微分方程模型1基础知识

合集下载

1 常微分方程的基本知识

1 常微分方程的基本知识
定义: 联系自变量、 未知函数及未知函数导数 ( 或微 定义 : 联系自变量 、 未知函数及 未知函数导数( 未知函数导数 的关系式称为微分方程. 分)的关系式称为微分方程 例1:下列关系式都是微分方程
dy (1) = 2x ; dx
2 3
(2) xdy − ydx = 0 ;
d 4x d 2x d x dx + 5 2 + 3 x = sin t ; (3) + tx + x = 0 ; (4) 4 dt dt dt 2 dt
一般要求解出最高阶导数: 一般要求解出最高阶导数:
dny dy dny = f x, y , , L , n n dx dx dx
2007年8月 南京航空航天大学 理学院 数学系 19
通过引入n-1个新的未知变量,可以把n阶微分方程 个新的未知变量,可以把 阶微分方程 通过引入 个新的未知变量 化为n个由一阶微分方程组成的微分方程组 个由一阶微分方程组成的微分方程组: 化为 个由一阶微分方程组成的微分方程组: dyn −1 d n y dy1 dy2 d 2 y y1 = y, y2 = , y3 = = 2 , L , yn = = n dx dx dx dx dx
u
u
2007年8月
南京航空航天大学 理学院 数学系
7
例3 R-L-C电路 电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后,电 路中电流强度I与时间t之间的关系.
2007年8月
南京航空航天大学 理学院 数学系
2007年8月
南京航空航天大学 理学院 数学系

一阶偏微分方程基本知识

一阶偏微分方程基本知识

一阶偏微分方程根本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。

一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n阶常微分方程y n fx,y',y'', ,y n1,〕在变换yy,yy',L,ynyn112〕之下,等价于下面的一阶微分方程组dy1f1x,y1,y2,L,yn,dxdy2f2x,y1,y2,L,y n,dxMMMMdy nf n x,y1,y2,L,y n.dx〔〕在第三章中,已经介绍过方程组〔〕通解的概念和求法。

但是除了常系数线性方程组外,求一般的〔〕的解是极其困难的。

然而在某些情况下,可以使用所谓“可积组合〞法求通积分,下面先通过例子说明“可积组合〞法,然后介绍一阶常微分方程组“首次积分〞的概念和性质,以及用首次积分方法来求解方程组〔〕的问题。

先看几个例子。

例1求解微分方程组--WORD格式--可编辑--dx yxx2y21,dy xyx2y2 1.dt dt〔〕解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到x dx y dy x2y2x2y21,dt dt1dx2y2x2y2x2y21dt。

2这个微分方程关于变量t和x2y2是可以别离,因此不难求得其解为x2y21e2t C1,x2y2〔〕C1为积分常数。

〔〕叫做〔〕的首次积分。

注意首次积分〔〕的左端V x,y,t作为x,y,和t的函数并不等于常数;从上面的推导可见,当xx(t),y y(t)时微分方程组〔〕的解时,Vx,y,t才等于常数C1,这里的常数C1应随解而异。

因为式〔〕是一个二阶方程组,一个首次积分〔〕缺乏以确定它的解。

为了确定〔〕的解,还需要找到另外一个首次积分。

将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到y dx x dy x2y2,dt dt即x dy y dx x2y2,dt dt亦即d arctan yx。

1初识微分方程建模

1初识微分方程建模

三、举例
例3 将室内一支读数为60°的温度计放到室外,10min后 温度计的读数为70°,又过了10min,读数为76°,利用牛顿 冷却定律计算室外温度。 牛顿冷却定律:将温度为T的物体放入处于常温m的介质中 T的变化速率正比与T与周围介质的温度差。 解:由牛顿冷却定律可知:dT/dt与T-m成比例 即 方程的解为: 结合给定的三个条件 计算出A,K,m
y = 0.0624 y0
时的t
将y代入上式解得t=22400yr
三、举例
习题 结合例5,计算C14的半衰期是多少? (数量衰减到一半的时间) 解 由例5可知
y0 / 2 = y0 e − t / 8000
ln 0.5 = −t / 8000, t ≈ 5600 yr
三、举例
例6 一只装满水的圆柱型桶,底面半径为10ft,高为20ft 底部有一个直径为1ft的孔,问桶流空要多少时间? 对孔的流速加一个假设:假设时刻t的流速依赖与此刻桶内 水的高度h(t),显然装满水时要比快流空时要快,进一步的假设 无能量损失,那么当少量水流出时,顶部减少的势能须等于 等量的水流出小孔时的动能。即 mgh=1/2mv2, 则可得: v=(2gh)1/2 这是物理中的托利拆里定律,模型这样假设看起来过于简单 但至少速度依赖与高度看来是合理的,接下来进行数学上的分析 解:随着水从小孔流出,桶内水的体积不断的减少, 设A为桶的水平面积,B为孔的水平面积。 则在任意时间间隔dt内,-Adh=Bds,ds为孔dt时间内水流的距离 问题是t=?时h=0。所以要求出h(t)。此时可通过上面的方程求出
四、习题
7、污染物质的含量为2g/L的水以500L/min的速度流过处理 箱。在箱内每分钟处理掉2%的污染物,且水被彻底摇匀。 处理箱可容纳10000L的水,在处理场开张时,箱内装满 纯净水,求流出的水中污染物浓度的函数? 解 设p(t)=箱内污染物的数量 dp/dt=流入-流出=(2g/L)(500L/min) -(p(t)g/10000L)(500L/min) -0.02p(t)g/min 解得dp/dt=1000-0.07p及p=(10000/7)(1-ce-0.07t) 由t=0时,p=0,得c=1

一阶常微分方程-高阶常微分方程-方程组-差分方程-偏微分方程模型

一阶常微分方程-高阶常微分方程-方程组-差分方程-偏微分方程模型

计可以通过
dN / dt r sN , s r
N
进行线性拟合。其中
Nm
dN / dt N / t
。而
模型的检验也可以通过这两个参数的估计
量与一个实际的人口数量之间进行比较加
以检验。
(5) 阻滞增长模型不仅能够大体上描述人 口及许多物种的变化规律,而且在社会经
济领域中有广泛的应用,如耐用消费品的 销售量也可以用此模型来描述。
新技术推广模型
一项新技术如何在有关企业中推广,是 人们最为关心的问题,也就是说,一旦一家企 业采用了一项新技术,那么行业中的其他企 业将以怎样的速度采用该技术?哪些因素 将影响到技术的推广?下面我们在适当的 条件下讨论此问题。
记p(t)为t 时刻采用该技术的企业数。并
设 p(t)连续可微。假设未采用该技术者之所 以决定采用该技术,是因为其已知有的企 业采用了该技术并具有成效。即是以“眼 见为实”作为决策依据的,亦即“示范效应” 在起作用。
增长率递增的现象),但是随着人口数的 增加,人口的年增长率将呈现逐年递减的 现象。再考虑到环境适应程度的制约,想 象人口的增长不可能超过某个度。
(2)对于其中常数增长率r 的估计可以使用 拟合或者参数估计的方法得到。
(3)在实际情况下,可以使用离散的近似 表达式 N (t) N0 (1 r)t 作为人口的预测表 达式。
在式 (1) 中,设
A A0ert ( A0 , r 0)
即自发支出有一个常数增长率r ,则式 (2) 的
解为
Y (t)
(
A0
r)
e t
Y0
(
A0
r)
e
t
由此可见:
(1)当
r

一阶微分方程及其建模方法课件

一阶微分方程及其建模方法课件

微分方程的解为 ( y x)2 Cy( y 2x)3 .
3、一阶线性方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) dx
当Q( x) 0, 上方程称为齐次的.
当Q( x) 0, 上方程称为非齐次的.
例如 dy y x2 , dx x sin t t 2 , 线性的;
微分方程的阶: 微分方程中出现的未知函数的最 高阶导数的阶数称之. 分类2:
一阶微分方程 F ( x, y, y) 0, y f ( x, y);
高阶(n)微分方程 F ( x, y, y,, y(n) ) 0, y(n) f ( x, y, y,, y(n1) ).
分类3: 线性与非线性微分方程.
( x ux cos u)dx x cos u(udx xdu) 0,
cos udu dx , sin u ln x C, x
微分方程的解为 sin y ln x C . x
例2
求解微分方程
x2
dx xy
y2
dy 2y2
. xy

dy dx
2y2 x2 xy
xy y2
g( y)dy f ( x)dx 可分离变量的微分方程.
例如 dy
4
2x2 y5
4
y 5dy
2 x2dx,
dx
解法 设函数g( y)和 f ( x)是连续的,
g( y)dy f ( x)dx
分离变量法
设函数G( y)和F ( x)是依次为g( y) 和 f ( x) 的原函
数, G( y) F ( x) C 为微分方程的解.
dx
dt
yy 2xy 3, y cos y 1, 非线性的.

03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

(5 13)
将(5-10)和( pr 2
ur
(5 14)
最终f 把 (54-1pA4r2)2m和r(05-6)代r0入(rr5-4)式得 (5 15) r 这里 0 是单位向径,指示向径方向。
(5-15)式表白: (1)行星运动时受旳力旳方向与它旳向径方向
相反,即在太阳—行星连线方向,指向太阳;
若记x(t),y(t)为开始用力后铅球运动轨迹旳水平和 铅垂方向旳坐标。则根据牛顿第二运动定理,由假 设3我们有
mx(t) F cos
my(t) F sin mg
(2 3)
式中m为铅球旳质量,F是对铅球旳推力, 为力旳
方向既铅球旳出手角度。
根据假设2,令t=0时运动员开始用力推球,t t0
22
§4 追踪问题旳数学模型
问题:我辑私舰雷达发觉距d海里处有一艘走私船正
以匀速 a沿直线行驶,辑私舰立即以最大旳速度 (匀v速)追赶。若用雷达进行跟踪,保持舰旳瞬时
速度方向一直指向走私船,试求辑私舰旳运动轨迹 及追上旳时间。
(留作自学)
23
§5 万有引力定律旳发觉
历史背景: 开普勒三定律: 1、各颗行星分别在不同旳椭圆轨道上绕太 阳运营,太阳位于这些椭圆旳一种焦点上。 2、每颗行星运营过程中单位时间内太 阳—行星向径扫过旳面积是常数。 3、各颗行星运营周期旳平方与其椭圆轨道 长半轴旳3次方成正比。
14
x
v2 g
cos
sin
(
v2 g2
sin 2
2h
)
1 2
g
v
cos
v
(
F m
2 2
g2
2F m
g sin )t0

