2020北京人大附中高三(下)统练一数学含答案

合集下载

北京市中国人民大学附属中学2020届高三数学4月考参考答案及评分标准

北京市中国人民大学附属中学2020届高三数学4月考参考答案及评分标准

人大附中2019~2020 学年度高三4 月质量检测试题
数学参考答案及评分标准
一、选择题(本大题共10 个小题,每小题 4 分,共40 分.)
二、填空题(本大题共 6 个小题,每小题 5 分,共30 分)
注:①13题其他合理答案也给分,如:从 2 月10 日开始两个省的新增人数都在下降;2 月10 日两个省的新增人数在一周内都达到了最大值;等等。

要求至少有一个数据信息能涉及到平均数或方差,并且给出的两个数据信息都是正确,才给满分5 分;若两个结论都没有涉及到平均数或方差,两个数据信息都正确也要扣2 分。

②14题第一个空 2 分,第二个空3 分
三、解答题(本大题共 6 小题,满分85 分.解答应写出文字说明、演算步骤或证明)
16.
17.。

北京人大附中2025届高三下学期一模考试数学试题含解析

北京人大附中2025届高三下学期一模考试数学试题含解析

北京人大附中2025届高三下学期一模考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数2sin(2)y x ϕ=+的图象过点(,1)6π,则它的一条对称轴方程可能是( )A .6x π=B .3x π=C .12x π=D .512x π=2.若x yi +(,)x y ∈R 与31ii+-互为共轭复数,则x y +=( ) A .0B .3C .-1D .43.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .74.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122B .112C .102D .925.已知三棱锥P ABC -中,ABC ∆是等边三角形,43,25,AB PA PC PA BC ===⊥,则三棱锥P ABC -的外接球的表面积为( ) A .25πB .75πC .80πD .100π6.设{|210}S x x =+>,{|350}T x x =-<,则ST ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 7.复数432iz i +=-的虚部为( ) A .2iB .2i -C .2D .2-8.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合()UB A =( )A .{}1,2,6B .{}1,3,6C .{}1,6D .{}69.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .10.已知函数22log ,0()22,0x x f x x x x ⎧>=⎨++≤⎩,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,则“函数()()()F x f x kx x D =-∈有两个零点”是“12k >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为( ) A .3B .4C .5D .612.已知0a >,若对任意()0,m ∈+∞,关于x 的不等式()()1e ln 11exaxx m m --<-+-(e 为自然对数的底数)至少有2个正整数解,则实数a 的取值范围是( )A .3e e,2e ⎛⎤+ ⎥⎝⎦B .3e ,2e ⎡⎫++∞⎪⎢⎣⎭ C .3e 0,2e ⎛⎤+ ⎥⎝⎦ D .3e ,2e ⎛⎫++∞ ⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。

2020年北京市人大附中高考数学模拟试卷(4月份)(解析版)

2020年北京市人大附中高考数学模拟试卷(4月份)(解析版)

2020年北京市人大附中高考数学模拟试卷(4月份)一、选择题(本大题共10个小题,每小题4分,共40分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上.)1.(4分)集合A={x|x>2,x∈R},B={x|x2﹣2x﹣3>0},则A∩B=()A.(3,+∞)B.(﹣∞,﹣1)∪(3,+∞)C.(2,+∞)D.(2,3)2.(4分)已知复数z=a2i﹣2a﹣i是正实数,则实数a的值为()A.0B.1C.﹣1D.±13.(4分)下列函数中,值域为R且为奇函数的是()A.y=x+2B.y=sin x C.y=x﹣x3D.y=2x4.(4分)设等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,则S6=()A.10B.9C.8D.75.(4分)在平面直角坐标系xOy中,将点A(1,2)绕原点O逆时针旋转90°到点B,设直线OB与x轴正半轴所成的最小正角为α,则cosα等于()A.﹣B.﹣C.D.﹣6.(4分)设a,b,c为非零实数,且a>c,b>c,则()A.a+b>c B.ab>c2C.D.7.(4分)某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.2,且∉S B.2,且∈SC.,且D.,且8.(4分)已知点M(2,0),点P在曲线y2=4x上运动,点F为抛物线的焦点,则的最小值为()A.B.2(﹣1)C.4D.49.(4分)已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方程是()①绕着x轴上一点旋转180°;②沿x轴正方向平移;③以x轴为轴作轴对称;④以x轴的某一条垂线为轴作轴对称.A.①③B.③④C.②③D.②④10.(4分)设函数f(x)=,若关于x的方程f(x)=a(a∈R)有四个实数解x i(i=1,2,3,4),其中x1<x2<x3<x4,则(x1+x2)(x3﹣x4)的取值范围是()A.(0,101]B.(0,99]C.(0,100]D.(0,+∞)二、填空题(本大题共6个小题,每小题5分,共30分)11.(5分)在二项式(x2+2)6的展开式中,x8的系数为.12.(5分)若向量满足,则实数x的取值范围是.13.(5分)在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.如图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.①.②.14.(5分)函数的最小正周期为;若函数f(x)在区间(0,a)上单调递增,则a的最大值为.15.(5分)集合A={(x,y)||x|+|y|=a,a>0},B={(x,y)||xy|+1=|x|+|y|},若A∩B是平面上正八边形的顶点所构成的集合,则下列说法正确的为.①a的值可以为2;②a的值可以为;③a的值可以为2+;三、解答题(本大题共6个小题,共80分,解答应写出文字说明,演算步骤或证明过程.)16.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)满足下列3个条件中的2个条件:①函数f(x)的周期为π;②x=是函数f(x)的对称轴;③f()=0且在区间(,)上单调.(Ⅰ)请指出这二个条件,并求出函数f(x)的解析式;(Ⅱ)若x∈[0,],求函数f(x)的值域.17.(15分)在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,CD⊥AD,PO⊥平面ABCD,O是AD的中点,且PO=AD=2BC=2CD=2.(Ⅰ)求证:AB∥平面POC;(Ⅱ)求二面角O﹣PC﹣D的余弦值;(Ⅲ)线段PC上是否存在点E,使得AB⊥DE,若存在指出点E的位置,若不存在,请说明理由.18.(14分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如图:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求X 的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m的最小值.(结论不要求证明)19.(14分)设函数f(x)=alnx+x2﹣(a+2)x,其中a∈R.(Ⅰ)若曲线y=f(x)在点(2,f(2))处切线的倾斜角为,求a的值;(Ⅱ)已知导函数f'(x)在区间(1,e)上存在零点,证明:当x∈(1,e)时,f(x)>﹣e2.20.(15分)设椭圆,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1、l2分别与椭圆E相交于A,B两点和C,D两点.(Ⅰ)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(Ⅱ)若直线l1的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD能否为矩形,说明理由.21.(14分)对于正整数n,如果k(k∈N*)个整数a1,a2,…,a k满足1≤a1≤a2≤…≤a k ≤n,且a1+a2+…+a k=n,则称数组(a1,a2,…,a k)为n的一个“正整数分拆”.记a1,a2,…,a k均为偶数的“正整数分拆”的个数为f n;a1,a2,…,a k均为奇数的“正整数分拆”的个数为g n.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数n(n≥4),设(a1,a2,…,a k)是n的一个“正整数分拆”,且a1=2,求k的最大值;(Ⅲ)对所有的正整数n,证明:f n≤g n;并求出使得等号成立的n的值.(注:对于n的两个“正整数分拆”(a1,a2,…,a k)与(b1,b2,…,b n),当且仅当k =m且a1=b1,a2=b2,…,a k=b m时,称这两个“正整数分拆”是相同的.)2020年北京市人大附中高考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上.)1.【分析】求出集合B,再求出交集【解答】解:A={x|x>2,x∈R},B={x|x2﹣2x﹣3>0}={x|x>3或者x<﹣1},则A∩B=(3,+∞),故选:A.2.【分析】结合已知及复数的概念进行求解即可.【解答】解:因为z=a2i﹣2a﹣i是正实数,所以,解可得a=﹣1.故选:C.3.【分析】分别结合奇偶性及函数的值域判断各选项即可求解.【解答】解:A:y=x+2为非奇非偶函数,不符合题意;B:y=sin x的值域[﹣1,1],不符合题意;C:y=x﹣x3为奇函数且值域为R,符合题意;D:y=2x为非奇非偶函数,不符合题意.故选:C.4.【分析】先求出公差,再根据求和公式即可求出.【解答】解:等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,∴a3﹣2d+a3+d=5,∴4﹣d=5,解得d=﹣1,∴a1=2+2=4,a6=a1+5d=4﹣5=﹣1,∴S6===9,故选:B.5.【分析】由题意利用任意角的三角函数的定义,复数乘法的几何意义,诱导公式,求出cosα的值.【解答】解:在平面直角坐标系xOy中,将点A(1,2)绕原点O逆时针旋转90°到点B,设点B(x,y),则x+yi=(1+2i)•(cos90°+i sin90°),即x+yi=﹣2+i,∴x=﹣2,y=1,即B(﹣2,1).