事故树分析案例

合集下载

森林火灾事故树分析法案例

森林火灾事故树分析法案例

森林火灾事故树分析法案例1. 案例简介在过去的几十年里,全球范围内的森林火灾频发,给自然环境和人类社会带来了巨大的损失。

美国作为一个林火频发的国家,自然界的罹灾率非常高,林火每年都会对社会经济和自然环境造成巨大的影响。

在美国加利福尼亚州的一个山区,最近发生了一起严重的森林火灾事故。

该事故导致了大片的森林遭到破坏,也威胁到了附近的居民和生态环境。

鉴于这一紧急情况,政府及时调动了大量的灭火人员和设备来进行灭火工作,并成功控制了火势。

但是在进行事故调查时,发现该森林火灾的起因尚不清楚,需要通过树分析法来找出事故的根本原因,以避免今后类似的事故再次发生。

2. 森林火灾事故树分析法简介树分析法是一种系统工程管理中常用的分析方法,它通过分析事故发生的各种可能原因,找出主要的事故原因,并提出相应的预防措施。

这种方法可以把复杂的事故原因层层分解,从而找出事故发生的“根本”原因。

在森林火灾事故的树分析法中,可以建立一个树状结构的图表,将火灾发生的各个环节和可能的原因都列出来,并逐步分析每一个原因的潜在影响。

通过这种方法,可以找到直接导致火灾发生的主要原因,并提出相应的预防措施,从而减少森林火灾事故的发生。

3. 森林火灾树分析法案例在对上述森林火灾事故进行树分析时,可以建立如下的树状结构图:- 火灾发生- 火势蔓延- 干燥气候- 山风助长- 火灾原因- 人为- 失火- 烟蒂乱扔- 自然因素- 雷击- 动植物行为- 灭火工作- 灭火人员- 专业水源- 有效协作- 灭火设备- 直升机- 灭火弹- 火势控制- 火线清理- 居民撤离- 资源保护通过上述树状结构的图表,可以看到森林火灾发生有着多种可能的原因,包括自然气候和人为因素,而且在火势蔓延和灭火工作方面也有很多需要考虑的因素。

因此,必须逐步分析每一个原因的潜在影响,找出导致火灾发生的主要原因,并提出相应的预防措施。

逐步分析每一个原因的潜在影响时,我们发现在火灾原因中,人为因素和自然因素都有可能导致火灾的发生。

事故树之案例分析经典实用

事故树之案例分析经典实用
生概率为:q1,q2,q3,q4。求顶上事件发生概率。
Copyright © by ARTCOM PT All rights reserved.
三、重要度分析
Company Logo
在一个事故树中往往包含有很多的基本事件,这些 基本事件并不是具有同样的重要性,有的基本事件 或其组合(割集)一出现故障,就会引起顶上事件 故障,有的则不然。一般认为,一个基本事件或最小 割集对顶上事件发生的贡献称为重要度。按照基本事 件或最小割集对顶上事件发生的影响程度大小来排 队,这对改进设计、诊断故障、制定安全措施和检 修仪表等是十分有用的。
2、概率重要度
Company Logo
基本事件发生概率变化引起顶上事件发生概率的变化
程度称为概率重要度 I g (i ) 。由于顶上事件发生概率
g函数是一个多重线性函数,只要对自变量求一次偏导, 就可得到该基本事件的概率重要度系数,
即: Ig
g qi
利用上式求出各基本事件的概率重要度系数后,就可
若遇到在少事件的最小割(径)集中出现次数少,而在多事件的最 小割(径)集中出现次数多的基本事件,或其他错综复杂的情况, 可采用下式近似判别比较:
I ( j)
xjGr
1 2nj 1
例如
Copyright © by ARTCOM PT All rights reserved.
例题
某事故树有五个最小割集 G1={X1,X3},G2={X1,X4}, G3={X2,X3,X5},G4={X2,X4,X5}, G5={X3,X6,X7} 根据第4条原则判断
Copyright © by ARTCOM PT All rights reserved.
1、结构重要度
Company Logo

事故树分析法案例

事故树分析法案例

事故树分析法案例
事故树分析法是一种系统性的分析方法,它通过对事故发生的各种可能性进行
逐级分解,找出事故发生的根本原因,从而为事故的预防和控制提供依据。

下面将以一起交通事故为例,介绍事故树分析法的应用过程。

首先,我们需要确定事故的基本事件。

在这个案例中,基本事件是车辆相撞。

接下来,我们需要确定导致基本事件发生的一系列可能性,例如驾驶员疲劳、车辆故障、道路条件等。

这些可能性构成了事故树的分支事件。

然后,我们需要对每个分支事件进行进一步的分解。

以驾驶员疲劳为例,可能
的原因包括长时间驾驶、缺乏休息、饮酒驾驶等。

这些原因构成了导致驾驶员疲劳的更加具体的事件。

同样地,对车辆故障、道路条件等分支事件也需要进行进一步的分解。

接下来,我们需要确定每个分支事件发生的概率。

这可以通过历史数据、统计
分析等方法得出。

例如,长时间驾驶导致驾驶员疲劳的概率是多少?车辆故障导致交通事故的概率是多少?这些概率值将有助于我们确定事故树中各个分支事件的重要性。

最后,我们需要对事故树进行分析,找出导致基本事件发生的最主要的原因。

在这个案例中,可能发现长时间驾驶和缺乏休息是导致驾驶员疲劳的主要原因,而车辆故障和道路条件对事故发生的影响较小。

这些结论将为我们提供预防类似事故的依据,例如加强对长途驾驶的监管、提醒驾驶员定时休息等措施。

通过以上案例,我们可以看到事故树分析法的应用过程。

它通过对事故发生的
可能性进行系统性分析,找出事故发生的根本原因,为事故的预防和控制提供依据。

希望通过这种方法,能够减少交通事故的发生,保障人民生命财产的安全。

火灾事故树案例分析

火灾事故树案例分析

火灾事故树案例分析1. 案例背景在工业生产和生活中,火灾事故常常发生,给人们的生命和财产造成严重损失。

为了更好地了解和分析火灾事故的发生原因,可以采用事故树分析方法。

事故树分析是一种系统性的方法,用来分析事故发生的原因和相关过程,以便采取预防措施,减少事故发生的可能性。

本文以一起工厂火灾事故为例,对该事故进行事故树分析,以找出事故发生的原因,并提出防范和改进措施。

2. 事故描述某化工厂发生了一起严重的火灾事故,导致多人伤亡和大量财产损失。

据初步调查,事故起因是一名工人在操作设备时使用不当引发了火灾。

在事故发生后,企业召开了紧急会议,成立了由工程师和安全专家组成的调查团队,对事故进行了深入的调查和分析。

为了更好地理解事故的原因和过程,调查团队采用了事故树分析方法。

3. 事故树分析事故树分析是一种逻辑推理的方法,通过将事故发生的顶事件和其导致该事件的诱因、过程等逐步细分,最终将事故的发生原因展示在一张树形图上。

在本次事故中,事故树的顶事件为“火灾发生”,其导致该事件发生的原因则需要进一步分析和细化。

调查团队采用了事故树分析方法,将事故发生的原因和相关因素逐一列出,并进行了深入分析。

3.1 顶事件:火灾发生在事故树分析中,火灾发生是事故的顶事件,也是需要进行深入探究的焦点。

火灾发生可能由多个因素和过程导致,调查团队针对其中的一些关键因素进行了分析。

3.2 一级因素:操作失误调查团队发现,火灾的发生与操作失误有着直接的关系。

在事故发生时,一名工人未按照操作规程和安全标准进行操作,而是采用了一种不当的方式,导致了火灾的发生。

操作失误在此次事故中扮演着至关重要的角色。

3.3 二级因素1:操作规程不清晰调查团队发现,在该化工厂的操作规程并不清晰,工人对于某些设备的操作方法和步骤并不清楚,导致了操作失误的发生。

在该环节,工厂需要进一步完善和规范操作规程,确保每名工人都能够清晰地了解和掌握操作程序。

3.4 二级因素2:安全意识薄弱另外,调查团队还发现,一些工人的安全意识很薄弱,对于操作设备时的潜在风险缺乏足够的认识和重视。

重要度分析(安全评价事故树分析结构重要度)