第十二章 微分方程一、二、三节

第十二章 微分方程一、二、三节

含有未知函数的导数(或微分)的关系式。
3
常微分方程的发展历史
常微分方程已有悠久的历史,而且继续保持着 进一步发展的活力,其主要原因是它扎根于各种实 际问题之中。
牛顿最早采用数学方法研究天体问题,其中需 要求解的运动方程是常微分方程。他以非凡的积分 技巧解决了它,从而在理论上证实了地球绕太阳的 运动轨道是一个椭圆,澄清了当时关于地球将坠毁 于太阳的一种悲观论点。另外,莱布尼兹也经常与 牛顿在通信中互相提出求解微分方程的挑战。
12
s 9.8 s(0) h, s(0) 0 2 (6) 的通解为 s( t ) 4.9t c1t c2 s( 0) h c 2 h ,
s(0) 0 9.8t c1 t 0 0 c1 0 .
( 6) (7)
5
尤其是地球椭圆轨道的计算、海王星的发现、 弹道轨道的定位、大型机械振动的分析、自动控 制的设计、气象数值预报、按龄人口增长宏观预 测等等, 微分方程为之提供了关键技术支撑。反 过来这些高新技术也推动了微分方程理论走向纵 深, 从过去对平衡点、周期轨道等的定性研究到 今天对非局部分岔、高余维分岔的分析判定, 微 分方程在理论和方法上正经历着一个新的跨越。
x2ddxy?应满足条件应满足条件此外函数此外函数xxyyy?y1微分方程1721??xxy积分得x式两边关于1将cxxxy????32d223得代入将21?c故所求的曲线方程为12??xy初始条件通解特解积分曲线解的几何意义常微分方程解的几何图形称为它的积分曲线
第十二章 微分方程
已知 y f ( x ) , 求 y — 积分问题
的切线的斜率为 2 x,求此曲线 L 的方程.
设曲线的方程为 y y( x),则有 dy (1) 2 x. dx 此外,函数y y(x) 应满足条件

1 常微分方程的基本知识

1 常微分方程的基本知识
常微分方程
常微分方程的基本知识 线性微分方程组理论 高阶线性微分方程
2007年8月 南京航空航天大学 理学院 数学系 1
一. 什么是微分方程?
方 程: 含有未知量的等式. 未知量是数. 代数方程 超越方程: 函数方程: 微分方程:
含有自变量,未知函数及其导数的等式。
未知量是函数.
2007年8月
南京航空航天大学 理学院 数学系
dy dny 则称y (x) 为方程 F(x, y, , , n ) 0 dx dx 在I上的一个(显式)解.
微分方程的解: 代入微分方程能使方程成为恒等式的函数.
2007年8月 南京航空航天大学 理学院 数学系 13
例: 验证y sinx, y cosx都是微分方程
y y 0在(,)上的一个解.
2
微分方程:
联系着自变量,未知函数及其导数的关系式.
为了定量地研究一些实际问题的变化规律,往往是 要对所研究的问题进行适当的简化和假设,建立数学 模型,当问题涉及变量的变化率时,该模型就是微分方 程。
2007年8月
南京航空航天大学 理学院 数学系
3
例 1 一 曲 线 通 过 点 (1,2), 且 在 该 曲 线 上 任 一 点
2007年8月
南京航空航天大学 理学院 数学系
20
定解条件
为了从通解中得到合乎要求的特解,必须根据实 际问题给微分方程附加一定的条件,称为定解条件. 求满足定解条件的求解问题称为定解问题. 常见的定解条件是初始条件,相应的定解问题称 为初值问题。
过定点且在定点的切线 y f ( x, y, y) 二阶: ( x x y01) 的斜率为定值的积分曲线. y x x0 y0 , y 0

常微分第一章

常微分第一章

dt L

初值条件为 I t0 I0.
§1 常微分方程模型
(2) RLC电路

设R、L、C是常数, 电源电压e(t)是时间t的函
一 数. 当开关合上后有关系式

e(t) L d I RI Q ,
dt
C
绪 上式两边求导

d2 I dt2

R L
dI dt

I LC

d e(t) . dt
一般的两种群竞争系统模型
第 一 章
d x d t

M
(x,
y)x,

d
y
d t

N (x,
y) y,
绪 这里M(x, y), N(x, y)为相对于x与y的增长率.

§1 常微分方程模型
例6 Lorenz方程
第 一 章
d x

d
t

a( y

x),

d y

d
t

xz

dy x
dx y
y 1 x2 y 1 x2 x2 y2 1
§2 概念及历史
含有n个独立的任意常数c1, c2 , , cn的解

y x, c1, c2, , cn

章 称为n阶方程(1.38)的通解.
注 解对常数的独立性是指: 及其直到n 1阶
d
y
d t

y(c
dx).
§1 常微分方程模型
竞争模型

假设种群甲和乙的数量分别为x, y, 则种群相
一 章
互竞争同一资源时的生长情况的模型为

第五章 微分方程模型讲1

第五章 微分方程模型讲1
σ >1
i0
1-1/σ σ
di 1 = −λi[i − (1 − )] σ =λ/ µ dt σ
σ >1
i
σ ≤1
di/dt < 0
i0
0
1-1/σ σ
1 i
i0
0
1 , σ > 1 1 − i(∞ ) = σ 0, σ ≤ 1
t
0
t
接触数σ =1 ~ 阈值
σ >1
σ ≤ 1 ⇒ i (t ) ↓
s i ( s ) = ( s 0 + i0 ) − s + ln σ s0
i
1
1D = {( s ,源自i ) s ≥ 0 , i ≥ 0 , s + i ≤ 1}
D 0
s
1
模型4 模型
相轨线 i ( s ) 及其分析
i
1 D
SIR模型 模型
s i(s) = (s0 + i0 ) − s + ln σ s0
dP dP = kP(10000− P) 把 P t=0 =10, = 100代入微分方程 dt dt t=0
1 得 k= 999 鸟的数量和时间的函数关系为 P =
10000 1+ 999 e
− 10000 t 999
Logistic函数 函数
5.1 传染病模型
问题
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段 • 按照传播过程的一般规律, 按照传播过程的一般规律, 用机理分析方法建立模型 已感染者(the infective) 易感染者 易感染者(the susceptible) 已感染者 移出者(the removed) 移出者

1、微分方程模型与药物动力学(2)

1、微分方程模型与药物动力学(2)

f0 (t)
给药
中心室 c1 (t), x1 (t)
V1
k13 排除
k12 k21
周边室
c (t), x (t)
2
2
V 2
模型假设
• 中心室(1)和周边室(2),容积不变
• 药物从体外进入中心室,在二室间 相互转移,从中心室排出体外
• 药物在房室间转移速率及向体外排除速率, 与该室血药浓度成正比
模型建立
阻滞增长模型(Logistic模型)
分析:人口增长到一定数量后,年增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用
且阻滞作用随人口数量增加而变大
r是x的减函数
假设 r(x) r sx (r, s 0) 设:r~固有增长率(x很小时)
设:xm~人口容量(资源、环境能容纳的最大数量)
r(xm ) 0
实验 综合实验(1)
实验目的
掌握微分方程建模的基本步骤,熟悉微分方 程的数值解法,学习微分方程建模的基本方 法,会用Matlab实现简单的计算机模拟,绘 制模拟曲线,并根据所建模型作预测。
Part 1:数学模型与数学建模
1、什么是 数学模型与数学建模
➢ 数学模型(Mathematical Model)
结果!
R=L=0.5,x0=1.5
x0=1.5
lim R
n
Rn
x0 ekT 1
x0+R=1.5+2.7332 =4.2332
x0=1.5
程序!
clear all,clc k=0.2;H=2;L=0.5;c0=H-L; T=2; t=[];t0=0;R=0;y=[]; for i=1:20
C0(i)=c0+R; for j=0:0.1:T

7 微分方程-1

7 微分方程-1

研究种群增长的Logistic Logistic微 例2 研究种群增长的Logistic微分方程模型 的动力学行为。 dn/dt= r (1-n) n 的动力学行为。 数值试验( 对不同的初值N0=[0.01 数值试验(1)取r=0.8 对不同的初值Байду номын сангаас0=[0.01 0.2 0.5 0.8] 观察解的变化 。 建立函数文件: 建立函数文件: funlog.m function y=funlog(t,x) y=0.8*x*(1-x); y=0.8*x*(1运行程序: 运行程序: N=[0.01 0.2 0.5 0.8] for i=1:4 x0=N(i); [tt,xx]=ode45('funlog',[0,10],x0); plot(tt,xx),grid, hold on end
练习1 数值实验( 对固定的初值N0=0.1, 练习1:数值实验(2)对固定的初值N0=0.1, N0=0.1 取不同的r=[0.1, 观察Logistic Logistic微 取不同的r=[0.1, 0.8, 1, 2, 5] 观察Logistic微分方 程解的变化 。 练习2 给出下面的Matlab Matlab指令的数学表达 练习2:给出下面的Matlab指令的数学表达 F=@(t,y)[y(2); -y(1)] ode45(F,[0,10],[0,2]) for i=1:5 [t,y]=ode45(F,[0,10],[0,1/i]); plot(y(:,1),y(:,2)),grid,hold on end
附录1. 研究洛伦兹Lorentz Lorentz方程组 附录1. 研究洛伦兹Lorentz方程组 的动力学行为。 的动力学行为。 在一个从底部加热的空气层里, 在一个从底部加热的空气层里, 上升的热空气与下降的冷空气相 互作用形成湍流圈。 互作用形成湍流圈。一个简化的 系统模型包含3个状态变量x 系统模型包含3个状态变量x1对流 环旋转的速度, 环旋转的速度,x2上升与下降气 流的温差, 流的温差,x3垂直温度剖面的线 性偏差,运动方程: 性偏差,运动方程: 对不同的r值数值模拟该动力系统, 对不同的r值数值模拟该动力系统, 以确定解的长期行为。 以确定解的长期行为。 分别考虑 0<r<1; 1<r<1.35; 24.8<r几种情形下的 1.35<r<24.8; 24.8<r几种情形下的 平衡态及其稳定性。 平衡态及其稳定性。

第八章 微分方程1

第八章 微分方程1

考虑引例1 考虑引例1,对于微分方程 dy = 2x dx 函数y=x2+C是其通解,y=x2+1是其满足初始 是其通解, 函数 是其通解 是其满足初始 条件x 的特解。 条件 0=1,y(x0)=2的特解。 , 的特解
3
微分方程的(部分 积 微分方程的 部分)积 部分 分曲线(0≤C≤2)见右 分曲线 见右 图,其中红色曲线 为满足初始条件的 特解曲线。 特解曲线。
例8.2 求微分方程 x2 y″+xy′+(x2 -1/4)y=0 的通解 s=dsolve('x^2*D2y+x*Dy+(x^2-1/4)*y=0','x') s = (C1*cos(x)+C2*sin(x))/x^(1/2) 注意 (1)若不加自变量 ,则将把 作为常数求解。 若不加自变量x,则将把x作为常数求解 作为常数求解。 若不加自变量 (2)所得结果可以用命令 所得结果可以用命令pretty进行简化。 进行简化。 所得结果可以用命令 进行简化 例 pretty(s) C1 cos(x) + C2 sin(x) --------------------1/2 x
应满足条件x=1时y=2,因此可解得 又y(x)应满足条件 应满足条件 时 ,因此可解得C=1 故所求曲线方程为y=x2+1。 故所求曲线方程为 。
列车在平直路线上以20米 秒的速度行驶 秒的速度行驶, 例2 列车在平直路线上以 米/秒的速度行驶, 当制动时,列车获得加速度-0.4米/秒2,问开始 当制动时,列车获得加速度 米秒 制动后多长时间能停住, 制动后多长时间能停住,以及列车在这段时间 行驶了多少路程? 行驶了多少路程? 设列车开始制动后t秒内行驶了 解:设列车开始制动后 秒内行驶了 米,则 设列车开始制动后 秒内行驶了s米

第三章 数学模型1-微分方程.