由题意,sin(α﹣90°)==﹣cosα,∴cosα=﹣=﹣,故选:A.6.【分析】利用不等式的可加性得a+b>2c,由此可判断选项C正确.【解答】解:∵a>c,b>c,∴a+b>2c,∴.故选:C.7.【分析】首先把三视图转换为几何体,进一步求出个各棱长.【解答】解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:AB=BC=CD=AD=DE=2,AE=CE=2,BE=.故选:D.8.【分析】设出P的坐标,利用已知条件化简表达式,通过基本不等式求解最小值即可.【解答】解:设P(x,y),可得===x≥2=4.当且仅当x=2时取得最小值4.故选:D.9.【分析】结合图象直接观察得解.【解答】解:由图象可知,函数f(x)具有周期性,且有对称轴,故②④正确.故选:D.10.【分析】由函数的图象及性质判断出x1,x2,x3,x4之间的关系,进而把所求式子转化为函数y=x﹣在[,1)上取值范围,即可得到所求范围.【解答】解:函数f(x)=的图象如右:关于x的方程f(x)=a(a∈R)有四个实数解,可得y=f(x)的图象与直线y=a有四个交点,可以判断0<a≤1,x1+x2=2×(﹣5)=﹣10,|lgx3|=|lgx4|≤1,且≤x3<1,1<x4≤10,可得﹣lgx3=lgx4,即lgx3+lgx4=0,即有x3x4=1,x4=,故(x1+x2)(x3﹣x4)=﹣10(x3﹣),又由函数y=x﹣在[,1)上递增,可得函数y=x﹣在[,1)上的值域为[﹣9.9,0),可知﹣10(x3﹣)的取值范围为(0,99].故选:B.二、填空题(本大题共6个小题,每小题5分,共30分)11.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式的x8项的系数.【解答】解:二项式(x2+2)6展开式的通项公式为T r+1=•x12﹣2r•2r=2r•x12﹣2r,令12﹣2r=8,解得r=2,故二项式(x2+2)6展开式中的x8项的系数为:22=60,故答案为:60.12.【分析】先利用向量数量积的坐标运算得出,再解关于x的不等式即可.【解答】解:因为:向量;∴=x2+2x;∴⇒x2+2x<3⇒﹣3<x<1;故实数x的取值范围是:(﹣3,1).故答案为:(﹣3,1).13.【分析】直接由频率折线图得结论.【解答】解:由频率折线图可知,甲省控制较好,确诊人数趋于减少;乙省确诊人数相对稳定,也向好的趋势发展.故答案为:①甲省控制较好,确诊人数趋于减少;②乙省确诊人数相对稳定,也向好的趋势发展.14.【分析】由题意利用正弦函数的周期性和单调性,得出结论.【解答】解:函数的最小正周期为;若函数f(x)在区间(0,a)上单调递增,当x=0时,2x+=;当x=a时,2x+=2a+,∴2a+≤,∴0<a≤,故答案为:π;.15.【分析】根据曲线性质求出集合A,B对应的图象,结合两角和差的正切公式进行求解即可.【解答】解:A={(x,y)||x|+|y|=a,a>0},x≥0,y≥0时,即x+y=a表示在第一象限内的线段将x,y分别换成﹣x,﹣y方程不变,因此|x|+|y|=a关于x轴对称,也关于y轴对称那么,集合A={(x,y)||x|+|y|=a,a>0}表示点集为正方形,∵|xy|+1=|x|+|y|∴|xy|﹣|x|﹣|y|+1=0即(|x|﹣1)(|y|﹣1)=0∴|x|=1或|y|=1即x=±1,y=±1B={(x,y)|x=±1,或x=±1},表示2组平行线,A∩B为8个点,构成正八边形①如图1,∠AOB=45°又A(1,a﹣1),∴tan∠xOA=a﹣1,tan∠AOB=tan2∠xOA===1,即2a﹣2=2a﹣a2,∴a2=2∵a>0,∴a=②如图2,∠AOB=45°又A(a﹣1,1)∴tan∠xOA=,tan∠AOB=tan2∠xOA====1,即2a﹣2=﹣2a+a2,∴a2﹣4a+2=0,解得a=2+或a=2﹣(舍),综上a=或a=2+.故答案为:②③.三、解答题(本大题共6个小题,共80分,解答应写出文字说明,演算步骤或证明过程.)16.【分析】(Ⅰ)由题意知应选择①②,由①求出ω的值,由②结合题意求出φ的值,写出函数的解析式;(Ⅱ)根据x的取值范围,利用三角函数的图象与性质求出函数的值域.【解答】解:(Ⅰ)由题意知选择①②;由函数f(x)的周期为π,得ω==2;又x=是函数f(x)的对称轴,所以2×+φ=+kπ,k∈Z;解得φ=+kπ,k∈Z;又|φ|<,所以φ=;所以f(x)=sin(2x+).(Ⅱ)x∈[0,]时,2x+∈[,],所以sin(2x+)∈[,1],所以函数f(x)在x∈[0,]内的值域是[,1].17.【分析】(Ⅰ)易证四边形AOBC是平行四边形,进而得到AB∥OC,由此得证;(Ⅱ)建立空间直角坐标系,求出平面OPC及平面PCD的法向量,利用向量公式得解;(Ⅲ)假设存在,设出点E的坐标,通过AB⊥DE时,它们的数量积为0,建立方程即可得出结论.【解答】解:(Ⅰ)连接OC,∵O是AD的中点,AD=2BC=2,BC∥AD,∴OA∥BC,且OA=BC=1,∴四边形AOBC是平行四边形,∴AB∥OC,∵AB不在平面POC内,OC在平面POC内,∴AB∥平面POC;(Ⅱ)由(Ⅰ)可知,四边形OBCD也为平行四边形,又OD=CD=1,CD⊥AD,∴四边形OBCD是正方形,则OB⊥OD,又PO⊥平面ABCD,故以O为坐标原点,OB,OD,OP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则O(0,0,0),P(0,0,2),C(1,1,0),D(0,1,0),,设平面OPC的一个法向量为,则,可取,设平面PCD的一个法向量为,则,可取,设二面角O﹣PC﹣D的平面角为θ,则;(Ⅲ)假设线段PC上存在点E,且满足,使得AB⊥DE,设E(r,t,s),则(r,t,s﹣2)=λ(1,1,﹣2)=(λ,λ,﹣2λ),故,即E (λ,λ,2﹣2λ),∴,又,∴,解得,故线段PC上存在点E,且满足,使得AB⊥DE.18.【分析】(I )由图表可知,测试成绩在80分以上的女生有2人,占比为,再求出结论即可;(II )根据题意,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人,X =0,1,2,求出分布列和数学期望; (III )根据题意,求出即可.【解答】解:(I )由图表可知,测试成绩在80分以上的女生有2人,占比为, 在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数约为50×0.1=5万人; (II )由图表得,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人, 记其中测试成绩在70分以上的人数为X ,选出的8名男生中随机抽取2人,则X =0,1,2, 则P (X =0)=,P (X =1)=,P (X =2)=,X 的分布列如下:x 0 1 2 p故E (X )=0,(III )m 的最小值为4.19.【分析】(Ⅰ)求出函数在x=2处的导数f′(2)=﹣+2=tan=1,解得a=2;(Ⅱ)根据导函数在(1,e)上存在零点,则f′(x)=0在(1,e)上有解,则有1<<e,即2<a<2e,得到函数f(x)的最小值,构造函数g(x)=xlnx﹣﹣(1+ln2)x,2<x<2e,利用导数判断出其单调性,结合不等式传递性可证.【解答】(Ⅰ)解:根据条件f′(x)=+2x﹣(a+2),则当x=2时,f′(2)=+4﹣(a+2)=﹣+2=tan=1,解得a=2;(Ⅱ)证明:因为f′(x)=+2x﹣(a+2)=,又因为导函数f′(x)在(1,e)上存在零点,所以f′(x)=0在(1,e)上有解,则有1<<e,即2<a<2e,且当1<x<时,f′(x)<0,f(x)单调递减,当<x<e时,f′(x)>0,f(x)单调递增,所以f(x)≥f()=aln+﹣(a+2)=alna﹣﹣(1+ln2)a,设g(x)=xlnx﹣﹣(1+ln2)x,2<x<2e,则g′(x)=lnx+1﹣﹣(1+ln2)=lnx﹣﹣ln2,则g′′(x)=﹣<0,所以g′(x)在(2,2e)上单调递减,所以g(x)在(2,2e)上单调递减,则g(2e)=2eln2e﹣e2﹣2e(1+ln2)=﹣e2<g(2),所以g(x)>﹣e2,则根据不等式的传递性可得,当x∈(1,e)时,f(x)>﹣e2.20.【分析】(Ⅰ)易知,此时四边形ABCD为矩形,且,由此求得面积;(Ⅱ)设直线l1的方程,并与椭圆方程联立,可得到|AB|的长度,同理可得|CD|的长度,由|AB|=|CD|,可得m2=n2,进而得证;(Ⅲ)运用反证法,假设平行四边形ABCD为矩形,但此时推出直线l1⊥x轴,与题设矛盾,进而得出结论.【解答】解:(Ⅰ)由题意可得,,且四边形ABCD 为矩形,∴;(Ⅱ)证明:由题可设,l1:x=ty+m(t∈R),A(x1,y1),B(x2,y2),由得,(t2+2)y2+2mty+m2﹣2=0,∴,且△=4m2t2﹣4(t2+2)(m2﹣2)>0,即t2﹣m2+2>0,∴==,同理可得,∵四边形ABCD为平行四边形,∴|AB|=|CD|,即m2=n2,由m≠n,故m=﹣n,即m+n=0,即得证;(Ⅲ)不能为矩形,理由如下:点O到直线l1,直线l2的距离分别为,由(Ⅱ)可知,m=﹣n,∴点O到直线l1,直线l2的距离相等,根据椭圆的对称性,原点O应为平行四边形ABCD的对称中心,假设平行四边形ABCD为矩形,则|OA|=|OB|,那么,则,∴x1=x2,这是直线l1⊥x轴,这与直线l1的斜率存在矛盾,故假设不成立,即平行四边形ABCD不为矩形.21.【分析】(Ⅰ)由“正整数分拆”的定义能求出整数4的所有“正整数分拆”.(Ⅱ)欲使k最大,只须a i最小,由此根据n为偶数和n为奇数,能求出k的最大值.(Ⅲ)当n为奇数时,f n=0,满足f n≤g n;当n为偶数时,设(a1,a2,…,a k)为满足a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,则他对应了各数均为奇数的分拆,从而f n≤g n;当n=2时,f2=g2;当n=4时,f4=g4;当n≥6时,f n≤g n.由此能证明f n≤g n,并能求出等号成立的n的值为2,4.【解答】解:(Ⅰ)解:整数4的所有“正整数分拆”有:(4),(1,3),(2,2),(1,1,2),(1,1,1,1,).(Ⅱ)解:欲使k最大,只须a i最小,当n为偶数时,a1=a2=…=a k=2,k=,当n为奇数时,a1=a2=…=a k﹣1=2,a k=3,k=.(Ⅲ)证明:①当n为奇数时,不存在a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,即f n=0,满足f n≤g n;②当n为偶数时,设(a1,a2,…,a k)为满足a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,则他至少对应了(1,1,…,1)和(1,1,…,1,a1﹣1,a2﹣1,…,a k﹣1)这两种各数均为奇数的分拆,∴f n≤g n;③当n=2时,a i均为偶数的“正整数分拆“只有:(2),a i均为奇数的”正整数分拆“只有:(1,1),f2=g2;当n=4时,a i均为偶数的”正整数分拆“只有:(4),(2,2),a i均为奇数的”正整数分拆“只有:(1,1,1),(1,3),f4=g4;当n≥6时,对于每一种a i均为偶数的”正整数分拆“,除了各项不全为1的奇数分拆之外至少多出一个各为1的”正整数分拆“(1,1,…,1),∴f n≤g n.综上,使得f n≤g n中等号成立的n的值为2,4。