重要度分析(安全评价事故树分析结构重要度)
详细描述
临界重要度分析法基于对事故树中基本事件的临界性和作用 力的分析,通过综合考虑基本事件在事故树中的位置和作用 ,以及它们对顶事件发生概率的贡献程度,判断各基本事件 的结构重要度。
04 结构重要度分析的应用
在安全评价中的应用
识别关键因素
通过分析事ቤተ መጻሕፍቲ ባይዱ树的结构重要度, 可以识别出在安全评价中起关键 作用的因素,从而为预防事故提 供有针对性的措施。
促进系统改进
通过对系统进行事故树分析和重要度分析,可以发现系统 的薄弱环节和潜在的改进空间,为系统的改进和优化提供 依据和方向。
02 事故树分析基础
事故树分析的原理
01
事故树分析是一种基于逻辑的方法,用于识别和评估可能导 致事故发生的各种因素。
02
它通过构建事故树来描述事故发生的因果关系,从而确定导 致事故发生的直接和间接原因。
通过分析基本事件发生概率的变化对顶事件发生概率的影响程度,来评估各基本事件的结构重要度。
详细描述
概率重要度分析法基于概率论和数理统计原理,通过计算基本事件发生概率的变化对顶事件发生概率 的影响程度,判断各基本事件的结构重要度。
临界重要度分析法
总结词
通过分析基本事件在事故树中的位置和作用,以及它们对顶 事件发生概率的贡献程度,来评估各基本事件的结构重要度 。
制定安全策略
基于结构重要度分析的结果,可 以制定有效的安全策略,提高系 统的安全性。
优化资源配置
了解各因素的结构重要度,有助 于合理分配资源,将有限的资源 投入到最关键的环节,提高安全 管理的效果。
在风险评估中的应用
风险排序
01
通过对各个因素进行结构重要度分析,可以对风险进行排序,
确定哪些因素对系统风险影响最大。

液化气事故树案例分析

液化气事故树案例分析

(—)典型事故分析湖北襄樊某化工厂因企业破产需对3个50 1fl 卧式液化石油气储罐进行销爆处理。

液化石油气属于易燃易爆物质,一旦泄漏,极易与周围空气混合形成具有爆炸性的混合物,如遇明火就会引起火灾或爆炸,其产生的爆炸冲击波及爆炸火球热辐射破坏强度和范围极大,极易导致次生灾害。

国内外曾发生多起液化石油气火灾或爆炸事故。

如1998年3月5日西安市液化石油气站曾发生过火灾事故_2 J,造成12人死亡,32人受伤,直接经济损失达400多万元。

液化石油气(LPG)主要成分[ 是丙烷、丁烷、丙烯和丁烯,均为易燃易爆气体。

液化石油气与空气混合气的着火能量很低,为0.06~0.26 mJ。

在常温常压下液化石油气极易挥发l4 J,遇空气后体积迅速扩大250-350倍,气态液化石油气微毒,高浓度时有麻痹作用。

为了系统分析液化石油气罐在销爆处理过程中可能存在的潜在危险因素,建立了以发生火灾或爆炸事故为顶上事件的事故树,笔者运用事故树分析法对销爆过程中可能发生的火灾或爆炸事故进行安全评价,预先分析和判断设备和工人操作中可能发生的危险及可能导致燃烧爆炸灾害的条件。

其目的是采取相应的管理手段和安全防范措施,最大限度地消除危险和限制事故的严重程度,把事故可能造成的人身安全和财产的损害减少到最低限度。

事故树的建立事故树分析程序按其目的和要求的精度不同而不同,一般采用以下分析程序:1)确定分析系统,即确定系统所包括的内容及其边界范围;2)熟悉分析系统,熟悉系统的整个情况,包括系统性能、运行情况、操作步骤及各种重要参数;3)调查系统发生事故的可能性,在收集过去事故实例和事故统计的基础上,估计系统可能发生的事故;4)估计事故的危险等级,确定事故树的顶上事件;5)调查与顶上事件有关的所有事件,这些原因事件包括:设备的元件故障,原材料、半成品、工具等的缺陷;生产管理,指挥、操作上的失误和错误;以及影响顶上事件发生的环境因素;6)绘制事故树图,按照演绎分析的原则,从顶上事件起,逐级分析各自的直接原因事件,根据彼此间的逻辑关系,用逻辑门的连接方法,上一层事件是下一层事件的必然结果,下一层事件是上一层事件的充分条件;7)事故树的定性分析,主要内容有:计算事故树的最小割集或最小径集;计算基本事件的结构重要度;分析各事故类型的危险性,确定防范措施;8)事故树的定量分析,主要内容有:确定引起事故发生的各基本事件的发生概率;计算事故树顶上事件的概率;计算基本事件的概率重要度和l临界重要度;9)安全评价,根据顶上事件可能发生的事故概率及系统严重度确定系统损失率,评价系统的危险性,找出降低顶上事件事故概率的最佳方式。

事故树分析范例

事故树分析范例

事故树分析范例事故树分析案例起重作业事故树分析一、概述在工矿企业发生的各种类型的工伤事故中,起重伤害所占的比例是比较高的, 所以,起重设备被列为特种设备,每二年需强制检测一次。

本工程在施工安装、生产检修中使用起重设备。

伤害事故的因素好多,在众多的因素中,找出问题的关键,采取最有效的安全技术措施来防止此类事故的发生,最好的方法是对起重机事故采取事故树分析方法,现对“起吊物坠落伤人〃进行事故树分析。