第三章  数学模型1-微分方程.

线性系统
拉氏 变换 傅氏 变换
传递函数
微分方程
频率特性

建模方法
机理分析法
适用于比较简单的系统
实验辨识法
适用于复杂系统
数学模型的概括性
• 许多表面上完全不同的系统(如机械系统、电 气系统、液压系统和经济学系统)有时却可能 具有完全相同的数学模型。 数学模型表达了这些系统的共性。


数学模型建立以后,研究系统主要是以数学模 型为基础分析并综合系统的各项性能,而不再 涉及实际系统的物理性质和具体特点。
自动控制原理
第三章 线性系统的数学模型
本章知识点: 线性系统的输入-输出时间函数描述 传递函数的定义与物理意义 典型环节的数学模型 框图及化简方法
引言
定义: 控制系统的输入和输出之间动态关系 的数学表达式即为数学模型。 用途: 1)分析实际系统 2)预测物理量 3)设计控制系统
表达形式 时域:微分方程、差分方程、状态方程 (内部描述) 复域:传递函数(外部描述)、动态结 构图 频域:频率特性
目的:从时间域角度,建立系统输入量
(给定值)和系统输出量(被控变量)之 间的关系。
两种描述:微分方程描述、单位脉冲响应
描述。
一.
线性系统的微分方程描述(机理建模法)
SISO线性定常系统的输入输出关系微分方程描 述的标准形式
an1c(t ) anc(t )
1.
c( n) (t ) a1c( n1) (t ) a2c( n2) (t )
列写系统微分方程的步骤
① ② ③
划分不同环节,确定系统输入量和输出量;
写出各环节(元件)的运动方程;
消去中间变量,求取只含有系统输入和输出变 量及其各阶导数的方程; 化为标准形式。