2020届北京市人民大学附属中学高考模拟(4月)数学试题解析

2020届北京市人民大学附属中学高考模拟(4月)数学试题解析

2020届北京市人民大学附属中学高考模拟(4月)数学试题一、单选题1.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则A B =I ( ) A .(3,)+∞ B .(,1)(3,)-∞-+∞U C .(2,)+∞D .(2,3)答案:A计算()(),13,B =-∞-+∞U ,再计算交集得到答案. 解:{}()()2230,13,B x x x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞I .故选:A . 点评:本题考查了交集运算,属于简单题.2.已知复数22z a i a i =--是正实数,则实数a 的值为( ) A .0 B .1 C .1- D .1±答案:C将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案. 解:因为2222(1)z a i a i a a i =--=-+-为正实数,所以20a ->且210a -=,解得1a =-. 故选:C 点评:本题考查复数的基本定义,属基础题.3.下列函数中,值域为R 且为奇函数的是( ) A .2y x =+ B .y sinx =C .3y x x =-D .2xy =答案:C依次判断函数的值域和奇偶性得到答案. 解:A. 2y x =+,值域为R ,非奇非偶函数,排除;B. y sinx =,值域为[]1,1-,奇函数,排除;C. 3y x x =-,值域为R ,奇函数,满足;D. 2xy =,值域为()0,∞+,非奇非偶函数,排除;故选:C . 点评:本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用. 4.设等差数列{}n a 的前n 项和为n S ,若31425a a a =+=,,则6S =( ) A .10 B .9C .8D .7答案:B 根据题意3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,得到答案.解:3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,故616159S a d =+=.故选:B . 点评:本题考查了等差数列的求和,意在考查学生的计算能力.5.在平面直角坐标系xOy 中,将点()1,2A 绕原点O 逆时针旋转90︒到点B ,设直线OB 与x 轴正半轴所成的最小正角为α,则cos α等于( )A .B .CD .25-答案:A设直线直线OA 与x 轴正半轴所成的最小正角为β,由任意角的三角函数的定义可以求得sin β的值,依题有OA OB ⊥,则90αβo=+,利用诱导公式即可得到答案.解:如图,设直线直线OA 与x 轴正半轴所成的最小正角为β因为点()1,2A 在角β的终边上,所以2225sin 12β==+ 依题有OA OB ⊥,则90αβo=+,所以25cos cos(90)sin αββo =+=-=-, 故选:A 点评:本题考查三角函数的定义及诱导公式,属于基础题. 6.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 答案:C取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 解:,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 点评:本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.7.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且23SB .22S ,且3SC .22S ∈,且23S ∉D .22S ∈,且23S ∈答案:D首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长. 解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体, 如图所示:所以:2AB BC CD AD DE =====,22AE CE ==,22(22)223BE =+=.故选:D.. 点评:本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.8.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A 3B .51)C .5D .4答案:D如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 解:如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=, 设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x=,即2x =时等号成立. 故选:D .点评:本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力. 9.已知函数()sinx12sinxf x =+的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )①绕着x 轴上一点旋转180︒; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. A .①③ B .③④C .②③D .②④答案:D计算得到()()2f x k f x π+=,22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案. 解:()sin 12sin xf x x=+,()()()()sin 2sin 212sin 212sin x k x f x k f x x k x πππ++===+++,k Z ∈, 当沿x 轴正方向平移2,k k Z π∈个单位时,重合,故②正确;co sin 2212co s s s 12in 2x f x xx x πππ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪+⎛⎫⎝⎭+- ⎪⎝⎭,co sin 2212co s s s 12in 2x f x xx x πππ⎛⎫+ ⎪⎛⎫⎝⎭+== ⎪+⎛⎫⎝⎭++ ⎪⎝⎭, 故22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,函数关于2x π=对称,故④正确;根据图像知:①③不正确; 故选:D . 点评:本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.10.设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( ) A .(]0101, B .(]099, C .(]0100, D .()0+∞,答案:B画出函数图像,根据图像知:1210x x +=-,341x x =,31110x ≤<,计算得到答案. 解:()21010 lg 0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,,,画出函数图像,如图所示:根据图像知:1210x x +=-,34lg lg x x =-,故341x x =,且31110x ≤<. 故()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-. 故选:B .点评:本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.二、填空题11.在二项式()622x +的展开式中,8x 的系数为________. 答案:60直接利用二项式定理计算得到答案. 解:二项式()622x +的展开式通项为:()6212216622rr r r rr r T Cx C x --+=⋅=⋅,取2r =,则8x 的系数为226260C ⋅=.故答案为:60. 点评:本题考查了二项式定理,意在考查学生的计算能力和应用能力.12.若向量()()221a x b x ==r r ,,,满足3a b ⋅<r r ,则实数x 的取值范围是____________.答案:()3,1-根据题意计算223a b x x ⋅=+<r r,解得答案. 解:()()221a x b x ==r r ,,,,故223a b x x ⋅=+<r r ,解得31x -<<.故答案为:()3,1-. 点评:本题考查了向量的数量积,意在考查学生的计算能力.13.函数()24f x sin x π⎛⎫=+ ⎪⎝⎭的最小正周期为________;若函数()f x 在区间()0α,上单调递增,则α的最大值为________. 答案:π8π直接计算得到答案,根据题意得到2,2444x πππα⎛⎫+∈+ ⎪⎝⎭,242ππα+≤,解得答案.解:()sin 24f x x π⎛⎫=+ ⎪⎝⎭,故22T ππ==,当()0,x α∈时,2,2444x πππα⎛⎫+∈+ ⎪⎝⎭,故242ππα+≤,解得8πα≤.故答案为:π;8π. 点评:本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用. 14.集合{}(,),0A x y x y a a =+=>,{}(,)1B x y xy x y =+=+,若A B I 是平面上正八边形的顶点所构成的集合,则下列说法正确的为________①a 的值可以为2;②a 的值可以为2; ③a 的值可以为22+; 答案:②③根据对称性,只需研究第一象限的情况,计算AC :()21y x =-,得到()1,21A -,()21,1C+,得到答案.解:如图所示:根据对称性,只需研究第一象限的情况,集合B :1xy x y +=+,故()()110x y --=,即1x =或1y =, 集合A :x y a +=,A B I 是平面上正八边形的顶点所构成的集合, 故AC 所在的直线的倾斜角为22.5︒,tan 22.521AC k =︒=-,故AC :()21y x =-,解得()1,21A -,此时2a =,()21,1C+,此时22a =+.故答案为:②③.点评:本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.三、双空题15.在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.①_________________________________________________. ②_________________________________________________.答案:甲省比乙省的新增人数的平均数低 甲省比乙省的方差要大 直接根据折线图得到答案. 解:根据折线图知:①甲省比乙省的新增人数的平均数低;②甲省比乙省的方差要大. 故答案为:甲省比乙省的新增人数的平均数低;甲省比乙省的方差要大. 点评:本题考查了折线图,意在考查学生的理解能力和应用能力.四、解答题16.已知函数()sin()f x x ωϕ=+(0>ω,||2ϕπ<)满足下列3个条件中的2个条件:①函数()f x 的周期为π; ②6x π=是函数()f x 的对称轴;③04f π⎛⎫=⎪⎝⎭且在区间,62ππ⎛⎫ ⎪⎝⎭上单调.(Ⅰ)请指出这二个条件,并求出函数()f x 的解析式; (Ⅱ)若0,3x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域. 答案:(Ⅰ)只有①②成立,()sin 26f x x π⎛⎫=+⎪⎝⎭;(Ⅱ)1,12⎡⎤⎢⎥⎣⎦. (Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案. (Ⅱ)03x π≤≤得到52666x πππ≤+≤,得到函数值域. 解:(Ⅰ)由①可得,22ππωω=⇒=;由②得:6226k k πωπππωϕπϕπ+=+⇒=+-,k Z ∈;由③得,44m m πωπωϕπϕπ+=⇒=-,m Z ∈,220322633T πππππωω≥-=⇒≥⇒<≤; 若①②成立,则2ω=,6π=ϕ,()sin 26f x x π⎛⎫=+ ⎪⎝⎭, 若①③成立,则42m m πωπϕππ=-=-,m Z ∈,不合题意,若②③成立,则264k m ππωπωππ+-=-12()66m k ω⇒=--≥,,m k Z ∈,与③中的03ω<≤矛盾,所以②③不成立, 所以只有①②成立,()sin 26f x x π⎛⎫=+ ⎪⎝⎭. (Ⅱ)由题意得,5102()136662x x f x ππππ≤≤⇒≤+≤⇒≤≤, 所以函数()f x 的值域为1,12⎡⎤⎢⎥⎣⎦. 点评:本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.17.在四棱锥P ABCD -的底面ABCD 中,//BC AD ,CD AD ⊥,PO ⊥平面ABCD ,O 是AD 的中点,且222PO AD BC CD ====(Ⅰ)求证://AB 平面POC ; (Ⅱ)求二面角O PC D --的余弦值;(Ⅲ)线段PC 上是否存在点E ,使得AB DE ⊥,若存在指出点E 的位置,若不存在请说明理由.答案:(Ⅰ)详见解析;10;(Ⅲ)存在,点E 为线段PC 的中点. (Ⅰ)连结OC ,BC AO =,//BC AD ,则四边形ABCO 为平行四边形,得到证明.(Ⅱ)建立如图所示坐标系,平面PCD 法向量为1(0,2,1)n =u r,平面POC 的法向量2(1,1,0)n BD ==-u u r u u u r,计算夹角得到答案.(Ⅲ)设(,,)E x y z ,计算(,1,22)DE λλλ=--u u u r ,(1,1,0)AB =u u u r,根据垂直关系得到答案. 解:(Ⅰ)连结OC ,BC AO =,//BC AD ,则四边形ABCO 为平行四边形.//AB OC AB POC OC POC ⎧⎪⊄⎨⎪⊂⎩平面平面//AB ⇒平面POC . (Ⅱ)PO ⊥平面ABCD ,CD ADOD BC CD⊥⎧⇒⎨==⎩四边形OBCD 为正方形. 所以OB ,OD ,OP 两两垂直,建立如图所示坐标系,则(1,1,0)C ,(0,0,2)P ,(0,1,0)D ,(1,0,0)B ,设平面PCD 法向量为1(,,)n x y z =u r ,则1110(0,2,1)0n CD n n PD ⎧⋅=⎪⇒=⎨⋅=⎪⎩u v u u u vu vu v u u u v , 连结BD ,可得BD OC ⊥,又BD PO ⊥所以,BD ⊥平面POC ,平面POC 的法向量2(1,1,0)n BD ==-u u r u u u r,设二面角O PC D --的平面角为θ,则121210cos 5||||n n n n θ⋅==⋅u r u u r u r u u r .(Ⅲ)线段PC 上存在点E 使得AB DE ⊥,设(,,)E x y z ,(,,2)(1,1,2)(,,22)PE PC x y z E λλλλλ=⇒-=-⇒-u u u r u u u r(,1,22)DE λλλ=--u u u r ,(1,1,0)AB =u u u r ,102AB DE AB DE λ⊥⇒⋅=⇒=u u u r u u u r ,所以点E 为线段PC 的中点. 点评:本题考查了线面平行,二面角,根据垂直关系确定位置,意在考查学生的计算能力和空间想象能力.18.2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数; (Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X ,求X 的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m 个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m 的最小值.(结论不要求证明)答案:(Ⅰ)5万;(Ⅱ)分布列见解析,()34E X = ;(Ⅲ)4 (Ⅰ)根据比例关系直接计算得到答案.(Ⅱ) X 的可能取值为0,1,2,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ) 英语测试成绩在70分以上的概率为101202p == ,故1190%2m⎛⎫<- ⎪⎝⎭,解得答案. 解:(Ⅰ)样本中女生英语成绩在80分以上的有2人,故人数为:250520⨯=万人. (Ⅱ) 8名男生中,测试成绩在70分以上的有3人,X 的可能取值为:0,1,2.()25285014C p X C ===,()11532815128C C p X C ===,()23283328C p X C ===.故分布列为:X1 2 p5141528328()515330121428284E X =⨯+⨯+⨯=. (Ⅲ) 英语测试成绩在70分以上的概率为101202p == ,故1190%2m⎛⎫<- ⎪⎝⎭,故4m ≥.故m 的最小值为4. 点评:本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.19.设函数()()22f x alnx x a x =+-+,其中.a R ∈(Ⅰ)若曲线()y f x =在点()()22f ,处切线的倾斜角为4π,求a 的值; (Ⅱ)已知导函数()'f x 在区间()1e ,上存在零点,证明:当()1x e ∈,时,()2f x e >-. 答案:(Ⅰ)2a =;(Ⅱ)证明见解析 (Ⅰ)求导得到()()'22a f x x a x =+-+,()'ta 12n 4f π==,解得答案. (Ⅱ) ()()()12'0x x a f x x--==,故02a x=,()f x 在()01,x 上单调递减,在()0,x e 上单调递增,()20000min 2ln 2f x x x x x =--,设()22ln 2g x x x x x =--,证明函数单调递减,故()()2min g x g e e >=-,得到证明.解:(Ⅰ)()()2ln 2f x a x x a x =+-+,故()()'22af x x a x=+-+, ()()'42tan 1242a f a π=+-+==,故2a =. (Ⅱ) ()()()()12'220x x a af x x a x x--=+-+==,即()22,a x e =∈,存在唯一零点,设零点为0x ,故()()000'220af x x a x =+-+=,即02a x =, ()f x 在()01,x 上单调递减,在()0,x e 上单调递增,故()()()()0220000i 0000m n ln 22ln 22a x x a x x x f x f x x x x +-+=+-+==200002ln 2x x x x =--,设()22ln 2g x x x x x =--,则()'2ln 2g x x x =-,设()()'2ln 2h x g x x x ==-,则()2'20h x x=-<,()h x 单调递减, ()()1'12h g ==-,故()'2ln 20g x x x =-<恒成立,故()g x 单调递减. ()()2min g x g e e >=-,故当()1x e ∈,时,()2f x e >-.点评:本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.20.设椭圆22:12x E y +=,直线1l 经过点()0M m ,,直线2l 经过点()0N n ,,直线1l P 直线2l ,且直线12l l ,分别与椭圆E 相交于A B ,两点和C D ,两点.(Ⅰ)若M N ,分别为椭圆E 的左、右焦点,且直线1l x ⊥轴,求四边形ABCD 的面积; (Ⅱ)若直线1l 的斜率存在且不为0,四边形ABCD 为平行四边形,求证:0m n +=; (Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD 能否为矩形,说明理由. 答案:(Ⅰ) (Ⅱ)证明见解析;(Ⅲ)不能,证明见解析 (Ⅰ)计算得到故1,2A ⎛⎫- ⎪ ⎪⎝⎭,1,2B ⎛- ⎝⎭,1,2C ⎛⎫ ⎪ ⎪⎝⎭,1,2D ⎛- ⎝⎭,计算得到面积.(Ⅱ) 设1l 为()y k x m =-,联立方程得到2122221224212221k mx x k k m x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,计算AB =,同理CD =AB CD =得到22m n =,得到证明.(Ⅲ) 设AB 中点为(),P a b ,根据点差法得到20a kb +=,同理20c kd +=,故112PQ k k k=-≠-,得到结论. 解:(Ⅰ)()1,0M -,()1,0N ,故1,2A ⎛- ⎝⎭,1,2B ⎛-- ⎝⎭,1,2C ⎛ ⎝⎭,1,2D ⎛⎫- ⎪ ⎪⎝⎭. 故四边形ABCD的面积为S =(Ⅱ)设1l 为()y k x m =-,则()2212x y y k x m ⎧+=⎪⎨⎪=-⎩,故()22222214220kx k mx m k +-+-=,设()11,A x y ,()22,B x y ,故2122221224212221k m x x k k m x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,12AB x =-==同理可得CD =AB CD ==, 即22m n =,m n ≠,故0m n +=.(Ⅲ)设AB 中点为(),P a b ,则221112x y +=,222212x y +=,相减得到()()()()1212121202x x x x y y y y +-++-=,即20a kb +=,同理可得:CD 的中点(),Q c d ,满足20c kd +=, 故11222PQ d b d b k c a kd kb k k--===-≠---+,故四边形ABCD 不能为矩形. 点评:本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.21.对于正整数n ,如果()*k k N∈个整数12ka a a ⋯,,,满足121k a a a n ≤≤≤⋯≤≤,且12k a a a n ++⋯+=,则称数组()12k a a a ⋯,,,为n 的一个“正整数分拆”.记12k a a a ⋯,,,均为偶数的“正整数分拆”的个数为12n k f a a a ⋯,,,,均为奇数的“正整数分拆”的个数为n g .(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数()4n n ≥,设()12k a a a ⋯,,,是n 的一个“正整数分拆”,且12a =,求k 的最大值;(Ⅲ)对所有的正整数n ,证明:n n f g ≤;并求出使得等号成立的n 的值.(注:对于n 的两个“正整数分拆”()12k a a a ⋯,,,与()12m b b b ⋯,,,,当且仅当k m =且1122k m a b a b a b ==⋯=,,,时,称这两个“正整数分拆”是相同的.) 答案:(Ⅰ) ()1,1,1,1,()1,1,2,()1,3,()2,2,()4;(Ⅱ) n 为偶数时,2nk =,n 为奇数时,12n k -=;(Ⅲ)证明见解析,2n =,4n = (Ⅰ)根据题意直接写出答案. (Ⅱ)讨论当n 为偶数时,k 最大为2n k =,当n 为奇数时,k 最大为12n k -=,得到答案.(Ⅲ) 讨论当n 为奇数时,0n f =,至少存在一个全为1的拆分,故n n f g <,当n 为偶数时,根据对应关系得到n n f g ≤,再计算221f g ==,442f g ==,得到答案. 解:(Ⅰ)整数4的所有“正整数分拆”为:()1,1,1,1,()1,1,2,()1,3,()2,2,()4.(Ⅱ)当n 为偶数时,123...2k a a a a =====时,k 最大为2n k =; 当n 为奇数时,1231...2,3k k a a a a a -======时,k 最大为12n k -=;综上所述:n 为偶数,k 最大为2n k =,n 为奇数时,k 最大为12n k -=.(Ⅲ)当n 为奇数时,0n f =,至少存在一个全为1的拆分,故n n f g <; 当n 为偶数时,设()12,,...,k a a a 是每个数均为偶数的“正整数分拆”,则它至少对应了()1,1,...,1和()121,1,...,1,1,...,1k a a a ---的均为奇数的“正整数分拆”, 故n n f g ≤. 综上所述:n n f g ≤.当2n =时,偶数“正整数分拆”为()2,奇数“正整数分拆”为()1,1,221f g ==;当4n =时,偶数“正整数分拆”为()2,2,()4,奇数“正整数分拆”为()1,1,1,1,()1,3 故442f g ==;当6n ≥时,对于偶数“正整数分拆”,除了各项不全为1的奇数拆分外,至少多出一项各项均为1的“正整数分拆”,故n n f g <.综上所述:使n n f g =成立的n 为:2n =或4n =. 点评:本土考查了数列的新定义问题,意在考查学生的计算能力和综合应用能力.。