二、起重作业事故树分析1、事故树图图6-2起吊物坠落伤人事故树T一一起重物坠落伤人;A 1 ——人与起吊物位置不当; A 2 ——起吊物坠落;B 1 一一人在起吊物下方;B2 一一人距离起吊物太近;B3一一吊索物的挂吊部位缺陷;B4一一吊索、吊具断裂;B 5 ----- 起吊物的挂吊部位缺陷; B 6 ------- 司机、挂吊工协同缺陷;B7 一一起升机构失效;B8 一一起升绳断裂;B9——吊钩断裂;Cl——吊索有滑出吊钩的趋势;C2——吊索、吊具损坏;C3一一司机误会挂吊工手势;D 1 ——挂吊不符合要求; D 2 ——起吊中起吊物受严重碰撞;X 1 一一起吊物从人头经过;X 2 一一人从起吊下方经过;X 3 一一挂吊工未离开就起吊;X 4 一一起吊物靠近人经过;X5——吊钩无防吊索脱出装置;X6 ——捆绑缺陷;X 7——挂吊不对称;X 8——挂吊物不对;X9 一一运行位置太低;X 10 一一没有走规定的通道;X 11——斜吊;X12——运行时没有鸣铃;X 13 一一司机操作技能缺陷;X 14 一一制动器间隙调整不当;X 15 一一吊索吊具超载;X 16 一一起吊物的尖锐处无衬垫;X 17 一一吊索没有夹紧;X 18 一一起吊物的挂吊部位脱落;X 19 一一挂吊部位结构缺陷;X 20 一一挂吊工看错指挥手势;X 21 一一司机操作错误;X 22 一一行车工看错指挥手势;X 23 一一现场环境照明不良;X 24 一一制动器失效;X 25 一一卷筒机构故障;X 26 一一钢丝磨损;X 27——超载;X 28——吊钩有裂纹;X 29——超载2、计算事故树的最小割集、最小径集,该事故树的结构函数为:T=A 1 A 2式⑴=(B1+B2 )・(B 3 +B 4 +B 5 +B 6 +B 7 +B 8 =B 9 )=[(X 1+X2 )+(X 3+X 4 ]]∙[(X 5-Cl )+(X 15 +C 2 )+(X 18 +X 19 )+(X 20 +X 21 +C 3 )+(X 24 ・X 25 )+(X 26 +X 27 )+(X 28 +X 29 )]=(X 1 +X 2 +X 3 +X 4 )∙[X 5 ∙(D 1 +aD 2 ÷D 3 )+X 15 +(X 16 +X 17 )+(X 18 +X 19)+X20 +X21 +(X 22 +X 23 )+X 24 ∙X 25 +X 26 +X 27 +X 28 +X 29 ]=(X 1 +X 2 +X 3 +X 4 )∙[X 3 ・(X 6 +X 7 +X 8 ÷aX 9 +aX 10 ÷aX 11 +aX 12 +X 13 ∙X 14 + X 15 +X 16 +X 17 +X 18 +X 19+X 20 +X 21 +X 22 +X 23 +X 24 +X 25 +X 26 +X 27 +X 28 ]]=X 1X5X6+X 1X5X7+X 1X5X8+aX 1X5X9+aXlX5X 10+aXlX5X11 +aX 1 X 5 X 12 +X 1 X 5 X 13 X 14 +X 1 X 15+X 1 X 16 +X 1 X 17 +X 1 X 18 +X 1 X 19 +X 1 X 20 +X 1 X 21 +X 1 X 22 ÷X 1 X23 +X 1 X 24 +X 1 X 25 +X 1 X 26 +X 1 X 27 +X IX 28+ X2X5X6+X 2X5X7+X 2X5X8+aX 2X5X9+aX 2X5X10 +aX 2 X 5 X 11 +aX 2 X 5 X 12 +X 2 X 5 X 13 X 14 +X 2 X 15 +X 2 X 16 ÷X 2 X 17 +X 2 X 18 ÷X 2 X 19 ÷X 2 X 20 +X 2 X 21 +X 2 X 22 +X 2 X 23 +X 2 X 24 X 25 +X 2 X 26 +X 2 X 27+X 2X 28+ X3X5X6+X 3X5X7+X 3X5X8+aX 3X5X9+aX 3X5X10 +aX 3 X 5 X 11 +aX 3 X 5 X 12 +X 3 X 5 X 13 X 14+X 3 X 15 +X 3 X 16 +X 3 X 17 +X 3 X 18 +X 3 X 19 +X 3 X 20 +X 3 X 21 +X 3 X 22 +X 3 X 23 +X 3 X 24 +X 3 X 25 +X 3 X 26+X 3X27+X 3X28+X 4X5X6+X 4X5X7+X 4X5X8+aX 4X5X9+aX 4X 5 X 10 +aX 4 X 5 X 11 +aX 4 X 5 X 12+X 4 X 5 X 13 X 14 +X 4 X 15 +X 4 X 16 +X 4 X 17 +X 4 X 18 +X 4 X 19 +X 4 X20 +X 4 X 21 +X 4 X 22 +X 4 X 23 +X 4 X 24 X 25+X4X27+X4X28在事故树中,假如所有的基才能件都发生,则顶上事件必然发生。

高校火灾事故树分析案例

高校火灾事故树分析案例

高校火灾事故树分析案例1. 简介火灾是一种危害严重的事故,发生在高校会造成极大的人员伤亡和财产损失。

因此,对高校火灾事故进行树分析是非常必要的。

本文以某高校火灾事故为例,进行树分析,探讨该事故发生的原因,以及如何防范和应对类似的事故。

2. 事故概述某高校火灾事故发生在学生宿舍楼,事故造成了严重的人员伤亡和财产损失。

事故发生时,宿舍楼内的学生正在熟睡,没有及时发现火情,导致了事故的严重后果。

3. 事故树分析3.1. 事故树事故树是一种用来描述事故发生的逻辑关系的图形工具。

在进行树分析前,首先需要制定事故树,明确事故的原因和事件。

3.2. 事故树的构建事故树的构建是整个树分析的基础,需要将事故的原因和事件进行细致地分类和整理。

在本案例中,事故的树分析可以按照以下几个步骤进行:1. 确定主事件:火灾发生2. 分析主事件的直接原因:短路3. 分析短路发生的原因:电线老化4. 分析电线老化的原因:缺乏定期检查和维护通过以上步骤的分析,可以得出造成事故的根本原因是缺乏定期检查和维护。