微积分1知识点总结

微积分1知识点总结

微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。

微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。

微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。

一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。

通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。

函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。

1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。

极限的概念为后续的导数和积分提供了重要的理论基础。

1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。

掌握这些性质对于理解和计算函数的极限具有重要的意义。

1.4 极限的计算计算极限是微积分中的一个重要技能。

常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。

二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。

导数的定义是函数在某一点的切线的斜率。

2.2 导数的计算导数的计算是微积分1中的重要内容。

常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。

2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。

2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。

三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。

不定积分的概念是微积分1中的一个重要内容。

3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。

对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。

常微分方程第一章

常微分方程第一章

第一章一阶微分方程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是 指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,例如 )(22t f cy dt dy b dt y d =++, 0)(2=++y dtdyt dt dy .(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏微分方程. 例如 0222222=∂∂+∂∂+∂∂zTy T x T , t T x T ∂∂=∂∂422. 本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程. 3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数. 例如,)(22t f cy dt dyb dty d =++ 是二阶常微分方程; 0222222=∂∂+∂∂+∂∂zTy T x T 与t T x T ∂∂=∂∂422是二阶偏微分方程. 4. n 阶常微分方程的一般形式:(,,,...,)0n n dy d yF t y dt dt=,这里(,,,...,)n n dy d y F t y dt dt 是,,,...,n n dy d y t y dt dt 的已知函数,而且一定含有n n d ydt的项;y 是未知函数,t 是自变量. 5. 线性与非线性:(1) 如果方程(,,,...,)0n n dy d y F t y dt dt=的左端是y 及,...,n n dy d ydt dt 的一次有理式,则称(,,,...,)0n n dy d yF t y dt dt=为n 阶线性微分方程. (2) 一般n 阶线性微分方程具有形式:1111()...()()()n n n n n n d y d y dy a t a t a t y f t dt dt dt---++++= 这里1()a t ,…, ()n a t ,()f t 是t 的已知函数.(3)不是线性方程的方程称为非线性方程. (4) 举例:方程)(22t f cy dt dyb dt y d =++是二阶线性微分方程; 方程0sin 22=+φφl gdtd 是二阶非线性微分方程;方程0)(2=++y dtdy t dt dy 是一阶非线性微分方程. 6. 解和隐式解:如果将函数()y t ϕ=代入方程(,,,...,)0n n dy d yF t y dt dt=后,能使它变为恒等式,则称函数()y t ϕ=为方程的解. 如果关系式,0t yΦ=()决定的隐函数()y t ϕ=是方程的解,则称,0t yΦ=()为方程的隐式解. 7. 通解与特解:把含有n 个独立的任意常数n c c c ,...,,21的解 12(,,,...,)n y t c c c ϕ=称为n 阶方程(,,,...,)0n n dy d yF t y dt dt =的通解. 其中解对常数的独立性是指,对ϕ及其 1n -阶导数11,...,n n d d dt dtϕϕ--关于n 个常数 n c c c ,...,,21的雅可比行列式不为0, 即 1212(1)(1)(1)120n n n n n nc c c c c c c c c ϕϕϕϕϕϕϕϕϕ---∂∂∂∂∂∂'''∂∂∂∂∂∂≠∂∂∂∂∂∂L L M M L M L.为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.常见的定解条件是初始条件, n 阶微分方程(,,,...,)0n n dy d yF t y dt dt =的初始条件是指如下的n 个条件: 1(1)(1)00001,,...,n n n dy d y t t y y y y dt dt---====,,这里(1)(1)0000,,,...,n t y y y -是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程 形如()()dyf t y dtϕ=的方程为变量分离方程,其中(),()f t y ϕ分别为,t y 的连续函数.方程解法如下:若()0y ϕ≠,则()()()()dyf t dt y dyf t dt cy ϕϕ==+⎰⎰上式确定方程的隐式通解. 如果存在0y ,使得()00y ϕ=,则0y y =也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程形如 ()dy yg dt t=的方程为齐次方程,()g u 为u 的连续函数. 解法如下:做变量替换y u t =,即y ut =,有dy dut u dt dt=+,从而原方程变为()du t u g u dt +=,整理有()du g u udt t-=,此为变量分离方程,可求解. (2) 形如111222a tb yc dy dt a t b y c ++=++的方程, 其中121212,,,,a a b b c c , 为常数. ●111222a b c k a b c ===的情形. 此时方程化为,dyk dt=可解得y kt c =+. ●11220,a b a b =即1122a bk a b ==的情形: 令 22,u a t b y =+ 则有 122222ku c du dya b a b dt dt u c +=+=++ 此为变量分离方程. ●11220a b a b ≠的情形 对120c c ==的情况, 直接做变量替换y u t=. 当12,c c 不全为零, 求 11122200a t b y c a t b y c ++=⎧⎨++=⎩的解为t y αβ=⎧⎨=⎩. 令 T t Y y αβ=-⎧⎨=-⎩, 则方程组化为112200a T bY a T b Y +=⎧⎨+=⎩. 原方程化为12()a T bY dY Yg dT a T bY T+==+的齐次方程可求解. 3.一阶线性微分方程(1) 一般形式:()()()0dya tb t yc t dt++=,若()0a t ≠,则可写成()()dyP t y Q t dt=+的形式. (2) 一阶齐次线性微分方程:()dyP t y dt =,通解为(),P t dt ce c ⎰ 为任意常数.(3) 一阶非齐次线性微分方程:()()dyP t y Q t dt=+,()0Q t ≠.(4) 齐次线性微分方程的性质性质1 必有零解 0y =;性质2 通解等于任意常数c 与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 ()P t 为常数, 此时方程为()dyay Q t dt=+, a 为常数. 对应齐次方程的通解为atce , 只需再求一个特解, 这时根据()Q t 为特定的函数,可猜测不同的形式特解. 事实上, 当()BtQ t Ae =, ,A B 为给定常数, 且B a ≠时可设待定特解为BtCe , 而当B a =时, 可设特解形式为BtCte , 后代入方程可确定待定常数C . 当()Q t 为cos ,sin At At 或它们的线性组合时, 其中A 为给定常数. 这时可设待定特解为cos sin B At C At +代入方程后确定,B C 的值. 当()Q t 具有多项式形式1011n n n n a t a t a t a --++++L , 其中01,,n a a a L 为给定常数且00a ≠, 这时可设待定特解为1011n n n n b t b t b t b --++++L 代入方程可求得,0,1,,i b i n = L 的值. 对于()Q t 有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令()()P t dty c t e ⎰=,代入方程,求出()c t 后可求得通解为()()(())P t dtP t dty e Q t e dt c -⎰⎰=+⎰.(iii) 积分因子法: 方程改写为()()dyP t y Q t dt-=, 将()P t dt e μ-⎰=, 乘方程两端得 ()()()()()P t dt P t dtP t dt dy e e P t y Q t e dt---⎰⎰⎰-= 即 ()()()()P t dtP t dt d ye Q t e dt--⎰⎰=, 从而通解为 ()()()P t dt P t dt ye Q t e dt c --⎰⎰ =+⎰,即 ()()(())P t dt P t dt y e Q t e dt c -⎰⎰= +⎰.注意, 非齐次线性微分方程通解的结构是: 非齐次线性微分方程的通解等于其对应的齐次线性微分方程的通解加上非齐次线性微分方程的一个特解.4. 伯努利(Bernoulli)方程. 形如()()n dyP t y Q t y dt=+的方程, 其中 n 是常数且0,1,(),()n P t Q t ≠ 是连续函数, 称为伯努利方程. 伯努利方程可通过变量替换 1nz y-=化为(1)()(1)()dyn P t z n Q t dt=-+-, 这是关于未知函数z 的线性方程, 可求其通解.(三) 定性方法与数值方法:1. 斜率场:一阶微分方程(,)dyf t y dt =的解()y t ϕ=代表ty 平面上的一条曲线,称之为微分方程的积分曲线. 微分方程(,)dyf t y dt=的通解()y t ϕ=,c 对应于ty 平面上的一族曲线,称之为微分方程的积分曲线族. 满足初始条件00()y t y =的特解就是通过点00(,)t y 的一条积分曲线. 方程(,)dy f t y dt=的积分曲线上的每一点(,)t y 处的切线斜率dydt 刚好等于函数(,)f t y 在这点的值. 也就是,积分曲线的每一点(,)t y 以及这点上的切线斜率dydt恒满足方程;反之,如果在一条曲线每点上其切线斜率刚好等于函数(,)f t y 在这点的值,则这一条曲线就是方程的积分曲线. 这样,可以用(,)f t y 在ty 平面的某个区域D 内定义过各点的小线段,其斜率为(,)f t y ,一般称这样的小线段为斜率标记. 而对ty 平面上D 内任一点(,)t y , 有这样一个小线段与之对应, 这样在D 内形成一个方向场, 称为斜率场. 斜率场是几何直观上描述解的常用方法2. 欧拉方法:求微分方程初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩ 的解,可以从初始条件00()y t y =出发,按照一定的步长t ∆ 依照某种方法逐步计算微分方程的近似解()n n y y t =, 这里0n t t n t =+∆这样求出的解称为数值解. 利用欧拉公式10(,),n n n n n y y f t y t t t n t +=+∆ =+∆,可求初值问题的近似解,这种方法称为欧拉方法.欧拉方法具有一阶误差精度 .如果我们先用欧拉公式求出近似解,再利用梯形公式进行校正, 得到的近似解将具有2阶误差精度, 具体为 预测: 1(,)n n n n y y f t y t +=+∆,校正: 11,11[(,)()]2n n n n n n y y f t y f t y t ++ +=++∆, 这种方法称为改进的欧拉方法.(四) 解的存在性、唯一性及解对初值的连续相依性1. 利普希茨(lipschitz )条件: 函数(,)f t y 称为在区域2D ⊆R 内关于y 满足利普希茨条件,是指如果存在常数0L >,使得不等式1212(,)(,)f t y f t y L y y -≤-对于所有的12(,),(,)t y t y D ∈都成立, 其中L 称为利普希茨常数. 2. 基本定理(1) 解的存在性定理: 设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续. 如果00(,)t y D ∈, 那么,存在0ε> 和函数()y t , 定义于区间00(,)t t εε-+内,是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩ 的解. (2) 解的唯一性定理: 设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈并且12(),()y t y t 是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩在区间00(,)t t εε-+内的两个解,那么对任意的00(,)t t t εε∈-+,12()()y t y t =,即解是唯一的.注记1: 存在性定理和唯一性定理结合在一起称为初值问题解的存在唯一性定理,叙述如下:设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈, 那么,存在0ε> 和函数()y t , 定义于区间00(,)t t εε-+内,是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩ 的唯一解. 因而当我们判断初值问题解的存在唯一性时,要检查(,)f t y 需要满足的条件.注记2: 由于利普希茨条件较难检验,常用(,)f t y 在2{(,):,}D t y a t b c y d =∈ ≤≤ ≤≤R上对y 有连续偏导数来代替. 事实上,如果在D 上y f ∂∂存在且连续,则yf∂∂在D 上有界. 设在D 上L yf≤∂∂, 这时 2121212(,())(,)(,)f t y y y f t y f t y y y yθ∂+--=-∂21y y L -≤,其中 12(,),(,),01t y t y D θ∈ <<. 但反过来满足利普希茨条件的函数(,)f t y 不一定有偏导数存在. 例如(,)||f t y y = 在任何区域内都满足利普希茨条件,但它在0y =处没有导数.(3) 解对初值的连续相依性定理设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈,00(,,)y t t y ϕ=是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩在区间00(,)t h t h -+内的解,其中 0h >,那么,对任意给定的0>ε,必能找到正数(,)0h δδε=>,使得 当2220000t t y y δ-+-<()()时,初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩的解00(,,)y t t y ϕ=在区间00(,)t h t h -+内也有定义,并且0000|(,,),,|,t t y x t y ϕϕε-<() 00(,)t t h t h ∈-+. (4) 解对初值的连续性定理设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈,00(,,)y t t y ϕ=是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩的解, 那么00(,,)t t y ϕ作为00,,t t y 的三元函数在它存在的范围内是连续的.3. 初值问题的适定性当一个微分方程初值问题的解存在, 唯一并且解连续的依赖于初始条件时, 我们称该问题是适定的. 那么, 对于常微分方程初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩, 只要在00(,)t y 所在的区域内,(,)f t y 连续并且关于y 满足利普希茨条件, 则该初值问题是适定的.(五) 自治方程的平衡点与相线1. 自治方程 当一阶微分方程(,)dy f t y dt=的右端项只是y 的函数而与自变量t 无关, 即()dyf y dt =时, 称为自治方程.2. 平衡解与平衡点 对自治方程()dyf y dt=而言, 若()0f y =有解0y y =, 则称 0()y t y ≡ 是方程的平衡解, 而点0y 称为方程的一个平衡点. 3. 相线相线是仅仅对自治方程()dyf y dt=而言的一种简化的斜率场. 自治方程的斜率场在水平直线上的斜率标记是一样的, 这样只要知道一条竖直直线上的斜率标记, 我们就可以知道整个斜率场. 因而, 在一个竖直的直线上, 我们用向上的箭头表示正的导数, 用向下的箭头表示负的导数. 对于导数为零的点, 用实心圆点来标记它, 则形成该自治方程的相线. 4. 画相线的基本步骤 (1) 画出y -线(竖直线),(2) 找到并在y -线上标记平衡点,不连续点或定义域外的点 (3) 找到()0f y >的区间, 在这些区间上画上向上的箭头, (4) 找到()0f y < 的区间, 在这些区间上画上向下的箭头.5. 初值问题0(),(0)dyf y y y dt= =解的渐近行为 (1) 趋向于平衡点, 如01()(1),2f y y y y =- =;(2) 在无限时间内趋于无穷, 如0(),1f y y y = =;(3) 在有限时间内趋于无穷(爆破), 如20(),1f y y y = =;(4) 在有限时间内停止(导数趋于无穷), 如 01(),1f y y y=- =. 6. 平衡点的分类对于自治方程()dyf y dt=, 如果()f y 在(,)-∞+∞ 内连续, 那么它的解当t 增加时要么(在有限或无限时间里)趋于+∞或-∞, 要么渐近趋于平衡点. 因而,平衡点在自治方程的研究中起着重要的作用. (1) 汇对于初值接近0y 的解, 当t 增加时, 都渐近趋于0y . 对于这样的平衡点0y , 我们称之为汇, 它是稳定的. (2) 源对于初值接近0y 的解, 当t 增加时, 都远离0y . 对于这样的平衡点0y , 我们称之为源,它是不稳定的. (3) 结点既不是源也不是汇的平衡点, 我们称之为结点,它也是不稳定的. 7. 判断平衡点类型的线性化方法 1. 如果0y 是自治方程()dyf y dt=的一个平衡点, 即0()0f y =, 那么 (1) 0y 是源当且仅当()f y 在0y 附近严格单调增加; (2) 0y 是汇当且仅当()f y 在0y 附近严格单调递减. 2. (线性化定理) 如果0y 是自治方程()dyf y dt=的一个平衡点, 即0()0f y =, 并且()f y 是连续可微的, 那么 (1) 若0()0f y '> 则0y 是源; (2) 若0()0f y '<, 则0y 是汇;(3) 若0()0f y '=, 则需要进一步的信息决定其类型.(六) 分歧一阶微分方程解的渐近行为随参数变化发生了类型的变化, 我们称之为分歧现象(或分支, 分叉).1. 