2020年北京市人大附中高考数学模拟试卷(一)(5月份)(有答案解析)

2020年北京市人大附中高考数学模拟试卷(一)(5月份)(有答案解析)
故选:C. 根据程序框图进行模拟运算即可. 本题主要考查程序框图的识别和判断,利用程序框图进行模拟运算是解决本题的关键.
5.答案:D
解析:解:根据几何体的三视图知,该多面体是由正方体截去两个正三棱锥所成的几何 体,如图所示;
则该多面体的距离最大的两个面为截面三角形, 所以这两个平面三角形对应顶点距离的最大值是面对角线的长,为 2 . 故选:D. 根据三视图知该多面体是由正方体截去两个正三棱锥所成的几何体,结合图形得出该多 面体的距离最大的两个面为截面三角形,求出这两个平面三角形对应顶点距离的最大值 是面对角线的长. 本题考查了利用三视图求几何体结构特征的应用问题,是基础题.
第 2 页,共 16 页
(2)设数列{ }的前 n 项和为 Tn,求证: ≤Tn< .
16. △ABC 的内角 A、B、C 所对的边分别为 a、b、c,且满足

(Ⅰ)求 cosA 的值; (Ⅱ)若△ABC 外接圆半径为 3,
,求△ABC 的面积.
17. 已知如图,长方体 ABCD-A1B1C1D1 中,AB=BC=4,
(x)(e 是自然对数的底数),且 f(0)=1,若关于 x 的不等式 f(x)-m<0 的解 集中恰有两个整数,则实数 m 的取值范围是______ 三、解答题(本大题共 6 小题,共 80.0 分) 15. 已知等差数列{an}的公差 d≠0,它的前 n 项和为 Sn,若 S5=70,且 a2,a7,a22 成等 比数列. (1)求数列{an}的通项公式;
19. 已知函数 f(x)=alnx-ex-1+1,其中 a∈R.
(1)若 x=1 是函数 f(x)的导函数的零点,求 f(x)的单调区间; (2)若不等式 f(x)≤0 对∀x∈[1,+∞)恒成立,求实数 a 的取值范围.

北京市中国人民大学附属中学2024-2025学年高三上学期统练2数学试题

北京市中国人民大学附属中学2024-2025学年高三上学期统练2数学试题

北京市中国人民大学附属中学2024-2025学年高三上学期统练2数学试题2024.10.28一、单选题1.在空间直角坐标系中,(1,2,1)a = 为直线l 的一个方向向量,(2,,4)n t =为平面α的一个法向量,且//l α,则t =()A.3B.-3C.1D.-12.若直线l 的方向向量为m ,平面α的法向量为n,则可能使//l α的是()А.(1,0,0),(2,0,0)m n ==-B.(1,3,5),(1,0,1)m n ==C.(0,2,1),(1,0,1)m n ==--D.(1,1,3),(0,3,1)m n =-=3.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,则下列结论正确的是().A.若//,//m n m α,则//n αB.若,m ααβ⊥⊥,则//m βC.若,αγβγ⊥⊥,则//αβD.若//,//,m n m αβα⊥,则n β⊥4.已知向量a = ,单位向量b 满足|2|a b += ,a b的夹角为()А.π6B.π4C.π3D.2π35.已知,αβ是两个不同的平面,a ,b 是两条不同的直线,且,a b αβ⊂⊂,则“//a b ”是“//αβ”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.在下列条件中,能使M 与A ,B ,C 一定共面的是()A.2OM OA OB OC =--B.111532OM OA OB OC=++ C.0MA MB MC ++= D.0OM OA OB OC +++= 7.在斜三棱柱111ABC A B C -中,00,A B 分别为侧棱11,AA BB 上的点,且知001BB A A =,过001,,A B C 的截面将三棱柱分成上下两个部分体积之比为()A.2:1B.4:3C.3:2D.1:18.在正四面体ABCD 中,点E ,F ,G 分别为棱BC ,CD ,AC 的中点,则异面直线AE ,FG 所成角的余弦值为()A.3B.3-C.3-D.39.《九章算术》是我国古代的数学名著,书中将底面为矩形,且有一条侧棱垂直于底面的四棱锥称为“阳马”.如图,在阳马P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,E ,F 分别为PD ,PB 的中点,点G 在线段AP 上,AC 与BD 交于点,2O PA AB ==,若//OG 平面EFC ,则AG =()A.12B.34C.23D.110.如图,在棱长为3的正方体1111ABCD A B C D -中,3BC EC =,点P 在底面正方形ABCD 内移动(包含边界),且满足11B P D E ⊥,则线段1B P 长度的最大值为()A.319010C. D.1663二、填空题11.在空间直角坐标系中,点(1,2,1)A -关于xOy 平面的对称点的坐标为_______________.12.如图:矩形A B C D ''''的长为4cm ,宽为2cm,O '是A B ''的中点,它是水平放置的一个平面图形ABCD 的直观图,则四边形ABCD 的周长为______________cm.13.已知向量(2,1,0),(1,0,2)a b ==- ,若向量a kb + 与23a b +的夹角为锐角,则实数k 的取值范围是______________.14.已知圆锥PO (P 为圆锥顶点,O 为底面圆心)的轴截面是边长为2的等边三角形,A ,B ,C 为底面圆周上三点,若空间一动点Q 满足2(12)PQ xPA yPB x y PC =++-- ,则||PQ的最小值为_____________.15.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示).,则以下结论正确的是____________.(填序号)①BF ⊥平面EAB ;②该二十四等边体的体积为203;③该二十四等边体外接球的表面积为8π;④PN 与平面EBFN 所成角的正弦值为2.三、解答题16.如图,AB 是圆柱的底面直径且2,AB PA =是圆柱的母线且2PA =,点C 是圆柱底面圆周AB 上靠近点A 的三等分点,点E 在线段PA 上.(1)求圆柱的表面积与体积;(2)求三棱锥P-ABC 的体积;(3)若D 是PB 的中点,求CE DE +的最小值.17.如图,正方体1111ABCD A B C D -的棱长为2,E 为BC 的中点,点M 在1BD 上.再从下列三个条件中选择一个作为已知,使点M 唯一确定,并解答问题.条件①:MA MC =;条件②:EM AD ⊥;条件③://EM 平面11CDD C .(1)求证:M 为1BD 的中点;(2)求直线EM 与平面MCD 所成角的大小;(3)求点E 到平面MCD 的距离.18.如图,在四棱锥P OACB -中,PO ⊥平面ABC ,且10,2PA O =为ABC 的外心,1,30AC BC BAC ︒==∠=.(1)求证://AC 平面PBO ;(2)若点M 在线段PC (不含端点)上运动,设平面PAO ⋂平面PBC l =,当直线l 与平面ABM 所成的角最大时,求二面角O BM A --的正弦值.北京市中国人民大学附属中学2024-2025学年高三上学期统练2数学试题参考答案2024.10.28一、单选题1.答案:B解析:因为//l α,所以2240a n t ⋅=++=,解得3t =-.故选B.2.答案:D解析:因为//l α,所以m n ⊥ ,即0m n ⋅=,满足条件的只有选项D ,故选D.3.答案:D解析:A://,//m n m α,则//n α或n α⊂,错误;B:,m ααβ⊥⊥,则//m β或m β⊂,错误;C :,αγβγ⊥⊥,则,αβ相交或平行,错误;D://,m n m α⊥,则n α⊥,又//αβ,故n β⊥,正确.故选D.4.答案:C解析:因为a = ,所以||2a = .又|2|a b += ,所以2|2|12a b += ,即224412a a b b +⋅+= ,所以44412a b +⋅+= ,则1a b ⋅= 所以11cos ,212||||a b a b a b ⋅〈〉===⨯.又,[0,π]a b 〈〉∈ ,所以π,3a b 〈〉= .故选C.5.解://a b 推不出//,//αβαβ也推不出//a b ,所以"//a b "是"//αβ"的既不充分也不必要条件.6.答案:C解析:对于A 选项,由于21101--=≠,所以不能得出M ,A ,B ,C 共面.对于B 选项,由于1111532++≠,所以不能得出M ,A ,B ,C 共面.对于C 选项,由于MA MB MC =--,则,,MA MB MC 为共面向量,所以M ,A ,B ,C 共面.对于D 选项,由0OM OA OB OC +++= 得OM OA OB OC =---,而11131---=-≠,所以不能得出M ,A ,B ,C 共面.故选C.7.解:设三棱柱111ABC A B C -的体积为V侧棱1AA 和1BB 上各有一动点00,A B 满足001BB A A =,∴四边形00A B BA 与四边形0011A B B A 的面积相等.故四棱锥00C A B BA -的体积等于三棱锥1C ABA -的体积等于13V .则四棱锥0011C A B B A -的体积等于23V .故过001,,A B C 三点的截面把棱柱分成两部分,则其体积比为2:18.解:连接DE ,设正四面体ABCD 的棱长为2,因为G ,F 分别为AC ,CD 的中点,则//GF AD ,所以异面直线AE ,FG 所成角为DAE ∠(或其补角),在ADE 中,则2AE DE AD ===,由余弦定理可得2223cos23AD AE DE DAE AD AE +-∠==⋅,所以异面直线AE ,FG 所成角的余弦值为33.9.答案:C解析:以A 为坐标原点,,,AB AD AP的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示.由题意可得002200P B (,,),(,,),020220D C (,,),(,,),110O (,,),则(1,0,1),(0,1,1)F E ,所以(1,2,1),(1,1,0)FC FE =-=-.设平面EFC 的法向量为(,,)n x y z = ,则0,0,n FC n FE ⎧⋅=⎪⎨⋅=⎪⎩即20,0,x y z x y +-=⎧⎨-+=⎩解得,3,y x z x =⎧⎨=⎩令1x =,则1,3y z ==.所以平面EFC 的一个法向量为(1,1,3)n =.因为//OG 平面EFC ,所以0n OG ⋅=.设(0,0,)G a ,则(1,1,)OG a =--,所以1130a --+=.解得23a =,所以20,0,3G ⎛⎫ ⎪⎝⎭,即23AG =.故选C.10.答案:B解析:依据题意可以建立如图所示的空间直角坐标系,则11(0,0,3),(1,3,0),(3,3,3)D E B,设(,,0)(,[0,3])P x y x y ∈,所以11(3,3,3),(1,3,3)B P x y D E =---=-,则11330B P D E x y ⋅=+-=,则33x y =-,所以0333y ≤-≤,即[0,1]y ∈.而1B P == ,由二次函数的单调性可知22391061810181010t y y y ⎛⎫=-+=-+- ⎪⎝⎭,当1y =时,max 22t =,则1maxB P =.故选B.二、填空题11.答案:(1,2,1)解析:点(1,2,1)A -关于xOy 平面的对称点的坐标为(1,2,1).12.解:由斜二测画法知:与x 轴平行或重合的线段其长度不变、与横轴平行的性质不变;与y 轴平行或重合的线段长度变为原来的一半,且与y '轴平行的性质不变.还原出原图形如图所示的平行四边形,其中4cm,22AB A B OC O C ''''====⨯=,6cm BC ∴==,所以原图形的周长为2(46)20cm ⨯+=.13.答案:11|4{k k >-且32k ⎫≠⎬⎭解析:因为(2,1,0),(1,0,2)a b ==- ,所以(2,1,2),23(1,2,6)a kb k k a b +=-+= .因为向量a kb +与23a b +的夹角为锐角,所以()(23)22121140a kb a b k k k +⋅+=-++=+> ,解得411k >-.当()//(23)a kb a b ++ 时,212126k k -==,解得32k =,所以实数k 的取值范围为11|4{k k >-且32k ⎫≠⎬⎭.14.答案解析:因为2(12)PQ xPA yPB x y PC =++-- ,所以22PQ PC xPA xPC yPB yPC -=-+- ,即2CQ xCA yCB =+ ,所以,,CQ CA CB共面.又A ,B ,C 为底面圆周上三点,所以点Q 为平面ABC 上一点.由题意知PO ⊥平面ABC ,所以||||PQ PO ≥ ,又圆锥PO 的轴截面是边长为2的等边三角形,所以||PO = ,所以||PQ的最小值.15.答案:②③④解析:将几何体补成正方体1111ORLI O R L I -,以点O 为坐标原点,1,,OR OI OO 所在直线分别为x y z ,,轴建立如图所示的空间直角坐标系.对于①,100210AB (,,),(,,),201221E F (,,),(,,),所以(0,1,1),(1,1,0)BF AB == ,则0BF AB ⋅≠,故①错误;对于②,该二十四等边体是在正方体1111ORLI O R L I -上截去8个全等的三棱锥而成,且三棱锥的底面是腰长为1的等腰直角三角形,三棱锥的高为1,故该二十四等边体的体积3211202811323V =-⨯⨯⨯⨯=,故②正确;对于③,易知正方体1111ORLI O R L I -的中心(1,1,1)X为该二十四等边体外接球的球心,且该球的半径为XA ==,因此,该二十四等边体外接球的表面积为28π=,故③正确;对于④,易知平面EBFN 的一个法向量为(1,0,0),(1,2,2),(2,1,2)n P N = ,所以(1,1,0)PN =-,所以cos ,2||n PN n PN n PN ⋅〈〉===‖,故PN 与平面EBFN所成角的正弦值为2,故④正确.故答案为②③④.三、解答题16.解:(1)圆柱的底面直径2AB =,故半径1r =,且高2h PA ==,可得圆柱的表面积为222π2π2π12π126πS r rh =⨯+=⨯+⨯⨯=圆柱,圆柱的体积为22ππ122πV r h ==⨯⨯=.(2)因为点C 是圆柱底面圆周AB 上靠近点A 的三等分点,且2AB =,而ABC 为直角三角形,从而30ABC ︒∠=,得1,AC BC ==,所以111123323P ABC ABC V S h -==⨯⨯⨯= .(3)将平面PAC 绕PA 旋转到和平面PAB 共面,此时C 点在BA 的延长线上,设为点C ',可得CE DE C E DE '+=+,即当,,C E D '三点共线时,C E DE '+取最小值C D ',由题意π1,342PBA BP BD BP BC BA AC ''∠======+=,所以C D '=,故CE DE +.17.注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解析:(1)证明:选条件①:由MA =MC ,根据正方体1111ABCD A B C D -M 为1BD 上的任意一点,所以不成立;选条件②:EM AD ⊥.连接1CD ,在正方体1111ABCD A B C D -中,由BC ⊥平面11CDD C ,因为1CD ⊂平面11CDD C ,所以1BC CD ⊥,又因为,//EM AD AD BC ⊥,所以EM BC ⊥,因为1,EM CD ⊂平面1BCD ,所以1//EM CD ,又因为E 为BC 的中点,所以M 为1BD 的中点.选择条件③://EM 平面11CDD C .连接1CD ,因为//EM 平面11,CDD C EM ⊂平面1BCD ,且平面1BCD ⋂平面111CDD C CD =,所以1//EM CD ,因为E 为BC 的中点,所以M 为1BD 的中点.(2)在正方体1111ABCD A B C D -中,1,,DA DC DD 两两互相垂直,建立空间直角坐标系,如图所示,则(0,0,0),(0,2,0),(1,2,0),(1,1,1)D C E M ,所以(0,2,0),(1,1,1),(0,1,1)DC DM EM ===- ,设平面MCD 的法向量为(,,)m x y z = ,则00m DC y m DM x y z ⎧⋅==⎪⎨⋅=++=⎪⎩ ,令1x =,则0,1y z ==-.于是(1,0,1)m =- ,设直线EM 与平面MCD 所成的角为θ,则||1sin |cos ,|2||||m EM m EM m EM θ⋅===⋅ ,所以直线EM 与平面MCD 所成角的大小为30︒,(3)点E 到平面MCD的距离为2||sin sin 302EM θ︒==.18.解析:(1)证明:如图所示,连接OC,因为O 为ABC 的外心,所以OA OB OC ==,又因为1AC BC ==,所以OAC OBC ≅ .所以()111802306022ACO BCO ACB ︒︒︒∠=∠=∠=⨯-⨯=,所以,OAC OBC 均为等边三角形,所以1OA AC BC OB ====,四边形OACB 为菱形,所以//AC OB .又AC ⊂/平面,PBO OB ⊂平面PBO ,所以//AC 平面PBO .(2)记AB OC D = ,因为//,BC AO BC ⊂/平面,PAO AO ⊂平面PAO ,所以//BC 平面PAO .又因为平面PAO ⋂平面,PBC l BC =⊂平面PBC ,所以//BC l .如图所示,以D 为坐标原点,DA ,DC 所在直线分别为x ,y 轴,过点D 且平行于OP 的直线为z 轴建立空间直角坐标系.因为102PA =,所以62OP ==,则311631,0,0,0,,0,0,,,0,0,0,,0222222B C P A O ⎛⎫⎛⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以316316,,0,0,1,,,,222222BC BA PC BP ⎛⎫⎛⎫⎛⎫===-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .因为点M 在线段PC (不含端点)上运动,设1)0(PM PC λλ=<< ,所以316,(1)222BM BP PM λλ⎛⎫=+=-- ⎪⎝⎭ .设平面ABM 的法向量为()1111,,n x y z = ,则有110,0,n BA n BM ⎧⋅=⎪⎨⋅=⎪⎩所以11110,316(1)0,222x y z λλ=⎛⎫+-+-= ⎪⎝⎭⎩令12y =,则11231z λλ-⎛⎫= ⎪-⎝⎭,所以1120,2,31n λλ⎛⎫-⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭ ,设直线l 与平面ABM 所成的角为α,则111sin cos ,||n BC n BC n BC α⋅==12==当且仅当121λ=-,即12λ=时取等号,即M 为PC 中点时,直线l 与平面ABM 所成的角最大,所以1(0,2,0)n = .又3136,,0,,0,2224OB BM ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭.设平面OBM 的法向量为()2222,,n x y z = ,则有220,0,n OB n BM ⎧⋅=⎪⎨⋅=⎪⎩即222210,220,24x y x z ⎧-+=⎪⎪+=⎩令21x =,则22y z ==,所以2n = .所以1212122cos ,2n n n n n n ⋅=== ,设二面角O BM A --的平面角为θ,则2sin 2θ==,所以二面角O BM A --的正弦值为2.。