这也是一个typical的和实际有些相似的事实。

3.3. 事故树的结果通过事故树的构建和分析,可以得出以下结果:缺乏定期检查和维护是造成该高校火灾事故的根本原因。

4. 防范和应对措施在树分析之后,我们需要思考如何防范和应对类似的火灾事故。

基于对该事故的分析,我们可以采取以下措施:1. 建立专门的宿舍楼巡查制度,定期检查电线和其他设备,以及及时更换老化的电线。

2. 开展火灾安全教育和演习活动,增强学生的火灾安全意识和自救能力。

3. 设置火灾报警设备,以便在发生火灾时及时报警并进行疏散。

4. 安装灭火设备,如灭火器和消防栓,提高应急处置能力。

5. 建立火灾事故应急预案,提前制定好救援措施和应对方案,以便发生事故时能够迅速响应。

5. 结论通过对某高校火灾事故的树分析,并针对树分析结果提出了一系列防范和应对措施。

这些措施不仅可以避免类似的事故再次发生,也可以提高高校师生的火灾安全意识和自救能力。

事故树分析案例

事故树分析案例

此事故树的最小割集是:R2R7R1事件的名称是:无值班人员;自动喷淋系统失效;报警系统失效;R5R7R6事件的名称是:手提式干粉灭火器失效;自动喷淋系统失效;消防栓失效;R3R7R1事件的名称是:值班人员未发现;自动喷淋系统失效;报警系统失效;R4R7R1事件的名称是:局部火灾屏蔽;自动喷淋系统失效;报警系统失效;此事故树的最小割集是:R2R7R1事件的名称是:无值班人员;自动喷淋系统失效;报警系统失效;R5R7R6事件的名称是:手提式干粉灭火器失效;自动喷淋系统失效;消防栓失效;R3R7R1事件的名称是:值班人员未发现;自动喷淋系统失效;报警系统失效;R4R7R1事件的名称是:局部火灾屏蔽;自动喷淋系统失效;报警系统失效;此事故树的最小径集是:R2R5R3R4事件名称是:无值班人员;手提式干粉灭火器失效;值班人员未发现;局部火灾屏蔽;R7事件名称是:自动喷淋系统失效;R2R6R3R4事件名称是:无值班人员;消防栓失效;值班人员未发现;局部火灾屏蔽;R1R6事件名称是:报警系统失效;消防栓失效;R1R5事件名称是:报警系统失效;手提式干粉灭火器失效;此事故树的最小割集是:R2R7R1事件的名称是:无值班人员;自动喷淋系统失效;报警系统失效;R5R7R6事件的名称是:手提式干粉灭火器失效;自动喷淋系统失效;消防栓失效;R3R7R1事件的名称是:值班人员未发现;自动喷淋系统失效;报警系统失效;R4R7R1事件的名称是:局部火灾屏蔽;自动喷淋系统失效;报警系统失效;此事故树的最小径集是:R2R5R3R4事件名称是:无值班人员;手提式干粉灭火器失效;值班人员未发现;局部火灾屏蔽;R7事件名称是:自动喷淋系统失效;R2R6R3R4事件名称是:无值班人员;消防栓失效;值班人员未发现;局部火灾屏蔽;R1R6事件名称是:报警系统失效;消防栓失效;R1R5事件名称是:报警系统失效;手提式干粉灭火器失效;此事故树的结构重要度是:1(2)=0.0833********无值班人员的结构重要度是 :0.0833********1(7)=0.333333333333自动喷淋系统失效的结构重要度是:0.3333333333331(1)=0.25报警系统失效的结构重要度是:0.251(5)=0.0833********手提式干粉灭火器失效的结构重要度是00833333333331(6)=0.0833********消防栓失效的结构重要度是:0.0833********1(3)=0.0833********值班人员未发现的结构重要度是:0.0833********1(4)=0.0833********局部火灾屏蔽的结构重要度是:0.0833********结构重要度顺序为:1(7)>1(1)>1(2)=1(5)=1(6)=1(3)=1(4)事件名称是:自动喷淋系统失效 >报警系统失效 >无值班人员=手提式干粉灭火器失效=消防栓失效=值班人员未发现=局部火灾屏蔽顶上事件发生的概率是:0.000004R1的概率重要度是:0.0003事件名称:报警系统失效的概率重要度是:0.0003R2的概率重要度是:0.0001事件名称:无值班人员的概率重要度是:0.0001R3的概率重要度是:0.0001事件名称:值班人员未发现的概率重要度是:0.0001R4的概率重要度是:0.0001事件名称:局部火灾屏蔽的概率重要度是:0.0001R5的概率重要度是:0.0001事件名称:手提式干粉灭火器失效的概率重要度是:0.0001R6的概率重要度是:0.0001事件名称:消防栓失效的概率重要度是:0.0001R7的概率重要度是:0.0004事件名称:自动喷淋系统失效的概率重要度是:0.0004概率重要度顺序为:lg(7)>lg(1)>lg(3)=lg(4)=lg(5)=lg(6)=lg(2)事件名称是:自动喷淋系统失效 >报警系统失效 >值班人员未发现=局部火灾屏蔽=手提式干粉灭火器失效= 消防栓失效=无值班人员R1的概率重要度是:0.0003事件名称:报警系统失效的概率重要度是:0.0003R2的概率重要度是:0.0001事件名称:无值班人员的概率重要度是:0.0001R3的概率重要度是:0.0001事件名称:值班人员未发现的概率重要度是:0.0001R4的概率重要度是:0.0001事件名称:局部火灾屏蔽的概率重要度是:0.0001R5的概率重要度是:0.0001事件名称:手提式干粉灭火器失效的概率重要度是:0.0001R6的概率重要度是:0.0001事件名称:消防栓失效的概率重要度是:0.0001R7的概率重要度是:0.0004事件名称:自动喷淋系统失效的概率重要度是:0.0004概率重要度顺序为:lg(7)>lg(1)>lg(3)=lg(4)=lg(5)=lg(6)=lg(2)事件名称是:自动喷淋系统失效 >报警系统失效 >值班人员未发现=局部火灾屏蔽=手提式干粉灭火器失效= 消防栓失效=无值班人员R1的危险重要度是:0.75事件名称:报警系统失效的危险重要度是:0.75R2的危险重要度是:0.25事件名称:无值班人员的危险重要度是:0.25R3的危险重要度是:0.25事件名称:值班人员未发现的危险重要度是: 0.25R4的危险重要度是:0.25事件名称:局部火灾屏蔽的危险重要度是:0.25R5的危险重要度是:0.25事件名称:手提式干粉灭火器失效的危险重要度是:0.25R6的危险重要度是:0.25事件名称:消防栓失效的危险重要度是:0.25R7的危险重要度是:1.事件名称:自动喷淋系统失效的危险重要度是: 1.危险重要系数顺序为: Cg(7)>Cg(1)>Cg(3)=Cg(4)=Cg(5)=Cg(6)=Cg(2)事件名称是:自动喷淋系统失效 >报警系统失效 >值班人员未发现=局部火灾屏蔽=手提式干粉灭火器失效 = 消防栓失效=无值班人员。

事故树分析案例

事故树分析案例

事故树分析案例近年来,事故树分析作为一种系统性的事故分析方法,被广泛应用于工业生产、交通运输、航空航天等领域。

事故树分析通过对事故发生的各种可能性进行逻辑推演,帮助人们找出事故发生的根本原因,从而采取有效的措施来避免类似事故再次发生。

下面我们将通过一个真实的事故树分析案例来深入了解这一方法的应用。

某化工企业发生了一起严重的化学品泄漏事故,导致了严重的人员伤亡和环境污染。

经过事故调查人员的现场勘查和资料搜集,他们利用事故树分析方法对该事故进行了深入分析。

首先,调查人员确定了该化工企业的生产车间、设备、操作人员等作为事故的基本事件。

然后,他们根据现场调查和相关资料,构建了一张完整的事故树。

在这张事故树上,他们将事故的基本事件作为树的叶子节点,将导致这些基本事件发生的各种可能性作为树的分支节点,形成了一张完整的逻辑推演图。

在事故树分析中,调查人员发现了导致该化工企业事故发生的根本原因。

首先,他们发现了操作人员在操作过程中存在疏忽大意的情况,导致了设备操作不当;其次,他们发现了企业在设备维护保养方面存在着管理漏洞,导致了设备故障未能及时发现和处理;最后,他们还发现了企业在应急预案和人员培训方面存在不足,导致了事故发生后的应急处置不当。

通过这些分析,调查人员找出了该化工企业事故发生的根本原因,为进一步制定预防措施提供了重要依据。

基于事故树分析的结果,该化工企业采取了一系列有效的预防措施。

首先,他们加强了对操作人员的培训和管理,提高了操作人员的安全意识和操作技能;其次,他们加强了对设备的维护保养工作,建立了完善的设备管理制度和维护记录;最后,他们完善了企业的应急预案,加强了人员的应急演练,提高了企业应对突发事件的能力。

通过事故树分析的深入应用,该化工企业成功地避免了类似事故再次发生。

事故树分析方法不仅帮助企业找出了事故发生的根本原因,还为企业提供了有效的预防措施,具有很高的实用价值。

综上所述,事故树分析作为一种系统性的事故分析方法,能够帮助人们深入分析事故发生的根本原因,并提供有效的预防措施。

事故树分析案例

事故树分析案例

一、木工平刨伤手事故树分析木工平刨伤手事故是发生较为频繁的事故,对其进行事故树分析具有典型意义。

1.木工平刨伤手事故树通过对木工平刨伤手事故的原因进行深入分析,编制出事故树,如图5-57所示。

D2图5-57 木工平刨伤手事故树分析图2.事故树定性分析(1)最小割集与最小径集经计算,割集为9个(最小割集亦为9个);同样求得:径集为3个(最小径集亦为3个)。