分歧发生的条件 对于单参数微分方程族()(,)dy f y f y dtμμ==, 0μμ=是一个分歧值的必要条件是: 存在平衡点0y , 使得 0000(,)(,)0f f y y y μμ∂==∂. 这样我们要找分歧点可以通过求解方程组 (,)0(,)0f y f y y μμ=⎧⎪∂⎨=⎪∂⎩, 得到解 00(,)y μ,0μ为可能的分歧值, 而0y 是可能发生分歧的平衡点. 2. 分歧图解与分歧类型分歧图解是y μ 平面上方程在分歧值附近的所有相线的图, 用以强调当参数经过分歧值时相线所经历的变化.(1) 鞍结点分歧在分歧图解(图1-1)中, 当μ从左到右经过分歧值0μ时, 方程的平衡点从两个变为一个再变为不存在, 这种分歧一般称之为鞍结点分歧. 这类分歧图解在分歧值附近是抛物线的形状(2) 在分歧图解(图1-2)中,当μ从右到左经过分歧值0μ=时, 方程的平衡点由三个变为一个, 这种分歧一般称之为音叉分歧.图 1-1 鞍结点分歧 图 1-2 音叉分歧图 1-3 跨越分歧 图 1-4 复合分歧(3) 在分歧图解(图1-3)中, 当0μ= 时, 方程有一个平衡点; 当0μ≠ 时, 方程有两个平衡点. 0μ=是一个分歧值. 虽然在分歧值的两侧方程都有两个平衡点,但平衡点的稳定性会改变. 当0μ> 时, 0y =是一个汇,它是稳定的; 当0μ<时, 0y =是一个源,它 是不稳定的. 这类分歧一般称为跨越分歧.(4) 在分歧图解(图1-4)中, 当 μ从左到右变化时,相应的方程平衡点依次由一个变为两个,三个,两个再变回一个, 这种分歧一般称之为复合分歧.(七) 一阶微分方程的应用1. 增长和衰减问题设 ()S t 为正在增长或衰减的某研究对象的总量. 如果假设它随时间的变化率dS dt与当前数目成正比, 其比例系数为 k , 则有 dS kS dt =, 或 0dS kS dt-=. 设()S t 可微, 因而是连续函数. Malthus 人口模型满足上述微分方程, 虽然对人口问题, ()S t 是离散的, 只能取整数值, 但该模型系统在一定情况下提供了很好的近似对某一生物种群进行研究时, 该生物种群的增长往往受资源和环境的限制, 引进参量N , 称为最大承载量, 用以表示自然资源和环境条件所能容纳的最大数量, 并且假定 (1)当基数很小时,增长率与当前数成正比;(2)当基数很大,达到资源和环境不能承受的时候,数量开始减少,即增长率为负的. 此时方程可改写为(1)dS S k S dt N=-, 称为具有增长率k 和最大承载量N 的Logistic 模型,该模型最早由荷兰生物学家 Verhulst在1838年提出.2. 温度问题牛顿冷却定律(亦适应于加热的情况)说明物体的温度随时间的变化率与物体所处的周围环境的温差成正比, 设 T 是物体的温度, T 是所处环境的温度, 那么物体温度随时间的变化率为dT dt, 牛顿冷却定律可表示为 ()dT k T T dt=--, 其中k 是正的比例系数, 而负号表示在冷却过程中, 物体温度 T 大于周围环境温度T , 变化率0dT dt <. 在加热过程中0dT dt>, 此时T T <. 3. 稀释问题一容器最初容纳0V 升盐水溶液, 其中含盐 a 克. 每升含盐 b 克的盐水溶液以e 升/分的速度注入,同时, 搅拌均匀的溶液以f 升/分的速度流出, 问在任何时刻 t , 容器中的含盐量.设Q 为任何时刻容器中的含盐量. Q 的变化率dQ dt等于盐的注入率减去流出率. 盐的注入率是 be 克/分. 要决定流出率, 首先计算在时刻t , 容器中的溶液的体积, 它等于最初的体积0V 加上注入的体积 et 后减去流出的体积ft . 因此, 在任一时刻t , 盐水的体积是 0V et ft +-. 在任何时刻的浓度是 0Q V et ft +-, 由此得流出率为 0Qf V et ft +-/分. 于是得到微分方程 0dQ Qf be dt V et ft =-+-, 即 0dQ f Q be dt V et ft+=+-, 这是一个一阶线性方程.4. 电路一个简单的 RC 回路是包含有电阻R (欧姆), 电容C (法拉)和电源V (伏特),如图1-5.图1-5 RC 电路 图1-6 RL 电路由电路学知识,C 的电压()v t 与电阻R 的电压之和应为电源的电压()V t . 电路中的电流I (安培)为 ()dQ dCv t dv I C dt dt dt ===, 其中 Q 为电量从而R 处的电压为 dv RI RC dt=, 由此我们可以建立RC 电路的模型如下:()dv RC v V t dt +=, 即 ()dv V t v dt RC-=. 对于一个包含有电阻R (欧姆), 电感L (亨利)和电源V (伏特)的RL 回路,如图1-6. 电路中的电流应满足的基本方程为 dI R V I dt L L +=.(八) 种群生态学中的模型设()y t 表示一个生物种群的数量, t 为时间, 最简单的种群模型是 Malthus 模型dy ky dt=. Malthus 模型的解()(0)kty t y e =预测了种群数量的指数增长.由于种群数量大的时候,对资源的竞争加剧,因此单位增长率会随种群数目增大而减小,因此更为合理的假设是()dy yf y dt= (*) 这里()f y 是单位增长率,因为dy dt 为增长率,y 是种群数量, 而()/dy f y y dt =. 当考虑种群数量的变化时.对()f y 而言, 其代数形式并不重要, 而关键是其单调性, 凸凹性, 这样我们可以对其进行大致分类:(1) 若()f y 在[0,)+∞上是递减的,称(*)为 Logistic 型;(2) 若()f y 在[0,)+∞上是先增后减的,称(*)为 Allee 效应型;(3) 若()f y 在[0,)+∞上是递减再递增最后递减的,称(*)为 Hysteresis 型.1.3典型例题:例1 考虑微分方程 3220dy y y y dt=--, 问 (1) y 为何值时, ()y t 将保持不变?(2) y 为何值时, ()y t 将增加?(3) y 为何值时, ()y t 将减少?解: 因为当0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt<时, ()y t 将减少. 由3220dy y y y dt=--知, (1) 当32200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变.(2) 当32200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加.(3) 当32200y y y --<, 即4y <- 或05y << 时, ()y t 将减少.例2 假定在鄱阳湖中一种鱼类的数量()S t 随时间的变化按Logistic 模型增长, 增长率为k , 最大承载量为N , 即有 (1)dS S k S dt N=-. 如果每年要从湖中捕获一定量的鱼, 试按下述不同情形对模型做适当修改,(1) 每年捕获10吨?(2) 每年捕获总量的三分之一?(3) 捕获量与总量的平方根成正比?解: (1)(1)10dS S k S dt N=--. (2) 1(1)3dS S k S S dt N =--. (3) (1)dS S k S l S dt N =--, 其中 l 是捕获量与总量平方根的比例系数. 例3 求解方程dy t dt y=- 解:变量分离得 ydt tdy =-.两边积分 22222y t c =-+. 通解为 22t y c +=, c 为任意正常数. 例4 求解方程231dy y dx xy x y+=+ 解:变量分离得 221(1)ydy dx y x x =++, 两边积分 2221()1(1)1ydy dx x dx y x x x x ==-+++⎰⎰⎰.即 22111ln(1)ln ||ln(1)22y x x c +=-++, 1c 为任意常数, 整理得222(1)(1)y x cx ++=, 12c c e =为任意正的常数.例5 求解方程tan dy y xy dx x-=. 解: 将方程改写为 tan dy y y dx x x=+, 这是齐次方程, 做变量替换y u x =,即y ux =,有dy du x u dx dx=+,从而原方程变为 tan du x u u u dx +=+ 即tan du u dx x= 利用分离变量法求得 sin u cx =, 代回原变量得通解为sin y cx x=, c 为任意常数 例6 求解方程22dy x y x y dx=+-. 解: 方程改写为2sgn 1()dy y y x dx x x =+⋅- 令u=y x ,则y ux =,从而2sgn 1du x u u x u dx+=+⋅- 当210u -≠时,2sgn 1dux dx x u =-, arcsin sgn ln u x x c =⋅+, 即 arcsin sgn ln y x x c x=⋅+, c 为任意常数.此外,还有解210u -=,即22y x =.例7 求解方程 13dy x y dx x y -+=+- 解: 解方程组 1030x y x y -+=⎧⎨+-=⎩的解 为 12x y =⎧⎨=⎩. 令 12X x Y y =-⎧⎨=-⎩ , 则原方程化为 dY X Y dX X Y -=+.令 Y u X = ,则可化为变量分离方程 21,12dX u du X u u +=-- 解得 222Y XY X c --=, 代回原变量 有22262y xy x y x c +---=, c 为任意常数.例8 求解方程2()dy y b t dt -=, 其中 (1) 2()1b t t t =++,(2) 4()t b t e =(3) 2()3t b t e =(4) ()cos3b t t =(5) 422()3cos31t t b t e e t t t =+++++解: 对应齐次方程的通解为 2t y ce =, 下面用猜测-检验法求特解(1) 设 21y At Bt C =++ 代入 221dy y t t dt-=++, 有 2222()1At B At Bt C t t +-++=++解得 1,1,12A B C =-=- =-, 从而21112y t t =---, 原方程的通解为 22112t y ce t t =---, c 为任意常数. (2) 设 42t y Ae = 代入 42t dy y e dt-=, 有 44442t t t Ae Ae e -=解得 12A =, 从而4212t y e =, 原方程的通解为 2412t t y ce e =+, c 为任意常数. (3) 不能设2t Ae 形式的特解, 因为它是相应齐次方程的解,不可能是非齐次方程的解,设 23t y Ate = 代入 22t dy y e dt-=, 有 2222223t t t t Ate Ae Ate e +-=解得 3A =, 从而233t y te =, 原方程的通解为2223(3)t t t y ce te c t e =+=+, c 为任意常数.(4) 设 4cos3sin 3y A t B t =+ 代入 2cos3dy y t dt-=, 有 3sin33cos32(cos3sin3)cos3A t B t A t B t t -+-+=有 2310320A B A B -+-=⎧⎨ --=⎩, 解得 23,1313A B =- =, 从而423cos3sin 31313y t t =-+, 原方程的通解为 223cos3sin 31313t y ce t t =-+, c 为任意常数.(5) 根据叠加原理, 由前面4个小题知方程有特解422512313cos3sin 31213132t t y e te t t t t =+-+--- 原方程的通解为242212313cos3sin 31213132t t t y ce e te t t t t =++-+---,c 为任意常数. 例9 求方程22dy y dx x y =-的通解. 解: 将方程改写为222dx x y x y dy y y-==-. 求齐次线性微分方程 2dx x dy y=, 得通解为2x cy =. (常数变易法) 令 2()x c y y =代入原方程 得()1,()ln ||dc y c y y c dy y=- =-+, 从而可得原方程的通解为2(ln ||)x y y c =-+, c 为任意常数.例10 求方程26dy y ty dt t=-的通解. 解: 此为 2n =的伯努利方程. 令 1z y -=可得 6dz z t dt t=-+,此为线性方程可求通解为 268c t z t =-+, 代回原变量得 2618c t y t =-+, 即 688t t c y -=, c 为任意常数. 此外, 原方程还有解0y =.例11 用积分因子法求解方程 32(1)1dy y t dt t =+++. 解: 方程改写为 32(1)1dy y t dt t -=++, 积分因子为 221()(1)dt t t e t μ- -+⎰==+, 乘方程两端得 23(1)2(1)1dy t t y t dt--+-+=+, 即 2(1)1d t y t dt -+=+, 有 421(1)(1)2y t c t =+++, c 为任意常数.例12 若()f t 连续且0()()10t f t f s ds t = , ≠⎰, 试求函数()f t 的一般表达式. 解: 设0()()t F t f s ds =⎰, 则()F t 可导且()()F t f t '=, 这样有1,dF F FdF dt dt= =, 得 2()2,()2F t t c F t t c =+ =±+, 又(0)0F =, 得0c =. 从而 ()2F t t =±,进而 1()()2f t F t t'==±. 例13 求具有性质 ()()()1()()y t y s y t s y t y s ++=- 的函数 ()y t , 已知(0)y '存在. 解: 首先令 0s =, 由已知可得 ()(0)()1()(0)y t y y t y t y +=-, 化简有 2(0)(1())0y y t +=, 知 (0)0y =. 由函数的导数定义00202002()()()lim()()()1()()lim ()(1())lim (1()())()1()lim lim 1()()(0)(1())s s s s s y t s y t y t sy t y s y t y t y s sy s y t s y t y s y s y t s y t y s y y t →→→→→+-'=+-- =+ =-+ = -' = + 变形为 2(0)1()dy y dt y t '=+, 积分得 arctan ()(0)y t y t c ' = +, 由(0)0y =, 知 0c =, 所以满足条件的函数为 ()tan (0))y t y t '= (.例14 下面给定8个微分方程和4个斜率场, 请选出斜率场相应的微分方程, 并说明理由. (1) 2dy t dt =- (2) 24dy y dt=- (3) 2dy y t dt =- (4) 2dy t dt =- (5) 24dy y dt =- (6) 2dy y dt =- (7) dy yt t dt =+ (8) 2dy y t dt=+图1-7 图1-8图1-9 图1-10解: 图1-7对应于(4),图1-8对应于(3),图1-9对应于(2),图1-10对应于(7). 这是因为图1-7的斜率场竖直方向上的斜率标记一样, 知方程的右端项仅是自变量t 的函数()f t , 且当 2t >, ()0f t <, 当2t <时, ()0f t >, 只有(4)满足要求. 图1-8的斜率场知方程右端项为(,)f t y 是 ,t y 的函数, 且当 0y <时,(,)0f t y <, 只有(3)满足.图1-9的斜率场知方程为自治方程有平衡点 2,2y y ==-, 且在 22y -<<时,()0f y <, 知只有(2)满足要求.图1-10的斜率场知方程右端项为(,)f t y 是 ,t y 的函数, 且有平衡解 1y =-, 只有(7)满足要求.例15 利用欧拉方法和改进的欧拉方法, 对步长 0.1t ∆=, 在区间[0,1]上求初值问题21,(0)0dyy y dt=+ =的近似解. 解: 这里 200(,)1,0,0f t y y t y =+==. 利用欧拉公式10(,),n n n n n y y f t y t t t n t +=+∆ =+∆,和 改进的欧拉方法,预测: 1(,)n n n n y y f t y t +=+∆,校正: 11,11[(,)()]2n n n n n n y y f t y f t y t ++ +=++∆,分别计算如下表:欧拉方法改进的欧拉方法n n tn y(,)n n f t y 预测的n y校正的n y 真 解tan y t =0 010 0 1 0.1 0.1000 1.0100 0.1000 0.1005 0.1003 2 0.2 0.2010 1.0404 0.2015 0.2030 0.2027 3 0.3 0.3050 1.0930 0.3072 0.3098 0.3093 4 0.4 0.4143 1.1716 0.4194 0.4234 0.4228 5 0.5 0.5315 1.2825 0.5413 0.5470 0.5463 6 0.6 0.6598 1.4353 0.6769 0.6849 0.6841 7 0.7 0.8033 1.6453 0.8318 0.8429 0.8423 8 0.8 0.9678 1.9366 1.0140 1.0299 1.0296 9 0.9 1.1615 2.34911.2360 1.2592 1.2602 10 11.39642.94991.51791.55371.5574例16 讨论微分方程 233dyy dt=在怎样的区域内满足存在唯一性定理的条件,并求通过点(0, 0) 的一切解.解: 由 23(,)3f t y y =, 知它在全平面内连续, 又由于13(,)2f t y y y-∂=∂, 在除去0y =的区域内连续, 从而在除去0y =的有界闭区域内有界, 进而满足利普希茨条件, 知方程满足初始条件00()0y t y =≠的解在充分小的邻域内存在并且唯一. 当 0y =时, 函数0y =是方程过 (0,0) 的解.当0y ≠时, 方程可变形为 2313y dy dt - =, 积分得 3()y t c =+, c 为任意常数.当0c =时, 得特解 3y t = 是过 (0,0) 的另一个解, 其实, 除零解外, 过(0,0)的所有解可以表示为3111(),0,t c t c y t c ⎧- <=⎨ ≥⎩,3222(),0,t c t c y t c ⎧- >=⎨ ≤⎩, 31132212(),(),0,t c t c y t c t c c t c ⎧- <⎪=- >⎨⎪≤≤⎩,其中12,c c 是满足10c ≤,20c ≥的任意常数, 这些解的定义区间为(,)-∞ +∞, 但本质上在充分小的邻域 (,)εε-内方程所确定的过(0,0)的解只有四个,即 函数30,y y t = =, 3,00,t t y t εε⎧ -<<=⎨ 0≤<⎩及30,0,t y t t εε -<<⎧=⎨ 0≤<⎩.例17 举例说明一阶微分方程初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩解的存在唯一性定理中, 关于(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续,关于y 满足利普希茨条件是保证解的存在唯一的非必要条件.解: (1) 当连续条件不满足时, 解也可能是存在唯一的. 如方程1,(,)0,y t dyf t y y t dt =⎧==⎨≠⎩, 显然, (,)f t y 在以原点为心的任何矩形区域内不连续, 间断点为直线y t =, 但过原点的解存在唯一, 这个解就是y t =.(2) 当利普希茨条件不满足时, 解也可能是唯一的. 如ln ||,0(,)0,y y y dyf t y y t dt ≠⎧==⎨=⎩, 由于 11111|(,)(,0)||ln ||0||ln ||||0|f t y f t y y y y -=-=⋅-,当 110,ln ||y y → →-∞无界, 因而(,)f t y 在以原点为心的任何矩形领域内不满足利普希茨条件. 然而方程的所有解为 xce y e =±,c 为任意常数, 及 0y =.过原点(0,0)有唯一解 ()0y t =. 例18 对微分方程(2)(5)dyy y y dt=--而言, 利用存在唯一性定理, 说明满足下列初始条件的解是否存在, 如果存在你能否知道这个解或有关这个解的一些性质.(1) (0)6y =, (2) (0)5y =, (3) (0)1y =, (4) (0)1y =-.解: 由方程的右端项为 ()(2)(5)f y y y y =--仅为 y 的函数在全平面上连续可微,从而由存在唯一性定理, 给定初始条件的解是存在并且是唯一的. 首先由()(2)(5)f y y y y =--知方程有()0,()2,()5y t y t y t = = =三个平衡解.(1) 初始条件为 (0)6y =, 初值位于()5y t =的上方, 由唯一性, 满足这个初始。