人大附中2020-2021学年度12月考数学答案

人大附中2020-2021学年度12月考数学答案

人大附中2020-2021学年度高三12月统一练习数学参考答案一、选择题(共10小题,每小题4分,共40分) (1)B (2)B (3)C (4)B(5) D (6)C(7)A(8)D(9)D(10)C二、填空题(共5小题,每小题5分,共25分) (11)240(12)(,[22,)-∞-+∞ (13)11112()(,)(,)22222-- (1432(15)①②③注:第14题第一空3分,第二空2分;第15题不全对得3分,选④得0分. 三、解答题(共6小题,共85分) (16)(共13分)解:(Ⅰ)因为四边形ABCD 是正方形,所以BC AD ∥.…………… 1分 又因为AD PBC ⊄平面,BC PBC ⊂平面, 所以AD PBC ∥平面.…………… 2分 又因为AD ADE ⊂平面,ADE PBC l =平面平面,所以AD l ∥.…………… 3分 又因为AD ABCD ⊂平面,l ABCD ⊄平面, 所以l ABCD ∥平面.…………… 4分(Ⅱ)因为四边形ABCD 是正方形,P A ⏊平面ABCD ,AB AD ABCD ⊂,平面,所以AB ,AD ,AP 两两垂直. …………… 5分 建立空间直角坐标系A xyz -,如图.不妨设正方形ABCD 的边长为1,设0AP a =>,则(0 0 0)A ,,,(1 1 0)C ,,,(0 1 0)D ,,,(0 0 )P a ,,,因为点E 是线段PC 的中点,所以11( )222E a,,. 所以(1 )1PC a =-,,,(0 1 0)AD =,,,11( )222a AE =,,. …………… 7分 因为1AE BC ==1,所以a =,所以(11 PC =,11( 22AE =,.…………… 8分设平面ADE 的法向量为()x y z =,,n ,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩,,n n即011022y x y =⎧⎪⎨+=⎪⎩., 令1z =,则x =.于是( 1)=n .……………10分所以2cos PC PC PC⋅-〈〉===,n n n ……………12分 所以直线PC 与平面ADE……………13分(17)(共13分)解:(Ⅰ)设0CD a =>.因为224BC AB AD CD ===, 所以422BC a AB a AD a ===,,. 所以3AC AD DC a =+=.…………… 2分在ABC △中,222222249161cos 2412AB AC BC a a a A AB AC a +-+-===-⋅.…………… 5分 (Ⅱ)所以A ∠为钝角,sinA…………… 7分 又因为ABC △的面积为1sin 2AB AC A ⋅⋅=,所以23a =所以2a =或2-(舍).……………10分所以BD =……………13分(18)(共14分)解:法一 选择条件①.…………… 1分(Ⅰ)因为123n n a a +=+,*n ∈N ,所以132(3)n n a a ++=+.…………… 3分又因为11a =,所以{3}n a +是首项为134a +=,公比为2的等比数列. 所以1134(2)2n n n a -++=⋅=,123n n a +=-,*n ∈N .…………… 7分(Ⅱ)假设数列{}n a 中存在三项i j k a a a ,,成等差数列,不妨设i j k a a a ≤≤.所以2i k j a a a +=,即11123232(23)i k j +++-+-=⋅-,1222i k j ++=.……………10分因为21112220n n n n n a a ++++-=-=>, 所以{}n a 为递增数列,i j k <<.所以1122k i j i --++=,与12 2k i j i --+,均为偶数矛盾. 所以假设不成立,结论得证.……………14分法二 选择条件③.…………… 1分(Ⅰ)因为11n n a S +=+,211n n a S ++=+,*n ∈N ,所以2111n n n n n a a S S a ++++-=-=. …………… 3分 所以212n n a a ++=,*n ∈N .又因为11a =,21111122a S a a =+=+==, 所以{}n a 是首项为1,公比为2的等比数列. 所以12n n a -=,*n ∈N .…………… 7分(Ⅱ)假设数列{}n a 中存在三项i j k a a a ,,成等差数列,不妨设i j k a a a ≤≤.所以2i k j a a a +=,即111222(2)i k j ---+=⋅,1222i k j ++=.……………10分因为1112220n n n n n a a --+-=-=>, 所以{}n a 为递增数列,i j k <<.所以1122k i j i --++=,与12 2k i j i --+,均为偶数矛盾. 所以假设不成立,结论得证.……………14分(19)(共15分)解:(Ⅰ)因为21()(1)ln 2f x x a x a x =-++,0x >. 所以(1)()()1a x x a f x x a x x--'=--+=.因为()f x 在区间(1)+∞,上单调递增, 所以对1x ∀>,(1)()()0x x a f x x--'=≥,即0x a ->. 所以1a ≤.当1a ≤时,对1x ∀>,(1)()()0x x a f x x--'=>, 所以()f x 在区间(1)+∞,上单调递增. 所以a 的取值范围是( 1]-∞,.…………… 4分(Ⅱ)① 当0a ≤时,令()0f x '=,得()1x a =舍或,② 当01a <<时,令()0f x '=,得1x a =或,③ 当1a =时,对0x ∀>,(1)()0x f x x-'=≥(当且仅当1x =时取等号), 所以()f x 在区间(0)+∞,上单调递增. ④ 当1a >时,令()0f x '=,得1x a =或,当1a =时,1不是极值点; 当1a >或1a <时,1是极值点.……………12分(Ⅲ)存在,满足条件的实数a 的个数为2.……………15分(20)(共15分)解:(Ⅰ)依题意,222224110c a a b a b c a b c ⎧⎪⎪⎪+=⎨⎪⎪=+⎪>⎩,,,,,解得a b c ⎧=⎪⎪=⎨⎪=⎪⎩ 所以椭圆C 的方程为22182x y +=. …………… 5分(Ⅱ)设11()A x y ,,22()B x y ,,(0)M t ,,0t ≠,则(0)N t -,.因为(2 1)P ,,所以直线PM 方程为12t y x t -=+-. 联立2218212x y t y x t ⎧+=⎪⎪⎨-⎪=+⎪⎩-,,得22[(1)2]80x t x t +---=,…………… 7分即222(22)4(1)480t t x t t x t -+--+-=,22(2)[(22)24]0x t t x t --+-+=, 所以2122422t x t t -=-+,221221244222222t t t t y t t t t t ---+-=⋅+=--+-+. 同理2222422t x t t -=++,2224222t t y t t ---=++.……………11分猜想:直线AB 过定点(0)Q u ,,其中u 待定.证明:因为11()QA x y u -,,22()QB x y u -,, 1221222222222222334434 ()()244224422424()22222222222216(2)8(2)448(2)(2)4x y u x y u t t t t t t t t u t t t t t t t t t t t t t t u t t t t u t t t ---------+---=⋅-⋅---+++++-+-+++---=-++-+-=+. 所以当2u =-时,QA QB ∥恒成立.所以直线AB 即直线l 过定点(02)Q -,.……………15分(21)(共15分)解:(Ⅰ)① 因为(1)(2)1r r ==,4222n ==, 所以(1)(2)2n r r =<. 所以表①的“尖点”的个数为0.…………… 2分② 因为(1)(2)3r r ==,4222n ==,(1)(4)1c c ==,(2)(3)2c c ==,2122m ==,所以(1)(2)2n r r =≥,(1)(4)2m c c =≤,(2)(3)2m c c =>, 所以表②的“尖点”为(1 1),,(1 4),,(2 1),,(2 4),共4个.…………… 4分(Ⅱ)由题知,2m =,设21n k =+,*k ∈N . (1)当(1)(2)2nr r <,时,数表A 的“尖点”的个数为0; (2)当(1)(2)22n n r r ≥<,时,或当(1)(2)22n nr r <≥,时,数表A 的“尖点”的个数小于或等于n ; (3)当(1)(2)2nr r ≥,时,(1)(2)1r r k ≥+,. 所以(1)(2)(21)(1)(2)22c c c k r r k ++⋅⋅⋅++=+≥+. 因此,(1)(2) (21)c c c k ⋅⋅⋅+,,,中,至多有2k 项不超过1. 所以数表A 的“尖点”的个数不超过4k ,即22n -.…………… 9分构造实例如下:令101 2112 2j j k a j k k k =⎧=⎨=++⎩,,,…,,,,,…,,211 2012 2j j k a j k k k =⎧=⎨=++⎩,,,…,,,,,…,,121n n a a ==,即数表A 为:则(1)(2)12r r k ==+>,(1)(2)(1)12c c c n ==⋅⋅⋅=-==,()22m c n =>.所以此数表的“尖点”的个数为2(1)22n n -=-. ……………10分(Ⅲ)不妨设(1)(2) ()2n r r r u ≤⋅⋅⋅,,,,0(1)(2) ()2nr u r u r m ≤++⋅⋅⋅<,,,, 0(1)(2) ()2m c c c v ≤⋅⋅⋅≤,,,,(1)(2) ()2mc v c v c n m <++⋅⋅⋅≤,,,, u m ≤,v n ≤,u v ∈N ,,m n ,均为偶数.11()()mni j S r i c j ====∈∑∑N .① 依题意2mnuv =,所以2m u m ≤≤,2n v n ≤≤. 所以1()24mi n mn S r i u ==≥⋅≥∑,13()()224n j m mv mnS c j v m n v mn ==≤⋅+⋅-=-≤∑. 因此,344mn mn S ≤≤,S ∈N . ……………13分②(1)当1 2 2m i =⋅⋅⋅,,,,1 2 2nj =⋅⋅⋅,,,时,令1ij a =,当1 2 22m mi m =++⋅⋅⋅,,,,1 2 j n =⋅⋅⋅,,,时,令0ij a =, 则2m u =,v n =,2mn uv =.此时,S 可为42mn mn S S ⎧⎫∈≤≤⎨⎬⎩⎭N 中任一元.……………14分(2)当1 2 2m i =⋅⋅⋅,,,,1 2 2nj =⋅⋅⋅,,,时,令0ij a =,当12 i m =⋅⋅⋅,,,,1 2 22n nj n =++⋅⋅⋅,,,时,令1ij a =, 则u m =,2n v =,2mn uv =.此时,S 可为324mn mn S S ⎧⎫∈≤≤⎨⎬⎩⎭N 中任一元.……………15分综上所述,S 的取值范围为344mn mn S S ⎧⎫∈≤≤⎨⎬⎩⎭N .。