做出原事故树的成功树:写出成功树的结构式,并化简,求取其最小割集:T’=A1’+X11’=B1’X8’X9’X10’+X11’=(C’+X1’)X8’X9’X10’+X11’=(C’+X1’)X8’X9’X10’+X11’=……= X1’X8’X9’X10’+X2’X3’x4’X5 ’X6’X7’X8’X9’X10’+X11’从而得到事故树的最小径集为:{}{}{}11310987654322109811,,,,,,,,,,,,,x P x x x x x x x x x P x x x x P ===图5-58 木工平刨伤手事故树成功树 (2)结构重要度分析I Φ(11)> I Φ(8)=I Φ(9)= I Φ(10)> I Φ(1)>I Φ(2)= I Φ(3)= I Φ(4)=I Φ(5) =I Φ(6)= I Φ(7)结构重要度顺序说明:x11(安全装置故障失灵)是最重要的基本事件,x8,x9,x10是第二位的,x1是第三位的,x2,x3,x4 x5,x6 x7则是第四位的。

也就是说,提高木工平刨安全性的根本出路在于安全装置。

其次,在开机时测量加工件x9、修理x8刨机和清理碎屑、杂物x10,是极其危险的。

再次,直接用于推加工木料x1相当危险,一旦失手就可能接近旋转刀口。

第四位的事件较多,又都是人的操作失误,往往是难以避免的,只有加强技术培训和安全教育才能有所减少。

如果把人作为系统的一个元件来处理,则这个元件的可靠性最低。

火灾事故树分析案例

火灾事故树分析案例

火灾事故树分析案例火灾事故是常见的安全问题之一,在我的职业生涯中,我因参与火灾事故的调查而学习了火灾事故树分析技术。

本文将介绍一个实际发生的火灾事故树分析案例,并讨论如何使用该技术来预防火灾事故的发生。

案例:火灾事故树分析一座商业建筑的储藏室发生了火灾,导致财产损失,并对业主造成了严重的影响。

对火灾事故进行的调查揭示了,火灾是由于一个储物柜内的电器损坏而导致的。

当电器故障时,其内部温度升高,引起了贮藏在柜内的易燃材料的自燃反应,最终引发了火灾。

在进行火灾事故树分析时,可以采用“自下而上”的方法来逐步推导火灾事故的根本原因。

首先,经过观察和调查,我们确定了火灾事故的起始条件,即电器损坏。

接下来,我们列出可能导致这一事件发生的所有因素,列出一个完整的事件树。

图1 火灾事故事件树如图1所示,当电器故障时,它可能在不同的情况下导致不同的后果。

针对每种情况,我们都列出了可能导致它发生的所有因素。

例如,当电器损坏时,它可能在储物柜内自行熄灭,也可能引发一场大火。

这两种情况有两种不同的原因:储存的物品和储物柜内部的众多因素。

我们可以针对每个节点进一步推导,并确定它的唯一可能出现的原因,并继续这个过程,直到确定每个节点的唯一可能导致其发生的原因为止。

例如,对节点“储存的物品起火”继续推导,可以得到下面的事件树:图2 储存的物品起火事件树当储存的物品起火时,它可能在不同的情况下导致不同的后果。

例如,火可能很快熄灭,也可能烧毁整个储藏室。

对于每种可能的情况,有很多因素可能导致它的发生,如各种易燃物质的密度,贮藏条件的潮湿程度,空气中的氧浓度等等。

我们可以使用树形图来表示所有可能的因素和它们之间的关系。

如下图所示,当存储的物品起火时,各种因素相互影响,最终导致了火灾的发生。

图3 火灾事故树通过火灾事故树的推导,我们发现,虽然只有一个电器损坏是导致这起火灾的根本原因,但是许多因素在其之后影响了火灾的后果,并使火灾的扩散和燃烧变得更加严重。

景区火灾事故树案例分析

景区火灾事故树案例分析

景区火灾事故树案例分析一、案例背景某市政府因为旅游业的发展战略和目标制定的需要,决定在市郊的一个山区打造一个名为“风景秀丽”的旅游度假区,该度假区定位为大型的森林度假区,景区内有着绵延的山脉,清澈的溪流,浓密的树林以及各种野生动物。

为了吸引更多的游客,景区内还设有各种游乐项目以及各种住宿设施,力求打造成为一个综合性的度假区。

在景区建设过程中,为了满足各种游客的需求,设施设备也是一个必不可少的环节。

因此,在景区内设置了多处停车场、餐馆、酒店以及一些游乐设施。

但是,鉴于景区的特殊地貌和气候,政府也重点加强了对火灾的防范措施,设施设备的建设上也是以防火为主要考虑因素。

然而,尽管政府在建设过程中严格控制了相关规范和标准,但是,从2018年至今,该景区一共发生了5起火灾事故,其中造成人员伤亡和财产损失的事故占了一半以上。

以下通过对其中一起火灾事故的树因分析,探讨景区火灾事故的根本因素及预防措施。

二、火灾事故树分析2.1 事件描述2018年7月1日下午5点左右,景区内一家餐馆突然发生火灾,由于餐馆内有大量的游客和员工,火势蔓延迅速,最终造成30人死亡,60人受伤,餐馆内的设施和大量的桌椅等都被烧毁,直接经济损失高达200万元。

2.2 事故树分析(1)顶事件:景区餐馆发生火灾(2)直接原因:厨房油烟不慎引燃(3)次生事件:人员伤亡和财产损失(4)基本事件:餐馆内的员工和游客(5)逻辑事件:火势蔓延、无法及时疏散(6)条件事件:缺少消防设备和应急预案2.3 事故树的根因分析根据以上的事故树分析,可以得出以下的根因:(1)厨房设备不合格:餐馆内的厨房设备存在油烟处理不当的问题,导致油烟在无人监管的情况下不慎引燃,从而引发了火灾。

(2)景区内的应急预案不完善:景区内缺乏消防设备和应急预案,员工和游客在火灾发生时无法及时疏散和紧急避险,导致了人员伤亡和财产损失。

三、火灾事故原因分析3.1 原因一:景区管理不到位景区管理人员对餐馆内的消防设备和设施的安全性监管不到位,导致餐馆内的厨房设备不合格,油烟处理不当,最终引发了火灾。

事故树分析火灾事故案例

事故树分析火灾事故案例

事故树分析火灾事故案例1. 简介火灾是一种常见的事故,其严重性可导致人员伤亡和财产损失。

为了有效地预防和管理火灾事故,需要对火灾事故进行深入的分析和研究。

事故树分析是一种系统的方法,可以有效地识别事故的原因和追溯到根本的原因。

在这篇文章中,将以一起火灾事故为例,通过事故树分析方法来分析火灾事故的原因及其根本原因,并提出预防和控制火灾事故的建议。

2. 案例描述该火灾事故发生在一家化工厂的储存仓库。

事故发生时,工厂内有大量的易燃和易爆化学品,火灾发生后,爆炸产生了严重的后果。

造成了严重的人员伤亡和财产损失。

事故发生前的操作记录显示,工厂员工在工作时未能严格遵守安全操作规程,有员工在擅自使用明火,也未进行必要的检查和维护工作。

此外,由于化工厂存储设施的设计存在缺陷,没有有效的防火措施,火灾迅速蔓延并引发爆炸,导致事故的发生。

3. 事故树分析在这起火灾事故中,可以利用事故树分析方法来分析事故的原因。

首先,需要对事故的发生进行深入的了解和分析。

根据记录和现场调查,可以得出火灾事故的主要原因:操作不当、设施缺陷和管理失误。

接下来,需要根据这些主要原因来构建事故树。

首先,构建一个事件树,列出导致火灾事故的主要事件和可能的结果。

然后,根据这些事件和结果,建立对应的因果关系,构建事故树。

在构建事故树的过程中,需要确定导致每个事件发生的基本事件,以及它们之间的逻辑关系。

在上述案例中,一个可能的事故树如下所示:1. 正常操作- 未严格遵守安全操作规程- 使用明火- 未进行检查和维护工作2. 设施缺陷- 未设置有效的防火设施- 设施设计存在缺陷3. 管理失误- 未对员工进行充分的安全教育和培训- 未建立和执行有效的安全管理制度在事故树分析中,需要进一步分析每个基本事件的可能性和严重性。