微分方程(1-3)

微分方程(1-3)

第9章微分方程与差分方程第1节微分方程的根本概念我们已经知道,利用函数关系可以对客观事物的规律性进展研究.而在许多几何,物理,经济和其他领域所提供的实际问题,即使经过分析、处理和适当的简化后,我们也只是能列出含有未知函数及其导数的关系式.这种含有未知函数的导数的关系式就是所谓的微分方程.求出微分方程中的未知函数的过程就叫解微分方程.本章主要介绍微分方程的一些根本概念和几种常用的微分方程的解法.实际问题中的数据大多数是按等时间间隔周期统计的.因此,有关变量的取值是离散变化的,处理他们之间的关系和变化规律就是本章最后的容——差分方程.含有未知函数的导数或微分的方程称为微分方程.微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶.现实世界中的许多实际问题,例如,物体的冷却,人口的增长,琴弦的振动,电磁波的传播等,都可以归结为微分方程问题.这时微分方程也称为所研究问题的数学模型.例9.1 质量为m 的物体只受重力作用由静止开场自由垂直降落.根据牛顿第二定律:物体所受的力F 等于物体的质量m 与物体运动的加速度的乘积,即F ma =.取物体降落的铅垂线为x 轴,其正向向下.下落的起点为原点.记开场下落的时间0t =,则物体下落的距离x 与时间t 的函数关系()xx t =满足22d xg dt=, (9.1) 其中g 为重力加速度常数.这就是一个2阶微分方程。

例9.2 产品的月产量为x 时的边际本钱1()82c x x '=+, (9.2) 就是一个1阶微分方程.在微分方程中,假设未知函数是一元函数就称为常微分方程;假设未知函数是多元函数,就称为偏微分方程.本章只讨论常微分方程。

