书
聚类分析决定问题的步骤
第408页,图表8.56
多元统计分析方法—教师用书
第358-359页,图表8.5
多元统计分析方法—教师用书
二元变量合并的可能性
第359页,图表8.6
多元统计分析方法—教师用书
二元变量情况下选择的相似度的定义
第360页,图表8.7
多元统计分析方法—教师用书
二元变量情况下用于描述相似系数的原始数据矩阵
第361页,图表8.8
多元统计分析方法—教师用书
第389页,图表8.38
多元统计分析方法—教师用书
说明合并特征的“最大距离法”树状图
第390页,图表8.39
多元统计分析方法—教师用书
说明合并特征的“Ward法”树状图
第391页,图表8.40
多元统计分析方法—教师用书
“Ward法”的分配概况
第392-393页,图表8.41
多元统计分析方法—教师用书
交换方法的流程
第375页,图表8.23
多元统计分析方法—教师用书
系统聚类法中聚合法的步骤
第376页,图表8.24
多元统计分析方法—教师用书
选择的聚合法的距离计算
第377-378页,图表8.25
多元统计分析方法—教师用书
最小距离方法下新的距离的计算
第379页,图表8.26
多元统计分析方法—教师用书
“Rama”和“Weihnachtsbutter”的轮廓走向
第370页,图表8.19
多元统计分析方法—教师用书
价格等级的编码
第372页,图表8.20
多元统计分析方法—教师用书
乳制品的编码
第372页,图表8.21
多元统计分析方法—教师用书
关于选择的聚类算法的概括
第373页,图表8.22
多元统计分析方法—教师用书
Flora
1.000 -0.655 0.000
SB
1.000 -0.756
Weihnachts-butter 1.000
克劳斯·巴克豪斯/本德·埃里克森/伍尔夫·普林克/王煦逸/儒尔夫·威伯(2009):多元统计分析 方法——用SPSS工具,第一版,上海
第369页,图表8.18
多元统计分析方法—教师用书
最小距离方法下根据第一步得到的距离矩阵
第379页,图表8.27
多元统计分析方法—教师用书
最小距离方法下根据第二步得到的距离矩阵
第380页,图表8.28
多元统计分析方法—教师用书
最小距离方法的树状图
第380页,图表8.29
多元统计分析方法—教师用书
最大距离方法下第一步得到的简约距离矩阵
第381页,图表8.30
多元统计分析方法—教师用书
确定Q-相关系数的计算表格
第369页,图表8.17
多元统计分析方法—教师用书
Q-相关系数相对应的相似矩阵
Rama Homa Flora SB Weihnachtsbutter
Rama 1.000 0.500 0.000 -0.756 1.000
Homa
1.000 -0.866 0.189 0.500
决定类数的肘标准
第394页,图表8.42
多元统计分析方法—教师用书
案例中研究的品牌和变量
第395页,图表8.43
多元统计分析方法—教师用书
系统聚类法的步骤
第396页,图表8.44
多元统计分析方法—教师用书
“系统聚类法”对话框
第396页,图表8.45
多元统计分析方法—教师用书
11种乳制品平方的欧几里德距离矩阵
第397页,图表8.46
多元统计分析方法—教师用书
“最小距离法”的树状图
第397页,图表8.47
多元统计分析方法—教师用书
“方法”对话框
第398页,图表8.48
多元统计分析方法—教师用书
在“Ward法”下误差平方和的发展
第399页,图表8.49
多元统计分析方法—教师用书
“Ward法”树状图
第399页,图表8.50
第366页,图表8.13
多元统计分析方法—教师用书
根据L1-标准(城市距离测度)得出的距离矩阵
第367页,图表8.14
多元统计分析方法—教师用书
平方的欧几里德距离的距离矩阵
第367页,图表8.15
多元统计分析方法—教师用准得到的相似性的顺序
第368页,图表8.16
多元统计分析方法—教师用书
最大距离方法的树状图
第381-382页,图表8.31
多元统计分析方法—教师用书
平方欧几里德距离和误差平方和的关系
第383页,图表8.32
多元统计分析方法—教师用书
Ward 法下根据第一步得到的两倍差异度增加的矩阵
第384页,图表8.33
多元统计分析方法—教师用书
Ward 法下根据第二步得到的两倍差异增加的矩阵
第385页,图表8.34
多元统计分析方法—教师用书
Ward 法的树状图
第386页,图表8.35
多元统计分析方法—教师用书
聚类聚合法的特点
第386-387页,图表8.36
多元统计分析方法—教师用书
合并特点说明的举例
第388页,图表8.37
多元统计分析方法—教师用书
说明合并特征的“最小距离法”树状图
聚类分析的运用举例
第356页,图表8.1
多元统计分析方法—教师用书
聚类分析的步骤
第357页,图表8.2
多元统计分析方法—教师用书
原始数据矩阵的结构
第358页,图表8.3
多元统计分析方法—教师用书
距离矩阵或相似矩阵的结构
第358页,图表8.4
多元统计分析方法—教师用书
关于选择的相似性度量的概况
Tanimoto- 以及Jaccard-系数
第362页,图表8.9
多元统计分析方法—教师用书
RR系数值
第363页,图表8.10
多元统计分析方法—教师用书
简单配对系数
第364页,图表8.11
多元统计分析方法—教师用书
数据转换的举例
第365页,图表8.12
多元统计分析方法—教师用书
五种产品的原始数据矩阵