北京市人大附中2020届高三第二学期数学统练试题及答案(一)

北京市人大附中2020届高三第二学期数学统练试题及答案(一)

人大附中高三下学期数学统练(一) 3.24一、选择题(本大题共10个小题,每小题4分,共40分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上.) 1.若复数a+i 2i的实部与虚部相等,则实数a =()A.−1B.1C.−2D.22.若集合A ={y |y =sinx,x ∈R },B ={−2,−1,0,1,2},则集合(∁R A)∩B 等于() A.{−2,−1} B.{−2,−1,0,1,2}C.{−2,−1,2}D.{−2,2}3.如图,在边长为a 的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n ,则图形Ω面积的估计值为() A.ma nB.namC.ma 2nD.na 2m4.下列函数中,为偶函数且有最小值的是() A.f (x )=x 2+x B.f (x )=|lnx | C.f (x )=xsinxD.f (x )=e x +e −x5.在四边形ABCD 中,“∃λ∈R,AB⃗⃗⃗⃗⃗ =λDC,⃗⃗⃗⃗⃗⃗ AD ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ”是“四边形ABCD 为平行四边形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.从原点向圆x 2+y 2−12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为() A .πB .2πC .4πD .6π7.双曲线的左右焦点分别为F 1,F 2且F 2恰为抛物线y 2=4x 的焦点,设双曲线C 与该抛物线的一个交点为A ,若∆F 1F 2是以AF 1为底边的等腰三角形,则双曲线C 的离心率为() A.√2B.1+√2C.1+√3D.2+√38.已知函数f (x )=log 2x −2log 2(x +c ),其中c >0.若对于任意的x ∈(0,+∞),都有f (x )≤1,则c 的取值范围是() A.(0,14]B.[14,+∞)C.(0,18]D.[18,+∞)9.如果存在正整数ω和实数φ使得函数f(x)=cos2(ωx+φ)(ω,φ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为()A.1B.2C.3D.410.如图所示,在平面多边形AQBRCSDP中,SD=PD,CR=SC,AQ=AP,点S,D,A,Q 及P,D,C,R共线,四边形ABCD是正方形,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,围成一个多面体,设该几何体的互相垂直的面有n对,则()A.n=3B.n=4C.n=5D.n=6二、填空题(共5小题,每小题5分,共25分.)11.二项式(2x+1x)5的展开式中x3的系数为.12.如图,三棱柱ABC−A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为.13..在∆ABC中,a,b,c分别为角A,B,C所对的边,且满足b=7asinB,则sinA=若B=60°,则sinC=14.设某商品的需求函数为Q=100−5P,,其中Q,P分别表示需求量和价格,如果商品需求弹性EQEP 大于1(其中EQEP=−Q′QP,Q′是Q的导数),则商品价格的取值范围是.15.已知函数y=f(x)是R上的偶函数,对任意x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x1≠x2时,都有f(x2)−f(x1)x2−x1>0给出下列命题:(1)且f(2)=0是T=4是函数f(x)的一个周期(2)直线是函数的一条对称轴(3)函数y=f(x)在[−6,−4]上是增函数(4)函数y=f(x)在[−6,6]上有四个零点.其中正确命题的序号为___________(把所有正确命题的序号都填上)三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.)(16)(本小题满分14分),a4=4,n∈N∗在等比数列{a n}中,a1=12(I)求数列{a n}的通项公式;(II)设b n=a n+n−6,,数列{b n}的前n项和为S n,若S n>0,求n的最小值.17.(本小题满分14分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.18.(本小题满分15分)如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.(Ⅰ)求证:AE⊥平面BCD;(Ⅱ)求二面角A–DC–B的余弦值.(Ⅲ)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指明点M的位置;若不存在,请说明理由.19.(本小题满分14分)已知函数f (x )=12x 2−alnx (a >0).(Ⅰ)若a =2,求f (x )在(1,f(1))处的切线方程; (Ⅱ)求f (x )在区间[1,e]上的最小值;(III )若f (x )在区间[1,e]上恰有两个零点,求a 的取值范围. 20.(本小题满分14分)已知椭圆C:x 2a 2+y 2b 2=1,(a >b >0)的左、右焦点分别为F 1(−c,0)、F 2(c,0),|F 1F 2|=4√2,离心率e =2√23.过直线l:x =a 2c上任意一点M ,引椭圆C 的两条切线,切点为A 、B .(Ⅰ)求椭圆C 的方程;(Ⅱ)①在圆中有如下结论:“过圆x 2+y 2=r 2上一点P(x 0,y 0)处的切线方程为:x 0x +y 0y =r 2".由上述结论类比得到:“过椭圆C:x 2a 2+y 2b 2=1,(a >b >0),上一点P(x 0,y 0)处的切线方程”(只写类比结论,不必证明). ②利用①中的结论证明直线AB 恒过定点(2√2,0).21.(本小题满分14分)在数列中{a n }中,a n =1n (n ∈N ∗)从数列{a n }中选出k(k ≥3)项并按原顺序组成的新数列记为{b n },并称{b n }为数列{a n }的k 项子列.例如数列12,13,15,18为{a n }的一个4项子列.(Ⅰ)试写出数列{a n }的一个3项子列,并使其为等差数列;(Ⅱ)如果{b n }为数列{a n }的一个5项子列,且{b n }为等差数列,证明:{b n }的公差d 满足−18<d <0;(Ⅲ)如果{c n }为数列{a n }的一个m(m ≥3)项子列,且{c n }为等比数列,证明:c 1+c 2+c 3+···+c m ≤2−12m−1人大附中高三下数学统练一参考答案一、选择题(本大题共10个小题,每小题4分,共40分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上.) 1.A 2.D 3.C 4.D 5.C 6.B 7.B 8.D 9.B 10.C11.80 12.2√3 13.17;1314 14.(10,20)15.(1),(2),(4);(注:14题少解给3分,有错解不给分)三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.) (16)(本小题满分14分)解:(I )由数列{a n }为等比数列,且a 1=12,a 4=4 得a 4=a 1q 3=4,解得q =2,···············2分则数列{a n }的通项公式a n =a 1q n−1=2n−2,n ∈N ∗····················5分 (II )b n =a n +n −6=n −6+2n−2,S n =(−5−4+···+n −6)+(2−1+20+···+2n−2)=n(n−11)2+2n −12,·················10分当n ≥5时,n(n−11)2≥−15,2n −12≥312,所以S n >0;则n =4时,S 4=−4×7+24−12<0; 当n =3时,S 3=−3×8+23−12<0; 当n =2时,S 2=−2×9+22−12<0; 当n =1时,S 1=−1×10+21−12<0;所以,n 的最小值为5.………………..14分 17.(本小题满分14分)解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33.………………..4分 (Ⅱ)设a 为乙公司员工B 投递件数,则当a =34时,X =136元,当a >35时,X =35×4+(a −35)×7元,X 的可能取值为136,147,154,189,203 X 的分布列为:X 136 147 154 189 203P110 310 210 310 110E (X )=136×110+147×310+154×210+189×310+203×110=165510=165.5(元).………………..11分(Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元.………………..14分 18.(本小题满分15分)(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD , 又在∆ABD 中,AE ⊥BD 于E ,AE ⊂平面ABD 所以AE ⊥平面BCD ,………………..4分(Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE ⊥EF . 由题意可知EF ⊥BD ,又AE ⊥BD .如图,以E 为坐标原点,分别以EF,ED,EA 所在直线 为x 轴,y 轴,z 轴,建立空间直角坐标系E −xyz , 不妨设AB =BD =DC =AD =2,则BE =ED =1. 由图1条件计算得,AE =√3,BC =2√3,BF =√33则E (0,0,0),D (0,1,0),B (0,−1,0),A(0,0,√3),F (√33,0,),C(√3,2,0),DC ⃗⃗⃗⃗⃗ =(√3,1,0),AD ⃗⃗⃗⃗⃗ =(0,1,−√3)由AE ⊥平面BCD 可知平面DCB 的法向量为EA ⃗⃗⃗⃗⃗ 设平面ADC 的法向量为n =(x,y,z),则 {n ·DC⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0.即{√3x +y =0,y −√3z =0.令z =1,则y =√3,x =1,所以n =(1,√3,−1), 平面DCB 的法向量为EA ⃗⃗⃗⃗⃗ 所以cos <n,EA ⃗⃗⃗⃗⃗ >=EA⃗⃗⃗⃗⃗ ·n |EA⃗⃗⃗⃗⃗ |·|n|=−√55, 所以二面角A −DC −B 的余弦值为√55··············10分 (III )设AM ⃗⃗⃗⃗⃗⃗ =λAF⃗⃗⃗⃗⃗ ,其中λ∈[0,1]由于AF⃗⃗⃗⃗⃗ =(√33,0,−√3) 所以AM ⃗⃗⃗⃗⃗⃗ =λAF ⃗⃗⃗⃗⃗ =λ(√33,0,−√3),其中λ∈[0,1], 所以EM ⃗⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =(√33λ,0(1−λ)√3),由EM⃗⃗⃗⃗⃗⃗ ·n =0,即√33λ−(1−λ)√3=0,解得λ=34∈(0,1).所以在线段AF 上存在点M 使EM⃗⃗⃗⃗⃗⃗ ∥平面ADC ,且AM AF=34···············15分 19.(本小题满分14分)解:(I )a =2,f (x )=12x 2−2lnx,f ′(x )=x −2x ,f ′(1)=−1,f (1)=12f (x )在(1,f (1))处的切线方程为2x +2y −3=0.………………..3分 (II )由f ′(x )=x −ax =x 2−a x由a >0及定义域为(0,+∞),令f′(x)=0,得x =√a .①若√a ≤1,即0<a ≤1,在(1,e)上,f′(x)>0,f(x)在[1,e]上单调递增, 因此,f(x)在区间[1,e]的最小值为f (1)=12②若1<√a <e ,即1<a <e 2,在(1,√a)上,f′(x)<0,f(x)单调递减;在(√a,e)上, f′(x)>0,f(x)单调递增,因此f(x)在区间[1,e]上的最小值为f(√a)=12a(1−lna).③若√a ≥e ,即a ≥e 2,在(1,e)上,f′(x)<0,f(x)在[1,e]上单调递减, 因此,f(x)在区间[1,e]上的最小值为f (e )=12e 2−a综上,当0<a ≤1时,f min (x )=12;当1<a <e 2时,f min (x )=12a (1−lna ); 当a ≥e 2时,f min (x )=12e 2−a;····················9分(III)由(II )可知当0<a ≤1或a ≥e 2时,f(x)在(1,e)上是单调递增或递减函数,不可能存在两个零点.当1<a <e 2时,要使f(x)在区间(1,e)上恰有两个零点,则{ 12a(1−lna)<0f (1)=12>0,f (e )=12e 2−a >0即{a >e a <12e 2,此时,e <a <12e 2所以,a的取值范围为(e,12e2)·············14分20.(本小题满分14分)解:(Ⅰ)由F1F2=4√2,离心率e=2√23得c=2√2,a=3∴b=1椭圆C的方程为:x 29+y2=1;···················5分(Ⅱ)①类比圆的切线方程得:过椭圆C:x 29+y2=1上一点P(x0,y0)处的切线方程为:x0x9+y0y=1···················8分②l的方程为:x=9√24············9分设A(x1,y1),B(x2,y2),M的纵坐标为t,即M(9√24,t),············10分由①的结论MA的方程为x1x9+y1y=1···············11分又其过M(9√24,t)点,∴√2x1+4ty1=4∗同理有√2x2+4ty2=4∗∗·················12分∴点A(x1,y1),B(x2,y2),在直线√2x+4ty=4上············13分当x=2√2,y=0时,方程√2x+4ty=4恒成立,∴直线AB过定点(2√2,0)··········14分21.(本小题满分14分)(Ⅰ)解:答案不唯一.如3项子列12,13,16;·················3分(Ⅱ)证明:由题意,知1≥b1>b2>b3>b4>b5>0,所以d=b2−b1<0.………………4分若b1=1,由{b n}为{a n}的一个5项子列,得b2≤12,所以d=b2−b1≤12−1=−12b5=b1+4d,b5>0,所以4d=b5−b1=b5−1>−1,即d>−14这与d≤−12矛盾。