n 阶微分方程的一般形式是()(,,,,,)0n F x y y y y '''=,(9.3)其中x 为自变量,()yy x =是未知函数,上式(9.3)中,()n y 必须出现,而其余变量〔包括低阶导数〕可以不出现.如果能从式(9.3)中解出最高阶导数得到微分方程的如下形式()(1)(,,,,,)n n y f x y y y y -'''= (9.4)以后我们只讨论姓如式(9.4)的微分方程,并假设式(9.4)右端的函数f在所讨论的围连续.特别地,式〔9.4〕中的f 如果能写成如下形式()(1)11()()()()n n n n y a x y a x y a x y g x --'++++= (9.5)则称式(9.5)为n 阶线性微分方程.其中1(),,()n a x a x 和()g x 均为自变量x 的函数.把不能表示成形如式(9.5)的微分方程称为非线性微分方程.例9.3 试指出以下方程是什么方程,并指出微分方程的阶数. (1)3dy x y dx =+ (2)sin (cos )tan 0dyx x y x dx++= (3)32235d y dy x y dx dx ⎛⎫-= ⎪⎝⎭(4)33ln d y dy x xy x dx dx ++= 解方程(1)是一阶线性微分方程.因为dydx和y 都是一次.方程(2)也是一阶线性微分方程.因为两边除以sin x 就可看出.方程(3)是2阶非线性微分方程,因为其中含有3dy dx ⎛⎫⎪⎝⎭.方程(4)是3阶线性微分方程.因为33,,d y dyy dx dx都是一次式. 如果一个函数代入微分方程能使方程式为恒等式,则称这个函数为该微分方程的解. 例如,(a)212x gt =,(b)21212x gt c t c =++都是例9.1中的微分方程9.1的解,其中12,c c 为任意常数.通常,称不含任意常数的解为微分方程的特解.而含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解为微分方程的通解〔一般解〕.这里所说的相互独立的任意常数,是指它们取不同的值时就得到不同的解.从而不能通过合并而使得通解中的任意常数的个数减少.上面的解中,(a)和(c)分别是方程(9.1)和(9.2)的特解,(b)和(d)分别是方程(9.1)和(9.2)的通解.在实际问题常都要求寻找满足*些附加条件的解.此时,这类附加条件就可以用来确定通解中的任意常数.这类附加条件称为初始条件,也称为定解条件.一般地,一阶微分方程(,)y f x y '=的初始条件为 00x x y y == (9.6)其中00,x y 都是常数.二阶微分方程(,,)y f x y y '''=的初始条件为00,x x x x y y y y ==''== (9.7)带有初始条件的微分方程称为微分方程的初值问题. 微分方程的解的图形是一条曲线,称为微分方程的积分曲线. 例9.4 验证函数3()cos y xc x =+〔c 为任意常数〕是方程的通解,并求出满足初始条件00x y ==的特解.解要验证一个函数是否是微分方程的通解,只要将函数代入方程,验证是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数一样.对3()cos y x c x =+,求一阶导数把y 和dydx代入方程左端,得 因为方程两边恒等,且y中含有一个任意常数,方程又是一阶的,故3()cos y x c x =+是题设方程的通解.把初始条件00x y ==代入通解3()cos y x c x =+中,得0c =.从而所求特解为3cos y x x =.习题9-11、 指出以下微分方程的阶数〔1〕220xy yy x '''-+=〔2〕235()sin 0y y x x ''-+=〔3〕22(3)(45)0xdx x y dy +++=2、指出以下各题中的函数是否为所给微分方程的解. 〔1〕22,5xy y y x '== 〔2〕2122220,yy y y c x c x x x'''-+==+ 〔3〕12121212()0,xx y y y y c e c e λλλλλλ'''-++==+3、验证1y cx c=+〔c 为任意常数〕是方程2()10x y yy ''-+=的通解,并求满足初始条件02x y==的特解.4、设曲线在点(,)x y 处的切线的斜率等于该点横坐标的平方,试建立曲线所满足的微分方程,并求出通解.习题9-1答案1、〔1〕2阶〔2〕2阶〔3〕1阶2、〔1〕是〔2〕是〔3〕是3、特解为122yx =+ 4、微分方程为3dyx dx =,通解为414y x c =+ 第2节一阶微分方程微分方程没有统一的解法,必须根据微分方程的不同类型,研究相应的解法.本节我们将介绍可别离变量的微分方程以及一些可以化为这类方程的微分方程,如齐次方程等.一、可别离变量的微分方程. 在一阶微分方程(,)dyF x y dx=中,如果右端函数能分解成(,)()()F x y f x g y =, x 与y 别离,x 的一个函数()f x 与y 的一个函数()g y 相乘的形式,即()()dyf xg y dx= (9.8) 其中()f x ,()g y 都是连续函数.根据这种方程的特点,我们可以通过积分的方法来求解.设()0g y ≠.用()g y 除方程(9.8)的两端,用dx 乘以方程的两端,使得未知函数y 的*函数及其微分与自变量x 的*函数及其微分置于等号的两边〔又一次别离了x 与y 〕得 再对上述等式两边积分,即得1()()dy f x dx g y =⎰⎰ (9.9)积分出来以后就说明y 是x 的一个〔隐〕函数〔关系〕,就是方程(9.8)的解. 如果0()0g y =,则易验证0yy =也是方程(9.8)的解.上述求解可别离变量的微分方程的方法,称为别离变量法. 例9.5 求微分方程 的通解.解先合并,dx dy 的各项得 设210,10y x-≠-≠,别离变量得两端积分211dy xdx y x =--⎰⎰ 得2111ln |1|ln |1|ln ||22y x c -=-+于是221(1)(1)y c x -=±-记1cc =±,则得到题设方程的通解为22(1)(1)y c x -=-例9.6 求微分方程x dye y dx=的通解. 解别离变量后两边积分 得1ln ||ln ||x y e c =+从而1xe y c e =±记1cc =±,则得到题设方程的通解为xey ce =例9.7 一曲线通过点(3,2),它在两坐标轴间的任一切线线段均被切点所平分,求曲线的方程.解设曲线的方程为()yy x =.曲线上任一点(,)x y 的切线方程为由假设,切点(,)x y 的切线位于两坐标轴间的线段的两个端点分别是0X=时,2Y y =和0Y =时,2X x =.将这两个端点代入切线方程都得到曲线所满足的微分方程别离变量后积分,得到通解为xyc =将初始条件3|2x y ==代入通解得6c =. 从而所求的曲线方程为6xy =.二、齐次方程 如果一阶微分方程 中的函数(,)f x y 可以写成y x 的函数,即(,)y f x y x ϕ⎛⎫= ⎪⎝⎭,于是 dy y dx x ϕ⎛⎫= ⎪⎝⎭(9.10) 这称为齐次方程.齐次方程可以通过引进新的未知函数的方法化成为可别离变量的微分方程.令y u x =,u 是x 的一个新的未知函数.则,dy duy ux x u dx dx==+,原齐次方程变成()duxu u dxϕ+= 别离变量后积分得ln ||()du dxx c u u x ϕ==+-⎰⎰记()u Φ为1()u uϕ-的一个原函数,则得通解为()ln ||u x c Φ=+再以y x 代替u ,就得所给齐次方程的通解ln ||y x c x ⎛⎫Φ=+ ⎪⎝⎭例9.8 求微分方程22()()0xy x dx y xy dy ---=的通解.解原方程变形为 就是一个齐次方程 令y ux =,则,dy du y ux x u dx dx==+ 代入齐次方程得21du u x u dx u u-+=- 别离变量,0,0ux ≠≠时,得211u du dx u x=- 两边积分211u du dx u x=-⎰⎰ 得211ln |1|ln ||ln ||2u x c --=+ 以y x 代替u 就得到原方程的通解11ln |1|ln ||ln ||2yx c x--=+ 记211cc =±得21y c x x-= 从而2x xy c -=.注.此题也可以直接别离变量法求解.0y x -≠时,ydy xdx =-积分得22111222y x c =-+ 即22yx c +=为原方程的通解.这样此题得到两个通解形式2x xy c -=和22y x c +=.说明微分方程的通解并不一定要包含所有解!三、一阶线性微分方程 方程()()dyp x y Q x dx+= (9.11) 叫做一阶线性微分方程,它对于未知函数y 及其导数y '都是一次的.如果()0Q x ≡,则方程(9.11)称为齐次的,否则就称为非齐次的.对于齐次一阶线性微分方程()0dyp x y dx+= (9.12) 通过别离变量积分,可得它的通解()p x dxy Ce -⎰= (9.13)而对于非齐次一阶线性微分方程(9.11),我们可以利用它相应的齐次一阶线性微分方程(9.12)的通解(9.13),并使用所谓常数变易法来求非齐次方程(9.11)的通解,这种方法是把齐次方程(9.12)的通解(9.13)中的任意常数C 变易换成x 的未知函数()u x ,即作变换()p x dx y ue -⎰= (9.14)假设(9.14)是非齐次方程(9.11)的解,代入(9.11)中进而求出()u x ,再代入(9.14)就得到非齐次方程(9.11)的解.为此,将(9.14)对x 求导,注意u 是x 的函数,得()()()p x dxp x dx dy du e up x e dx dx--⎰⎰=- (9.15) 将(9.15)和(9.14)代入(9.11),得 别离变量后积分得()()p x dxu Q x e dx C ⎰=+⎰ (9.16)将(9.16)代入(9.14)就得到(9.11)的通解()()()()p x dx p x dx p x dx y Ce e Q x e dx --⎰⎰⎰=+⎰(9.17)易见,一阶非齐次线性方程的通解(9.17)是对应的一阶齐次线性方程的通解(9.13)与其本身的一个特解((9.17)中取0C =的解)之和.此后还可看到,这个结论对高阶非齐次线性方程也成立.例9.9 求方程1cos xy y x x'+=的通解.解题设方程是一阶非齐次线性方程,这时1cos (),()xp x Q x x x==. 于是,按公式(9.17),所求通解为 例9.10 求方程38dyy dx+=的通解. 解这是一个非齐次线性一阶方程.下面不利用公式(9.17),而采用常数变易法来求解. 先求解相应的齐次方程的通解.由 别离变量后积分得相应齐次方程的通解31xy c e-=,其中1c 为任意常数.利用常数变易法,将1c 变易为()u x ,即设原非齐次方程的通解为3x yue -=求导得333xx dy du e ue dx dx--=-代入原非齐次方程得38xdu e dx-= 别离变量后积分得338()83xxu x e dx e C ==+⎰从而得到原非齐次方程的通解为383x yCe -=+ 习题9-21、求以下微分方程的通解 〔1〕22(1)(1)0x y dx y x dy -+-=〔2〕3x y dydx+= 2、求以下微分方程的通解〔1〕0xy y '--=〔2〕2222()()0y xxy y dx x x xy y dy -++++=3、求以下微分方程的通解 〔1〕x y y e -'+=〔2〕sin xy y x '+=4、求以下微分方程的初值问题: 〔1〕0cos (1)sin 0,|4xx ydx e ydy y π-=++==〔2〕20(1)(1),|1x x x y y x e y ='+-=+=5、*产品生产的总本钱C 由可变本钱与固定本钱两局部组成.可变本钱y 是产量x 的函数,且y 关于x 的变化率等于222xy x y +,当10x =时,1y =;固定本钱为100.求总本钱函数()c c x =.习题9-2答案1、〔1〕22(1)(1)xy C --=;〔2〕33x yC -+=2、〔1〕2y Cx+=;〔2〕arctan y x xy Ce⎛⎫- ⎪⎝⎭=3、〔1〕()xy x C e -=+;〔2〕1(cos )y C x x=-4、〔1〕(1)sec xey +=〔2〕(1)xy x e =+5、99()1001)2C x =+- 第3节可降阶的二阶微分方程本节讨论三种特殊形式的二阶微分方程的求解. 一、()y f x ''=型这种简形的方程,其解法就是屡次积分. 在()y f x ''=两端积分,得1()y f x dx C '=+⎰再次积分,得1212[()]()yf x dx C dx C f x dxdx C x C =++=++⎰⎰⎰⎰注:对于n 阶微分方程()()n y f x =,显然也可以连续积分n 次,就得到含有n 个任意常数的通解.例9.11 求方程2sin x y ex ''=+的通解. 解连续积分两次,得这就是所求通解.二、(,)y f x y '''=型这种类型的特征是不显含y ,求解方法是:令()y p x '=,则()y p x '''=,则原二阶方程化成了一阶方程利用上一节的方法求出它的通解1(,)p x C ϕ=,再根据1(,)dy y p x C dx ϕ'===也是一阶方程.直接积分得12(,)y x C dx C ϕ=+⎰,就是原二阶微分方程的通解.注:由于一阶微分方程(,)p f x p '=,我们并不都会求解.因此本类型(,)y f x y '''=方程的求解还不能说都可求出.例9.12 求方程1x y y xe x '''=+的通解. 解令p y '=,原方程化成的一阶线性微分方程.从而即1x p y c x xe '==+因此,原方程的通解为三、(,)y f y y '''=型这种类型的特征是不明显地含x .这时我们把x 看成自变量y 的函数,令p y '=,从而p 也是y 的函数.再利用复合函数的求导法则,把对x 的导数y ''化为对y 的导数,即于是,(,)y f y y '''=就变成了 这样就得到一个关于,y p 的一阶微分方程.设1(,)y p y c ϕ'==是它的通解,则别离变量再积分就得到原方程的通解为21(,)dy x c y c ϕ=+⎰.注.一阶微分方程1(,)dp p y c dyϕ=不一定会求解,因此本类型(,)y f y y '''=也不一定能求出解来.例9.13 求方程y yy '''=的通解. 解令p y '=,将x 看作是y 的函数. 这时dpdpdydpy p dx dy dx dy ''==⋅=代入原方程就得到一个一阶方程 别离变量再积分得2112p y c =+ 再解一阶微分方程2112y p y c '==+别离变量再积分得就是原方程的通解.习题9-31、 求以下方程的通解〔1〕cos y x x ''=-〔2〕y x y '''=+〔3〕(1)y y y '''=+2、求以下微分方程初始问题的特解. 〔1〕300,|0,|0x x x y e y y =='''=== 〔2〕111,|0,|2x x y y y y x ==''''=== 〔3〕200()0,|2,|1x x yy y y y y =='''''--===习题9-3答案1、〔1〕3121cos 6y x x c x c =+++〔2〕12xx y c e xe c =-+〔3〕2x c +=2、〔1〕3111939x y e x =--〔2〕21y x =- 〔3〕1x y e =+。

数学建模公选课:第五讲-微分方程模型

数学建模公选课:第五讲-微分方程模型
一种高精度的数值求解微分方程的方法,通过迭代逼近微分方程的解。
详细描述
龙格-库塔方法具有较高的精度和稳定性,适用于求解各种复杂的一阶和二阶常微分方程。
04
微分方程模型的应用实例
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常使用微分方程来描述人口随时间变化的规律。该模型基于假设,如人口增长率与当 前人口数量成正比,来建立微分方程。通过求解该微分方程,可以预测未来人口数量。
模型建立
如何根据实际问题建立合适的微分方 程模型是一个挑战。
02
高维问题
对于高维微分方程,如何求解是一个 难题。
01
03
非线性问题
非线性微分方程的求解更加复杂和困 难。
未来展望
随着科学技术的发展,微分方程模型 的应用领域将更加广泛,求解技术也 将更加成熟和多样化。
05
04
多尺度问题
如何处理不同时间尺度的微分方程是 一个挑战。
数学建模公选课:第五讲 -微分方程模型
• 微分方程模型简介 • 微分方程模型的建立 • 微分方程模型的求解方法 • 微分方程模型的应用实例 • 微分方程模型的发展趋势与展望
01
微分方程模型简介
微分方程的基本概念
微分方程是描述数学模型中变量随时间变化的数学表达式,通常表示为包含未知函 数及其导数的等式。
05
微分方程模型的发展趋势与展望
微分方程模型在各领域的应用前景
物理领域
描述物体的运动规律,如牛顿 第二定律、波动方程等。
经济领域
分析市场供需关系和预测经济 趋势。
工程领域
预测和控制系统的动态行为, 如电路、机械系统等。
生物医学领域

4.1 一级动力学反应模型

4.1 一级动力学反应模型
0
4.1.2 碳-14测年法
例 4.1.2 巴比伦的木炭 解答(续) 而根据测量结果,有 dx dt t 1950 4.09 dx dt t t 6.68
0
所以 x(1950) x(t0 ) 4.09 6.68 ,再根据(4.1.4)式,有
e0.000121(1950t0 ) 4.09 6.68 解得 t0 2104.3 (年),即汉穆拉比王朝大约在公元前 21 世纪.
4.1.2 碳-14测年法
同位素是具有相同原子序数的同一化学元素的 两种或多种原子之一,其原子具有相同数目的电子和 质子,但却有不同数目的中子. 放射性是指元素从不稳定的原子核自发的放出 射线而衰变形成稳定的元素. 有放射性的同位素被称 为放射性同位素. 放射性同位素的衰变属于一级动力学反应,即衰 变速率与放射性同位素的含量成正比. 所以放射性同 位素都具有非常稳定的半衰期.
4.1.4 海拔与大气压
为什么攀登珠穆朗玛峰的登山运动员需要携带 氧气瓶呢? 人体从大气吸入氧气的能力主要依赖于大气压. 当大气压低于 0.65 105 Pa , 人体吸入的氧气就会显著 下降. 地球海拔 6000 米以上的地区没有永久性居民, 人类在海拔更高的地方仅能短暂生存,这都是因为大 气压随着海拔增高而下降.
4.1.2 碳-14测年法
因为碳-14 的半衰期为 τ=5730 年, 所以根据(4.1.3) 式可计算得到 k=0.000121,由此可知碳-14 的衰变服 0.000121t t0 从公式 (4.1.4) x(t ) x0e x=x(t)是古物中的碳-14 在时刻 t 的剩余量,x0 x(t0 ) . 例 4.1.1 辽东半岛的古莲籽 在我国辽东半岛普兰店附近的泥炭层中发掘出 的古莲籽,至今大部分还能发芽开花. 现测得出土的 古莲籽中碳-14 的剩留量占原始量的 87.9%,试推算 古莲籽生活的年代.