根据分析结果,可以确定造成火灾事故的主要原因和导致这些原因发生的基本事件。

4. 分析结果根据事故树分析的结果,可以得出火灾事故的主要原因是操作不当、设施缺陷和管理失误。

723事故树分析案例

723事故树分析案例

723事故树分析案例第1篇:723动车追尾事故723动车追尾事故关键词:追尾、透明度、态度、领导、不足、完善、应急2011年7月23日晚上20点30分左右,北京南站开往福州站的D301次动车组列车运行至甬温线上海铁路局管内永嘉站至温州南站间双屿路段,与前行的杭州站开往福州南站的D3115次动车组列车发生追尾事故,导致D301次1、2、3列车厢侧翻,从高架桥上坠落,毁坏严重,4车厢悬挂桥上,D3115次15、16车厢损毁严重。

事故造成D3115次列车第15、16位车辆脱轨,D301次列车第1至5位车辆脱轨(其中第2、3位车辆坠落瓯江特大桥下,第4位车辆悬空,第1位车辆除走行部之外车头及车体散落桥下;第1位车辆走行部压在D3115次列车第16位车辆前半部,第5位车辆部分压在D3115次列车第16位车辆后半部),动车组车辆报废7辆、大破2辆、中破5辆、轻微小破15辆,事故路段接触网塌网损坏、中断上下行线行车32小时35分。

[7月29日,事故已造成40人死亡200多人受伤。

40名遇难者身份确认,其中有3名外籍人士。

D301次列车司机当场死亡,胸口被车闸刺穿,可以推论司机通过肉眼看到前面的列车时,做过刹车的处理,但是已经来不及了。

温家宝总理2011年7月28日上午实地察看事故现场并召开中外记者会。

事故遇难人员赔偿救助标准为91.5万元。

2011年7月24日14时左右,张德江主持召开现场会,指示成立事故救援和善后处置工作指挥部,由浙江省省长吕祖善任总指挥,铁道部部长盛光祖任副总指挥。

会上宣布成立国务院“7·23”甬温线特别重大铁路交通事故调查组,由安全监管总局局长骆琳任组长。

该调查组全体会议28日在温州宣布了调查组组成人员名单,并明确了调查组的主要工作职责。

2011年12月28日,国务院召开常务会议,认定为一起设计缺陷、把关不严、应急处置不力等因素造成的责任事故,刘志军、张曙光负主要责任。

在这次事故的公关处理中,我们可以看出此次的处理过程是公开、透明的。

厂房火灾事故树分析案例

厂房火灾事故树分析案例

厂房火灾事故树分析案例一、事故概况2018年9月12日,深圳某电子厂发生了一起严重火灾事故。

事故发生时,大约有200名工人在厂房内工作,造成了数十人死亡和伤亡,严重影响了工厂的生产和经营。

据初步调查,事故原因可能与电线短路引发的火灾有关。

然而,火灾的发生并非单一原因所致,而是多种因素的综合作用。

为了更好地了解事故的原因和过程,我们可以利用事故树分析方法对该厂火灾事故进行深入分析。

二、事故树分析1. 事故事件:电子厂火灾2. 事故树的事件:火灾、电线短路3. 事故树的原因:a. 直接原因:电线短路b. 隐性原因:电线老化、维护不良、用电量过大、抗火能力不足4. 事故树的中间事件:a. 电线老化、维护不良b. 用电量过大c. 抗火能力不足5. 事故树的基本事件:a. 电线老化- 电线长期使用,老化速度增加b. 维护不良- 缺少定期检查和维护c. 用电量过大- 厂房用电量超负荷,导致电线工作过热d. 抗火能力不足- 厂房内缺少灭火设备,火灾扩散速度过快6. 事故树的根本事件:a. 电线老化、维护不良、用电量过大、抗火能力不足7. 事故树的纵横关系:a. 事故根本事件与中间事件之间存在互相影响关系b. 电线老化、维护不良引起电线短路c. 用电量过大加剧电线老化和维护不良的风险d. 抗火能力不足导致火灾无法迅速控制8. 事故树的证据:根据事故现场勘查以及相关资料分析,可以得出如下结论:a. 事故发生前,电线局部老化且缺少定期维护b. 厂房用电量超负荷,产生过热现象c. 厂房内缺乏有效的灭火设备和灭火训练9. 事故树的分析结果与应对措施:基于事故树分析的结果,我们可以提出以下改进和应对措施:a. 对厂房内的电线进行定期检查和维护,及时更换老化电线b. 控制用电量,避免产生过热现象c. 加强厂房内的火灾防范措施,增加灭火器和火灾逃生通道d. 加强员工的火灾应急培训,确保员工在发生火灾时能够快速、有序地撤离10. 结论该电子厂火灾事故的发生是多种因素的综合作用所致,而不是单一原因所导致的。

事故树分析范例

事故树分析范例

事故树分析案例起重作业事故树分析一、概述在工矿企业发生的各种类型的工伤事故中,起重伤害所占的比例是比较高的,所以,起重设备被列为特种设备,每二年需强制检测一次。

本工程在施工安装、生产检修中使用起重设备。

伤害事故的因素很多,在众多的因素中,找出问题的关键,采取最有效的安全技术措施来防止此类事故的发生,最好的方法是对起重机事故采取事故树分析方法,现对“起吊物坠落伤人”进行事故树分析。