人大附中2020-2021学年度高三10月数学统一练习

人大附中2020-2021学年度高三10月数学统一练习

人大附中2020-2021学年度高三10月统一练习一、选择题共10小题:每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. 01.已知集合{}1,0,1A =-,{}1B x x =∈<N ,则AB =( )A .{}1,0-B .{}0,1C .{}0D .∅02.已知命题:(0,)P x ∃∈+∞,ln 0x x +<,则p ⌝为( )A .(0,)x ∀∈+∞,ln 0x x +<B .(0,)x ∃∉+∞,ln 0x x +<C .(0,)x ∀∈+∞,ln 0x x +≥D .(0,)x ∀∉+∞,ln 0x x +≥ 03.已知点5π2cos ,16P ⎛⎫ ⎪⎝⎭是角α终边上一点,则sin α=( )A .12BC .12-D . 04.已知向量(1,1)=a ,(2,1)=-b ,若(2)()λ+-a b a b ∥,则实数λ=( )A .8B .8-C .2D .2-05.以下选项中,满足log 2log 2a b >的是( )A .2a =,4b =B .8a =,4b =C .14a =,8b = D .12a =,14b =06.下列函数中,既是奇函数又在区间(1,1)-内是增函数的是( )A .3()3f x x x =-B .()sin f x x =C .1()ln1xf x x-=+ D .()e e x x f x -=+07.已知方程210x ax +-=在区间[0,1]上有解,则实数a 的取值范围是( )A .[0,)+∞B .(,0)-∞C .(,2]-∞D .[2,0]-08.已知a 是非零向量,m 为实数,则“m =a ”是22a m =的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件09.已知0a >,若函数21,1()1,1x ax x x f x a x -⎧-≤⎪=⎨->⎪⎩有最小值,则实数a 的取值范围是( )A .(1,)+∞B .[1,)+∞C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭10.定义在[0,)+∞上的函数()f x 满足:当0πx ≤<时,()sin f x x =;当πx ≥时,()2(π)f x f x =-.若方程()0f x x m -+=在区间[0,5π]上恰有3个不同的实根,则m 的所有可能取值集合是( )A .4π0,3⎡⎢⎣B .4π0,3⎛ ⎝C .[)4π0,3π,4π3⎡⎢⎣D .4π0,(3π,4π)3⎡⎢⎣ 二、填空题共5小题:每小题5分,共25分.11.已知π1cos 23α⎛⎫+= ⎪⎝⎭,则sin α=____.12.在ABC ∆中,已知2a =,cos cos cos a b cA B C==,则ABC ∆的面积为____.13.已知点(1,1)P ,O 为坐标原点,点,A B 分别在x 轴和y 轴,且满足PA PB ⊥,则()PA PB PO +•=____,PA PB +的最小值为____.14.已知函数()e (1)x f x a x =+-,若()0f x ≥恒成立,则实数a 的取值范围是____. 15.将函数sin y x =图象上各点横坐标变为原来的1(0)ωω>倍,再向左平移π5个单位,得到函数()f x 的图象.已知()f x 在[0,2π]上有且只有5个零点.在下列命题中: ①()f x 的图象关于点π,05⎛⎫- ⎪⎝⎭对称;②()f x 在(0,2π)内恰有5个极值点; ③()f x 在区间π0,5⎛⎫⎪⎝⎭内单调递减;④ω的取值范围是2530,1111⎡⎫⎪⎢⎣⎭.所有真命题的序号是____.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.在ABC ∆中,已知22cos a b c A +=.(Ⅰ)求C ;(Ⅱ)若5a =,7c =,求b .17.已知函数2()2cos sin (0)f x x x ωω=+>,若____,写出()f x 的最小正周期,并求函数()f x 在区间π5π,66⎛⎤⎥⎝⎦内的最小值. 请从①1ω=,②2ω=这两个条件中选择一个,补充在上面的问题中并作答.若选择多个条件分别作答,按第一个判分. 18.已知函数1()1f x x =+,()1g x x =-.求正实数a 的取值范围: (Ⅰ)任意1(0,)x a ∈,存在2(0,)x a ∈,使得12()()f x g x =成立; (Ⅱ)存在12,[,1]x x a a ∈+,使得12()()f x g x <成立.19.研究表明,在一节课40分钟的数学课中,学生的注意力指数()f x 与听课时间x (单位:分钟)之间的变化曲线如图所示.当(0,16]x ∈时,曲线是二次函数图象的一部分;当(10,40]x ∈时,曲线是函数0.8log ()y x a =+图象的一部分.(Ⅰ)求函数()f x 的解析式;(Ⅱ)如果学生的注意力指数低于75,称为“欠佳听课状态”,则在一节40分钟的数学课中,学生处于“欠佳听课状态”所持续的时间有多长?(精确到1分钟,参考数据:541025=,553125=)20.已知函数()()ln (1)(1)f x x a x a x =+-+-.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)是否存在实数a ,使得()f x 在(0,)+∞具有单调性?若存在,求所有a 的取值构成的集合;若不存在,请说明理由.21.对非空数集,A B ,定义{},A B x y x A y B -=-∈∈,记有限集T 的元素个数为T .(Ⅰ)若{}135A =,,,{}1,2,4B =,求A A -,B B -,A B -; (Ⅱ)若4A =,*A ⊆N ,{}1,2,3,4B =,当A B -最大时,求A 中最大元素的最小值; (Ⅲ)若5A B ==,21A A B B -=-=,求A B -的最小值.。

北京市海淀区中国人民大学附属中学2020届高三数学统练试题(五)(含解析)

北京市海淀区中国人民大学附属中学2020届高三数学统练试题(五)(含解析)