微分方程的基本概念,一阶微分方程

微分方程的基本概念,一阶微分方程
因此,原方程的通解为
1 y sin x C ,C为任意常数 x 将初始条件 ( ) 1代入, 得C , y
1 因此所求特解为 sin x . y x
例6 求方程 ye sin x e sin x y cos x 1 0 的通解.

运用通解公式求解.将所给方程改写成
dy 1 2 x y 0, 2 dx x 1 2x , 这是一个线性齐次方程, 且 P ( x ) 2 x 1 2 1 2 P ( x )dx 2 dx ln x , 则 x x x
由通解公式得该方程的通解
y Cx e ,
将初始条件 y(1) = e 代入通解, 得 C = 1.
群的数量变化情况的问题)、传染病传播问题(描
述传染病的传播过程,分析受感染人数的变化规律,
预报传染病高潮的到来的问题)等都会用到著名的
马尔萨斯(Malthus)模型(
为常数): ,0 x
dx x dt x ( 0) x 0
数导数的方程.
(1 ) ( 2)
观察模型,易发现(1)式是含有未知函
定义
凡含有未知函数导数 (或微分) 的方程,
称为微分方程,未知函数是一元函数的微分方程称 未知函数是多元函数的微分方程称 为常微分方程, 为偏微分方程.
注意:本书仅讨论常微分方程,并简称微分方程.
dx ( y - 2xy) dx + x2 dy = 0; 如引例方程 x及 dt 2 y 2 y 4 0 4 y y sin x 5 xy 0 ; 2 2 t x
2 2 因此所求特解为 y 3( x 1) 1.
Hale Waihona Puke dy 练习1 求方程 ky( y a ) 的通解(其中k 与 dx a 均是正的常数. )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:当电路中电流为 时,在R上的电压降为 在电感上的电压降为 由Kirchhoff回路电压定律知: 沿着任一闭合回路的电压降的代数和为零。 我们得到电流 所满足的微分方程为:
取开关闭合时刻为0,则 故当开关闭合后,电路中的电流强度为:
(2) 湖泊的污染
设一个化工厂每立方米的废水中含有3.08kg盐酸, 这些废水流入一个湖泊中,废水流入的速率20 立方米每小时. 开始湖中有水400000立方米. 河水 中流入不含盐酸的水是1000立方米每小时, 湖泊 中混合均匀的水的流出的速率是1000立方米每小 时,求该厂排污1年时, 湖泊水中盐酸的含量。
x(0) 38.37 / s x(t) 29.78/ s
代入
t T ln x(0) ln 2 x(t)

t 5568 ln 38.37 2036 年
ln 2 29.78
这样就估算出马王堆一号墓大约是在2000多年前的西汉时代。
任何生物体内都含有一定量的碳14。当生物活着的时候, 它不断和外界进行物质交换,所以生物体内碳14的含量和自然 界中碳14的含量是相平衡的。可是,一旦生物死亡,就不再与 外界进行物质交换,他们体内的碳14就不断减少,并且得不到 任何补充。由于碳14是放射性碳,它的半衰期为5730年,所以 每过5730年放射性碳原子数目就减少一半。自然界没有任何力 量可以使这个过程减慢或加快,于是测定它在有机体残骸中的 含量,就可以准确地确定生物体死亡的年龄。美国化学家李比, 根据碳14的这一特性,创立了一种崭新的化学分析法——放射 性碳14断代法。由于这种方法应用广泛,准确无误,具有重大 的科学价值,因此,他于1960年获得了诺贝尔化学奖。
1
ln
N0 N
T 1 ln 2
T 5568 年 镭-226
T 1600 年
铀-238 T 45亿年 铅-210 T 22年
, N (t) 能测出或算出,只要知道 N0 就可算出
断代。 这正是问题的难处,下面是间接确定N0 的方法。
--理学院--
油画中的放射性物质
白铅(铅的氧化物)是油画中的颜料之一,应 用已有2000余年,白铅中含有少量的铅(Pb210)和更 少量的镭(Ra226)。白铅是由铅金属产生的,而铅金 属是经过熔炼从铅矿中提取来出的。当白铅从处 于放射性平衡状态的矿中提取出来时, Pb210的绝 大多数来源被切断,因而要迅速衰变,直到Pb210 与少量的镭再度处于放射平衡,这时Pb210的衰变 正好等于镭衰变所补足的为止。
建立微分方程模型的方法 (1)根据规律列方程
利用数学、力学、物理、化学等学科中的定理 或经过实验检验的规律等来建立微分方程模型。
(2)微元分析法 利用已知的定理与规律寻找微元之间的关系
式,与第一种方法不同的是对微元而不是直接对 函数及其导数应用规律。
理学院
(3)模拟近似法
在生物、经济等学科的实际问题中,许多现 象的规律性不很清楚,即使有所了解也是极其 复杂的,建模时在不同的假设下去模拟实际的 现象,建立能近似反映问题的微分方程,然后 从数学上求解或分析所建方程及其解的性质, 再去同实际情况对比,检验此模型能否刻画、 模拟某些实际现象。
--理学院--
设在时刻t(年),生物体中C14的存量为x(t),
生物体的死亡时间记为t0=0,此时C14含量为x0, 由假设,初值问题的数学模型为:
dx x
dt x(0) x0
解为
规律: 裂变速率与剩余量成正比。 已知:λc14=1/8000
x(t) x0et
--理学院--
t
x x0 e 8000
--理学院--
T 45亿年 铀238
镭226
(无放射性)
铅206 钋210
T 1600 年 铅210
T 138天 T 22年
--理学院--
解: 设t时刻湖泊中所含盐酸的数量为 x(t)
考虑
内湖泊中盐酸的变化。
因此有 该方程有积分因子
两边同乘以
后,整理得
积分得 利用初始条件得
(3) (理想单摆运动)建立理想单摆运动满足的
微分方程,并得出理想单摆运动的周期公式。
从图3-1中不难看出,小球所受的合力为mgsinθ,
根据牛顿第二定律可得: mx'' (t) F, x(t) l , ml&& mg sin
在研究实际问题时,常常会联系到某些变量的变化率或导数, 这样所得到变量之间的关系式就是微分方程模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到 直接关系,就得求解微分方程。
微分方程的实质: 实际对象的某些特性随时间(空间)而演变的过
程,是一个动态模型。 作用:
1、分析它的变化规律; 2、预测它的未来形态; 3、研究它的控制手段。 与统计方法的区别: 机理;事件发生的数量统计规律
近似方程
(3.2)的解为: θ(t)= θ0cosωt
其中
g l
当 t T 时,θ(t)=0
4
故有 g T
l4 2
由此即可得出
T 2 g
l
l
M P
Q
mg
图3-1
例1 流水问题
一截面积为常数A,高为H的水池内盛满了水,
由池底一横截面积为B的小孔放水。设水从
小孔流出的速度为
v 2,g求h 在任一时
当x 0.0624 x0时
求得 t 8000 ln 0.0624 22400 yr 此即所求死亡年数。
1972年发掘长沙市东郊马王堆一号汉墓时,对其棺外主 要用以防潮吸水用的木炭分析了它含碳-C14的量约为大气中的 0.7757倍,采用该方法计算得该墓距离今天有2130年左右。 通过历史文献考证,该古墓的年代为西汉早期,约在2100年 前,两者符合得很好。
= 1 ln2
T
可得:
ln 2t
x(t) x0e T
即:
t T ln x0 ln 2 x(t)
由于x(0),x(t)不便于测量,我们可把上式作如下修改.
x(t) x0et x(t) x(0) x(0) x0
--理学院--
x(0) x0 x(t) x(t)
将上式代入,可得:
t T ln x(0) ln 2 x(t)
这样由上式可知,只要知道生物体在死亡时体 内C14的衰变速度 x(0)和现在时刻t的衰变速度 x(t),就 可以求得生物体的死亡时间了,在实际计算上,都 假定现代生物体中C14的衰变常数与生物体死亡时代 生物体中C14的衰变常数相同。
--理学院--
马王堆一号墓年代确定的第二种方法
马王堆一号墓于1972年8月出土,其时测得出土的 木炭标本的C14平均原子蜕变数为29.78/s,而新砍伐木 头烧成的木炭中C14平均原子蜕变数为38.37/s,又知C14 的半衰期为5568年,这样,我们可以把
h H B 2gt
2A
h H B
2
2gt
2A
水面高度与时间的函数关系
h H B
2
2gt
2A
水流空所需时间为(令 h=0 )
t A 2H Bg
-理学院--
例2:古尸年代鉴定问题 在巴基斯坦一个洞穴里,发现了具有古代尼安德
特人特征的人骨碎片,科学家把它带到实验室,作碳
14年代测定,分析表明, c14 与 c12 的比例仅仅是活
从而得出两阶微分方程:
这是理想单摆应 满足的运动方程
&&
g l
sin
0
&(0) 0, (0) 0
(3.1)
(3.1)是一个两阶非线性方程,不
易求解。当θ很小时,sinθ≈θ,此时,可
考察(3.1)的近似线性方程:
l
M P
Q
mg
图3-1
&&
g l
0
(3.2)
(3.1)的 &(0) 0, (0) 0
思考:如何求半衰期? 1 ln 2
x(t) x0e kt
由λc14=1/8000 可得碳14的半衰期为 5568年
--理学院--
思考:假设已知C14的半衰期,不知道物质中C14的数量,可 以测出单位时间衰变放射出的C14分子数,如何确定生物体 的年龄?
由:x(t ) x0et
刻的水面高度和将水放空所需的时间。
第一步列方程
设时刻 t 的水面高度为 h t t 时的水面高度为 h h h
等量关系:
A
水面1 水面2
h h B
t 时间由水面1 降到水面2所失去的水量等于从 小孔流出的水量。
Ah Bs
s是水在 t 时间内从小孔流出保持水平前进时所经过的距离。
Ah Bs
裂变速率与剩余量成正比。 λc14=1/8000
• C14是一种由宇宙射线不断轰击大气层,使大 气层产生中子,中子与氮气作用生成的具有 放射性的物质。这种放射性碳可氧化成二氧 化碳,二氧化碳被植物所吸收,而植物又作 为动物的食物,于是放射性碳被带到各种动 植物体内。
• C14是放射性的,无论在空气中还是在生物体 内他都在不断衰变,这种衰变规律我们可以 求出来。通常假定其衰变速度与该时刻的存 余量成正比。
这样,伪造罪成立, Van meegren被判一年徒刑。 1947年11月30日他在狱中心脏病发作而死去。
但是,许多人还是不相信其余的名画是伪造的,因为, Van meegren在狱中作的画实在是质量太差,所找理由都 不能使怀疑者满意。直到20年后,1967年,卡内基梅隆 大学的科学家们用微分方程模型解决了这一问题。
--理学院--
例3 范. 梅格伦(Van Meegren)伪造名画案
第二次世界大战比利时解放后,荷兰保安机关开始搜捕 纳粹分子的合作者,发现一名三流画家H.A.Van.Meegren曾 将17世纪荷兰著名画家Jan.Vermeer的一批名贵油画盗卖给德 寇,于1945年5月29日以通敌罪逮捕了此人。
相关文档
最新文档