二、起重作业事故树分析1、事故树图图6-2 起吊物坠落伤人事故树T——起重物坠落伤人;A1——人与起吊物位置不当;A2——起吊物坠落;B1——人在起吊物下方;B2——人距离起吊物太近;B3——吊索物的挂吊部位缺陷;B4——吊索、吊具断裂;B5——起吊物的挂吊部位缺陷;B6——司机、挂吊工配合缺陷;B7——起升机构失效;B8——起升绳断裂;B9——吊钩断裂;C1——吊索有滑出吊钩的趋势;C2——吊索、吊具损坏;C3——司机误解挂吊工手势;D1——挂吊不符合要求;D2——起吊中起吊物受严重碰撞;X1——起吊物从人头经过;X2——人从起吊下方经过;X3——挂吊工未离开就起吊;X4——起吊物靠近人经过;X5——吊钩无防吊索脱出装置;X6——捆绑缺陷;X7——挂吊不对称;X8——挂吊物不对;X9——运行位置太低;X10——没有走规定的通道;X11——斜吊;X12——运行时没有鸣铃;X13——司机操作技能缺陷;X14——制动器间隙调整不当;X15——吊索吊具超载; X16——起吊物的尖锐处无衬垫;X17——吊索没有夹紧;X18——起吊物的挂吊部位脱落;X19——挂吊部位结构缺陷;X20——挂吊工看错指挥手势;X21——司机操作错误;X22——行车工看错指挥手势;X23——现场环境照明不良;X24——制动器失效;X25——卷筒机构故障;X26——钢丝磨损;X27——超载;X28——吊钩有裂纹;X29——超载2、计算事故树的最小割集、最小径集,该事故树的结构函数为:T=A1A2式(1)=( B1+B2)·(B3+B4+B5+B6+B7+B8=B9)=[(X1+X2)+(X3+X4)]·[(X5·C1)+(X15+C2)+(X18+X19)+(X20+X21+C3)+( X24·X25)+(X26+X27)+(X28+X29)]=(X1+X2+X3+X4)·[X5·(D1+aD2+D3)+X15+(X16+X17)+(X18+X19)+X20+X21+(X22+X23)+X24·X25+X26+X27+X28+X29]=(X1+X2+X3+X4)·[X3·(X6+X7+X8+aX9+aX10+aX11+aX12+X13·X14+ X15+X16+X17+X18+X19+X20+X21+X22+X23+X24+X25+X26+X27+X28)]=X1X5X6+X1X5X7+X1X5X8+aX1X5X9+aX1X5X10+aX1X5X11+aX1X5X12+X1X5X13X14+X1X15+X1X16+X1X17+X1X18+X1X19+X1X20+X1X21+X1X22+X1X23+X1X24+X1X25+X1X26+X1X27+X1X28+X2X5X6+X2X5X7+X2X5X8+aX2X5X9+aX2X5X10+aX2X5X11+aX2X5X12+X2X5X13X14+X2X15+X2X16+X2X17+X2X18+X2X19+X2X20+X2X21+X2X22+X2X23+X2X24X25+X2X26+X2X27+X2X28+X3X5X6+X3X5X7+X3X5X8+aX3X5X9+aX3X5X10+aX3X5X11+aX3X5X12+X3X5X13X14+X3X15+X3X16+X3X17+X3X18+X3X19+X3X20+X3X21+X3X22+X3X23+X3X24+X3X25+X3X26+X3X27+X3X28+X4X5X6+X4X5X7+X4X5X8+aX4X5X9+aX4X5X10+aX4X5X11+aX4X5X12+X4X5X13X14+X4X15+X4X16+X4X17+X4X18+X4X19+X4X20+X4X21+X4X22+X4X23+X4X24X25+X4X27+X4X28在事故树中,如果所有的基本事件都发生,则顶上事件必然发生。

案例-事故树分析方法

案例-事故树分析方法
掌握
事故树分析的基本程序:
(1)明确系统,熟悉系统 (2)收集与分析研究对象有关 的资料 (3)确定顶端 (最终) 事件 (4)编制事故树,从顶端事件 起进行演绎分析,逐级找出所 有直接原因事件,直到要分析 的深度,按照逻辑关系,画出 事故树 (5)修改并完善事故树 (6)进行事故树定性分析,求 最小割集 (7)制定防灾对策,完善系统
可用开关电路加以说明。左图是一联系统,若把灯
亮作为顶上事件,则开关K1和开关K2必须同时关合,电灯才 亮(与门);反之,若把灯不亮作为顶上事件,则系统中开
关K1和K2任一个断开,电灯不亮(或门)。同样,右图是一并 联系统,若把灯亮作为顶上事件,则开关K1和 K2任一关合, 则电灯亮(或门);反之,开关K1和K2同时断开,则电灯不亮 (与门)。
条件门分条件与门和条件或门两种, 条件与门表示输入事件B1、B2不仅 同时发生,而且还必须满足条件a, 才会有输出事件A发生,否则就不发 生。a是指输出事件A发生的条件, 而不是事件。条件或门表示输入事 件B1、B2至少有一个发生,在满足 条件a的情况下,输出事件A才发生。
转出符号。表示这个部分树由此转 出,并在三角形内标出对应的数字。 以表示向何处转移。
转人符号。连接的地方是相应转出 符号连接的部分树转入的地方。三 角形内标出从何处转入,转出转入 符号内的数字一一对应。
集合与概率的含义对照表
A A BA A=B AB AB AB AB
集合论与逻辑代数的运算规则
二、事故调查常用的技术方法
• 2. 故障类型和影响分析方法
故障类型和影响分析(FMEA)方法是从系 统中的元件故障状态进行分析,逐次归纳到子系 统和系统的状态,主要是考虑系统内会出现那些 故障,它们对系统产生什么影响,以及怎样发现 和消除。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

事故树的编制程序第一步:确定顶上事件顶上事件就是所要分析的事故。

选择顶上事件,一定要在详细占有系统情况、有关事故的发生情况和发生可能、以及事故的严重程度和事故发生概率等资料的情况下进行,而且事先要仔细寻找造成事故的直接原因和间接原因。

然后,根据事故的严重程度和发生概率确定要分析的顶上事件,将其扼要地填写在矩形框内。

顶上事件也可以是在运输生产中已经发生过的事故。

如车辆追尾、道口火车与汽车相撞事故等事故。

通过编制事故树,找出事故原因,制定具体措施,防止事故再次发生。

第二步:调查或分析造成顶上事件的各种原因顶上事件确定之后,为了编制好事故树,必须将造成顶上事件的所有直接原因事件找出来,尽可能不要漏掉。

直接原因事件可以是机械故障、人的因素或环境原因等。

要找出直接原因可以采取对造成顶上事件的原因进行调查,召开有关人员座谈会,也可根据以往的一些经验进行分析,确定造成顶上事件的原因。

第三步:绘事故树在找出造成顶上事件的和各种原因之后,就可以用相应事件符号和适当的逻辑门把它们从上到下分层连接起来,层层向下,直到最基本的原因事件,这样就构成一个事故树。

在用逻辑门连接上下层之间的事件原因时,若下层事件必须全部同时发生,上层事件才会发生时,就用“与门”连接。

逻辑门的连接问题在事故树中是非常重要的,含糊不得,它涉及到各种事件之间的逻辑关系,直接影响着以后的定性分析和定量分析。

第四步:认真审定事故树画成的事故树图是逻辑模型事件的表达。

既然是逻辑模型,那么各个事件之间的逻辑关系就应该相当严密、合理。

否则在计算过程中将会出现许多意想不到的问题。

因此,对事故树的绘制要十分慎重。

在制作过程中,一般要进行反复推敲、修改,除局部更改外,有的甚至要推倒重来,有时还要反复进行多次,直到符合实际情况,比较严密为止。

第五章定性、定量评价5.1 对重大危险、有害因素的危险度评价XXX矿井的重大危险、有害因素有:矿井瓦斯危害、矿井火灾危害、矿压危害和水危害,因此本节重点对上述四大危险、有害因素进行危险度评价。

5.1.1 瓦斯爆炸危险度评价煤矿瓦斯爆炸或瓦斯燃烧事故是井下重大灾害之一。

一旦发生瓦斯事故,特别是瓦斯爆炸事故,会造成人员的大量伤亡和巷道与设备的严重毁坏,并会造成巨大的经济损失。

为预防瓦斯事故,尤其是预防瓦斯爆炸事故及盲巷窒息事故的发生,本节采用事故树分析方法,分析和评价事故发生的原因和规律,找出相应的预防措施。

5.1.1.1 瓦斯爆炸事故树的构造通过对瓦斯爆炸事故的调查分析,找出了影响事故发生的32个基本事件,根据其发生的逻辑关系,构成如图5-1所示的事故树。

3 A 2A7 X 18 X 19 X 20 A8γX 1 X 23 X 25X 27X26X 24 X 22 X 21X 17 X 15 X16 X14 X13X 10 X 9 X 6 X 5 X 2 X 12 X 11 X 8 X 7 X 4 X 3 X 2 A 6 A 5 A 4 λ A 3 β A 1 αT图5-1:瓦斯爆炸事故树图雷 电 火 花 静 电 火 花磨 擦撞 击火 花 巷道顶部 洞室无风 氧气浓度在引炸范围 明火放炮母 线短路 带电 检修 开关冒火电器短路火花接线盒 失爆等 电缆短路 鸡爪羊尾 接头 矿灯 引起 炸药变质燃烧 封泥不足 用代用品 等发火 分段放炮或打筒 抵抗线 不足 瓦斯漏检 巷道贯通 后未及时 调风瓦斯检 测失误 上隅角瓦斯积存 放炮后瓦 斯积存 老塘瓦 斯积存 地质变化 瓦斯量大 盲巷瓦 斯积存 串联通 风 电气火花 瓦斯控制失误 采面瓦斯积聚 掘进面瓦斯积聚 瓦斯积聚 . 达到引火能量 相 遇 放炮火源局扇打 循环风 供风能 力不足 局扇断 电停风 火源 瓦斯 达到爆炸浓度 瓦斯爆炸事故 T由事故树图写出其结构表达式:T=A1·A2·α= A3·β·A2·α=(A4+ A5+ A6)·λ·β·(A7+ X18+ X19+ X20+ A8+ X28)·γ·α=(X1+X2+…+X13)·λ·β(X14+X15+…+X28)·γ·α5.1.1.2 瓦斯爆炸事故树的分析一、求最小割集对事故树进行分析,将上式展开,可求出其最小割集195组,即引起瓦斯爆炸的“可能途径”有195种。

每一组最小割集,就是一种发生事故的模式,这些最小割集是:K1={X1,λ,β,X14,γ,α}K2={X1,λ,β,X15,γ,α}………………………………………K45={X3,λ,β,X28,γ,α}K46={X4,λ,β,X14,γ,α}K47={X4,λ,β,X15,γ,α}………………………………………K180={X12,λ,β,X28,γ,α}K181={X13,λ,β,X14,γ,α}K182={X13,λ,β,X15,γ,α}………………………………………K195={X13,λ,β,X28,γ,α}共有195组最小割集。

二、求最小径集根据图5-1做出其成功树图,如图5-2所示。

用布尔代数法解出最小径集,写出成功树的结构表达式:T'= A1'+α'+A2'= A3'+β'+α'+A2'= A4'A5'A6'+λ'+β'+α'+A7'X18'X19'X20'A8'X28'+γ'= X1'X2'…X13'+λ'+β'+α'+X14'X15'…X28'+γ'由此得出6组最小径集:P1={α}, P2={β}, P3={γ}, P4={λ},P5={X1,X2,…X13}, P6={X14,X15,…X28} 说明仅有6种不使瓦斯爆炸事故发生的“可能途径”。

三、结构重要度分析为了简便起见,按所求最小径集判别各基本事件的结构重要度。

1、α、β、γ和λ为单因素,其结构重要度相等,且最大,即:Iф(α)= Iф(β)= Iф(λ)= Iф(γ)2、在不同的最小径集中,基本事件不相交,P5的阶数比P6低,所以P5中的基本事件结构重要度大于P6中的基本事件结构重要度,即:Iф(1)= Iф(2)= …Iф(13)> Iф(14)= Iф(15)=…=Iф(28)3、故得各基本事件结构重要度顺序为:Iф(α)= Iф(β)=Iф(γ)=Iф(λ)> Iф(1)= Iф(2)=… = Iф(13)> Iф(14)= Iф(15)=…= Iф(28)7 X 27'X 25'X 27'X 26'X 24'X 22'X 23'X 21'.X 14'X 16'X 15'X 17'.γ'.X 6'X 8'X 7'X 9'X 13'X 11'X 12'X 10'X 3'X 1'X 4'X 2'X 5'...A 6'A 5'A 4'.λ'β'A 2'A 7'X 18'X 19'X 20'A 8'A 3'A 1'α'T'图5-2:瓦斯爆炸事故成功树图5.1.1.3 瓦斯爆炸危险度分析结果一、由事故树图可见,或门个数占87.5%,这样,大部分基本事件都能单个输出。

而与门个数仅占12.5%,只有少数几个基本事件同时发生才有输出。

因此,从或、与门的比例数来看,可知瓦斯爆炸的危险性是很大的。

二、从最小割集数来看,共有195组,表明导致瓦斯爆炸有195种“可能途径”。

这说明瓦斯爆炸的可能性是很大的。

从前面求出的最小的割集分析可知,任一最小割集K i中的基本事件全部发生,瓦斯爆炸事故就发生。

如K1中,当X1(局部通风机断电停风)发生,则发生瓦斯积聚,如果满足条件β,λ,即满足氧气浓度在引爆范围内以及瓦斯积聚其浓度达到了爆炸范围,这时瓦斯具有爆炸性;如遇上X14发生,即遇上放炮时封泥不足或使用代用品发生明火,则必然发生瓦斯爆炸(T发生)。

由前述可知,用最小割集表示的等效事故树图中,顶上事故是若干个交集的并集。

也就是说,任一最小割集中的各基本事件发生,则事故(T)一定会发生。

如果最小割集中的基本事件数越多,事故越难发生;反之,基本事件越少,事故发生就较容易。

由求出的最小割集K i可见,每个最小割集中实质上只有两个基本事件存在,即瓦斯积聚和引爆火源,其余的都是条件。

煤矿井下,λ和γ的条件是满足的,由此可知,瓦斯积聚只要达到爆炸浓度(即满足β条件),一旦与火源相遇(即满足条件α)势必要导致瓦斯爆炸事故。

由此也说明,煤矿井下瓦斯爆炸事故是极易发生的。

三、从结构重要度分析从求出的基本事件结构重要度顺序来看,α、β、γ、λ的结构重要度相等且最大,说明它们在系统中占的位置最重要,对事故发生影响也最大。

其次是X1,X2…X13,最后,是X14,X15…X28,从它们在最小割集中出现的次数来看,α、β、γ和λ每一个最小割集中都出现了,共出现195次,说明如果α、β、γ和λ不发生,则事故就不会发生,如果X1或X i任一个(i=2,3…13)事件不发生,则仅少掉15种导致瓦斯爆炸事故的“可能途径”。

如果X14或X j任一个(j=15,16…28)事件不发生,也仅仅少掉13种导致瓦斯爆炸事故的“可能途径”。

由此,可根据各基本事件的结构重要度顺序,制定具有针对性的预防事故发生的安全技术措施。

四、根据最小径集判定预防事故发生的措施本例最小径集共有六组,其事故树等效图如图5-3所示:图5-3 瓦斯爆炸事故树等效图从该图可见,只要使P i中的任一个不发生,则事故就不会发生。

根据最小径集的定义可知,使瓦斯爆炸事故不发生,可从如下三种方案来考虑:1、若使P2不发生,则事故(T)就不会发生。

要使P2不发生,则仅使β条件不发生,即使瓦斯积聚达不到爆炸界限。

这样可判定出相应的预防措施,如加大风量,加强通风科学管理,消除串联通风、循环风,加强瓦斯抽放等。

这样,采取有效措施,使瓦斯浓度达不到爆炸界限,事故就不会发生。

2、若使P4不发生,则事故(T)就不会发生。

要使P4不发生,可使X1(局部通风机断电停风)、X2(串联通风)、X3(供风能力不足)、X4(风扇打循环风)、X5(盲巷瓦斯积存)、X6(地质变化瓦斯量大)、X7(老塘瓦斯积存)、X8(放炮后瓦斯积存)、X9(上隅角漏检)、X13(巷道顶部、峒室无风)等同时都不发生,事故才不发生。

为此,则需判定相应的具体预防措施。

如保证供风能力、加强科学管理,消除串联风、循环风,加强盲巷管理。

相关文档
最新文档