北京市海淀区中国人民大学附属中学2020届高三数学统练试题(五)(含解析)一、选择题1.设集合{}0,1A =,集合{}B x x a =,若A B ⋂=∅,则实数a 的范围是( ) A. 1a ≤ B. 1a ≥C. 0a ≥D. 0a ≤【答案】B 【解析】试题分析:因为A B ⋂=∅,所以{}0x x a ∉,且{}1x x a ∉,即0a ≥且1a ≥,从而1a ≥,选B.考点:集合的运算.2.已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =A. 52B. 7C. 6D. 42【答案】A 【解析】试题分析:由等比数列的性质知,a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,所以a 4a 5a 6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想.【此处有视频,请去附件查看】3.已知(sin )cos3f x x =,则()cos10f ︒的值为( ) A. 3B. 12±C.123【答案】B 【解析】 【分析】将()cos10f ︒化为()sin80f ︒和()sin100f ︒,代入计算得到答案.【详解】因为cos10sin80︒=︒,并且(sin )cos3f x x =,所以()()()1cos10sin80cos240cos 18060cos602f f ︒=︒=︒=︒+︒=-︒=-.因为cos10sin100=︒︒,所以()()cos10sin100cos300f f ︒=︒=︒=()1cos 36060cos602︒-︒=︒=, 故选B.【点睛】本题考查了三角函数的诱导公式和函数值的计算,忽略掉一个答案是容易犯的错误. 4.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为 A. -B. 0C.D. 5【答案】B 【解析】试题分析:根据导数的定义,曲线在的切线的斜率为,因为函数()f x 是上以5为周期的可导偶函数,所以因为()f x 是上的偶函数,所以必有,故曲线y=f(x)在x=5处的切线的斜率为0考点:导数的定义,导数的几何意义,周期函数的性质,定义在R 上的偶函数的性质5.函数3222x xx y -=+在[]6,6-的图像大致为 A.B.C.D.【答案】B【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.6.已知函数()sin (0)f x x ωω=>,则“函数()f x 的图象经过点(4π,1)”是“函数()f x 的图象经过点(,02π)”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】先由()f x 的图象经过点π14⎛⎫ ⎪⎝⎭,求出ω;再由()f x 的图象经过点,02π⎛⎫⎪⎝⎭求出ω,根据充分条件与必要条件的概念,即可得出结果. 【详解】函数()f x 的图象经过点(4π,1)时,有sin 14πω=,所以,242k k Z ,ππωπ=+∈, 因为0ω>,所以28k ω=+,,k N ∈函数为:()()sin 28f x k x =+,k N ∈ 当2x π=时,()()sin 28sin 4022f k k ππππ⎛⎫=+⨯=+=⎪⎝⎭,所以,充分性成立; 当函数()f x 的图象经过点(,02π)时,sin02πω=,所以, ,2k k Z πωπ=∈,即2k ω=, k Z ∈,()sin2(0,)f x kx k k Z =>∈,当4x π=时,sin 2sin 442k f k πππ⎛⎫⎛⎫=⨯=⎪ ⎪⎝⎭⎝⎭不一定等于1,所以,必要性不成立. 故选A【点睛】本题主要考查充分条件与必要条件的判定,熟记概念即可,属于常考题型. 7.定义在(,0)(0,)-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}{},()n n a f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在(,0)(0,)-∞⋃+∞上的如下函数:①2()f x x =;②()2x f x =;③()f x =()ln f x x =.则其中是“保等比数列函数”的()f x 的序号为 A. ①② B. ③④ C. ①③ D. ②④【答案】C 【解析】试题分析: 由等比数列性质可得:221.n n n a a a ++=,①2()f x x =,()()()222222211().n n n n n n f a f a a a a f a ++++===,所以正确;②()2x f x =,()()22221()2.22n n n n aa a a n n n f a f a f a +++++==≠,所以错误;③()f x =,()()221()n n n f a f a f a ++===,所以正确;④()ln f x x =.()()222211()ln ln ln n n n n n n f a f a a a a f a ++++=≠=所以错误;故选择C 考点:等比数列性质【此处有视频,请去附件查看】8.已知a ,b 是不相等的两个正数,在a ,b 之间插入两组实数:x 1,x 2,…,x n 和y 1,y 2,…,y n ,(n ∈N *,且n ≥2),使得a ,x 1,x 2,…,x n ,b 成等差数列,a ,y 1,y 2,…,y n ,b 成等比数列,给出下列四个式子:①()122n n a b x x x ++++=;②()2121n x x x n+++>;ab =2a b+<.其中一定成立的是( ) A. ①②③B. ①②④C. ①③④D. ②③④【答案】B 【解析】 【分析】根据等差数列的性质,求得12n x x x +++,结合差比较法,判断①②的真假性.根据等比数列的性质求得12n y y y ,结合基本不等式,判断③④的真假性.【详解】依题意12,,,,,n a x x x b 成等差数列,令12n n S a x x x b =+++++,则121n n n S b x x x x a -=++++++,两式相加,利用等差数列的性质化简得()()22n n a b S ++=,所以()()()()1222n n n a b x x x S a b a b +++++=-+=-+()2n a b =+.所以①正确.所以()1212n a b x x x n++++=2=,a b 是不相等的正数,所以2442a a bb +=->+,所以()2121(2n x x x n+++>成立,所以②正确. 依题意12,,,,,n a y y y b 成等比数列,设其公比为q,则==当q 为负数时,则n 必为奇数,此时0<,所以③不正确.由③的分析可知,当q为负数时,则n 0<,所以2a b+<;当q 为正数时,12n a q+=⋅===,a b 是不相等的正数,所以2a b+<.所以④正确.故选:B【点睛】本小题主要考查等差数列和等比数列的性质,考查基本不等式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题. 二、填空题 9.函数f (x )()22143log x x =-+-的定义域为_____.【答案】(1,2)(2,3)【解析】 【分析】根据函数定义域的求法,结合对数型函数的定义域,求得()f x 的定义域.【详解】依题意()()()22213013430243120x x x x x x x x x ⎧--<<<⎧-+->⎧⎪⇒⇒⎨⎨⎨≠-+-≠-≠⎩⎩⎪⎩,所以函数()f x 的定义域为()()1,22,3⋃. 故答案为:()()1,22,3⋃【点睛】本小题主要考查函数定义域的求法,考查一元二次不等式的解法,属于基础题. 10.如图,AB 是半圆O 的直径,C ,D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点,若OA =6,则MD NC ⋅的值是_____.【答案】26 【解析】 【分析】根据已知条件,得到60AOD DOC COB ∠=∠=∠=,利用平面向量的线性运算表示出,MD NC ,由此求得MD NC ⋅.【详解】连接,OD OC ,依题意可知60AOD DOC COB ∠=∠=∠=,由于6OA =,,M N 是线段AB的三等分点,所以224AM MO ON NB ====.13MO OD AO OD MD =+=+,13NO OC BO O N CC =+=+,所以MD NC⋅1133AO OD BO OC ⎛⎫⎛⎫=+⋅+⎪ ⎪⎝⎭⎝⎭2111933AO AO OC OD BO OD OC=-+⋅+⋅+⋅11111136666666932322=-⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯4661826=-+++=故答案为:26【点睛】本小题主要考查平面向量的线性运算,考查平面向量数量积的运算,属于基础题.11.等差数列{a n}中,a1>0,S m=S n(m≠n),若前n项和中最大值仅S7,则2m+n最大值为_____. 【答案】27【解析】【分析】根据题意求得,m n的关系式,进而可求得2m n+的最大值.【详解】由于在等差数列{}n a中,10a>,且前n项和中的最大值为7S,所以7181060070a a da a d>+>⎧⎧⇒⎨⎨<+<⎩⎩.因为()m nS S m n=≠,所以12n m m m nS S a a a++-=+++()12m nn ma a+-=+=,所以1m na a++=,即()()1111210a md a n d a m n d+++-=++-=,112m na d+-+⋅=.所以1672m n+-<<,12114m n<+-<,由于,m n N∈,所以113m n+-=,14m n+=.即14n m=-.所以221414m n m m m+=+-=+,又13m≤,所以2131427m n+≤+=.故答案为:27【点睛】本小题主要考查等差数列的性质,考查分析、思考与解决问题的能力,属于中档题.12.若直线y kx b=+是曲线ln3y x=+的切线,也是曲线()ln2y x=+的切线,则b=_______.【答案】22ln 3+ 【解析】 【分析】设出直线与两个曲线相切时的切点坐标,利用导数得到关于切点横坐标的方程,解出它们后可得切线方程,从而得到b 的值.【详解】设直线y kx b =+与曲线ln 3y x =+相切时的切点坐标为()00,3ln x x +, 与直线()ln 2y x =+相切时的切点坐标为()()11,ln 2x x +,所以()010*******3ln ln 21x x x x x x x ⎧=⎪+⎪⎨+-+⎪=⎪-⎩,整理得到010122x x x x =+⎧⎨=-⎩,所以012343x x ⎧=⎪⎪⎨⎪=-⎪⎩.故切线322ln 3233y x ⎛⎫=-++ ⎪⎝⎭即为322ln 23y x =++,故22ln 3b =+, 填22ln3b =+. 【点睛】解决曲线的切线问题,核心是切点的横坐标,因为函数在横坐标处的导数就是切线的斜率.公切线问题也应转化为切点横坐标的方程组,解这个方程组就可以得到切点的横坐标,从而可求公切线的方程.13.已知二次函数f (x )=x 2-mx +6(m ∈R ),若f (x )在区间(1,3)内恰有一个零点,则实数m 的取值范围是_____. 【答案】}[5,7)【解析】 【分析】由260x mx -+=分离常数m ,根据x 的取值范围,求得m 的取值范围. 【详解】令()260f x x mx =-+=,当13x <<时,有6m x x =+.令()6g x x x=+,()(2'222661x x x g x x x x+-=-==,所以()g x在(上递减,在)上递增,在x =g=.()17g =,()35g =.因为()f x 在区间()1,3内恰有一个零点,所以57m ≤<或m =故答案为:{[)5,7⋃【点睛】本小题主要考查根据零点的分布求参数的取值范围,属于基础题.14.若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )+,则得到一个新数列{(a n )+}.例如,若数列{a n }是1,2,3…,n ,…,则数列{(a n )+}是0,1,2,…,n ﹣1…已知对任意的n ∈N +,a n =n 2,则(a 5)+=_____,((a n )+)+=_____.【答案】 (1). 2 (2). n 2【解析】 【分析】 根据5m a <,而2n a n =,知1,2m =,由此求得()5a +.由()()()()()()()()1234,,,a a a a ++++++++的值,归纳猜想()()na ++.【详解】因为5m a <,而2n a n =,所以1,2m =,所以()52a +=.由于()()()()()()()12345670,1,1,1,2,2,2a a a a a a a +++++++=======,()()()()()()()()891011121314152,2,3,3,3,3,3,3a a a a a a a a ++++++++========,()163a +=,()174a +=,…….即()22,((1),)n a k k n k k N +=<≤+∈ 所以()()()()()()()()12341,4,9,16a a a a ++++++++====,……故()()2n a n ++=.故答案为:(1). 2 (2). n 2【点睛】本小题主要考查新定义的数列的理解和运用,考查分析思考与解决问题的能力,属于中档题. 三、解答题15.在ABC ∆中,点D 是边AB 上一点,且13AD DB =.记ACD α∠=,BCD β∠=. (1)求证:sin 3sin AC BC βα=;(2)若6πα=,2πβ=,AB =BC 的长.【答案】(1)详见解析;(2)3BC =.【解析】 试题分析:(1)由题意结合正弦定理整理计算即可证得结论;(2)利用题意结合余弦定理,设2AC k =,3BC k =,列方程求解可得3BC =. 试题解析:(1)由正弦定理,在ACD ∆中sin sin AC ADADC α=∠,在BCD ∆中sin sin BC BD BDC β=∠,因为ADC BDC π∠+∠=,所以sin sin ADC BDC ∠=∠,因为13AD DB =,所以sin 3sin AC BC βα=. (2)因为6πα=,2πβ=,由(1)得sin3223sin 6AC BC ππ==,设2AC k =,3BC k =,0k >,由余弦定理2222cos AB AC BC AC BC ACB =+-⋅⋅∠得到2221949223cos3k k k k π=+-⋅⋅⋅,解得1k =,所以3BC =. 16.已知数列{a n }满足:a 1=1,1122nn n a n n a a n n +⎧+-⎪=⎨⎪-⎩,为奇数,为偶数,记()*2N n n b a n =∈.(1)求b 1,b 2的值;(2)证明:数列{b n }是等比数列; (3)求数列{a n }的通项公式.【答案】(1)11,24;(2)证明见解析;(3)a n 11()221()44212kk n k k n k -⎧=⎪⎪=⎨⎪+-=-⎪⎩,,.【解析】 【分析】(1)根据递推关系式,求得12,b b 的值. (2)根据递推关系式,推导出112n n b b -=,由此证得{}n b 是等比数列. (3)由(1)求得数列{}n b 通项公式,由此求得2n a 的表达式,进而21n a -的表达式,从而求得数列{}n a 的通项公式.【详解】(1)a 1=1,1122n n n a n n a a n n +⎧+-⎪=⎨⎪-⎩,为奇数,为偶数,记()*2N n n b a n =∈.b 1=a 212=a 1+1﹣112=. a 3=a 2﹣412=-472=-. b 2=a 412=a 3+3﹣112=a 3+274=-+214=. (2)b n =a 2n 12=a 2n ﹣1+2n ﹣2, n ≥2时,a 2n ﹣1=a 2n ﹣2﹣2(2n ﹣2)=a 2n ﹣2﹣4n +4.∴b n 12=a 2n ﹣1+2n ﹣212=(a 2n ﹣2﹣4n +4)+2n ﹣212=a 2n ﹣212=b n ﹣1, n =1时,b 212=b 1. ∴数列{b n }是等比数列,首项与公比都为12. (3)解:由(2)可得:b n 1()2n =.∴a 2n 1()2n =.又a 2n 12=a 2n ﹣1+2n ﹣21()2n =. 解得:a 2n ﹣111()2n -=+4﹣4n .综上可得:数列{a n }的通项公式:a n 11()221()44212k k n k k n k -⎧=⎪⎪=⎨⎪+-=-⎪⎩,,,k ∈N *.【点睛】本小题主要考查根据递推关系证明等比数列,考查等比数列的通项公式,考查化归与转化的数学思想方法,属于中档题.17.已知函数f (x )21x x x e++=. (1)求函数y =f (x )的单调区间;(2)若曲线y =f (x )与直线y =b (b ∈R )有3个交点,求实数b 的取值范围;(3)过点P (﹣1,0)可作几条直线与曲线y =f (x )相切?请说明理由.【答案】(1)增区间是(0,1),单调递减区间是(﹣∞,0),(1,+∞);(2)1<b 3e<;(3)1,理由见解析.【解析】【分析】(1)利用()f x 的导函数,求得()f x 的单调区间. (2)由(1)判断出()f x 的极大值和极小值,结合()f x 与y b =有3个交点,求得b 的取值范围.(3)设出切点坐标,利用导数求得切线方程,代入点()1,0-,得到切点的横坐标满足的方程,利用导数证得这个方程只有一个解,由此判断出可以作1条切线.【详解】(1)f ′(x )=(x ﹣x 2)e ﹣x ,由f ′(x )>0,可得0<x<1,f ′(x )<0,可得x <0或x >1,∴函数的单调递增区间是(0,1),单调递减区间是(﹣∞,0),(1,+∞);(2)由(1),f (0)=1,f (1)3e=, ∵曲线y =f (x )与直线y =b (b ∈R )有3个交点,∴1<b 3e<; (3)设切点为(m ,n ),则f ′(m )=(m ﹣m 2)e ﹣m ,∴切线方程为y ﹣n =(m ﹣m 2)e ﹣m (x ﹣m ),代入(﹣1,0),整理可得m 3+m 2+1=0,设g (m )=m 3+m 2+1,g ′(m )=3m 2+2m ,由g ′(m )>0,可得m 23<-或m >0,g ′(m )<0,可得23-<m <0, ∴函数g (m )的单调递减区间是(23-,0),单调递增区间是(﹣∞,23-),(0,+∞); ∵g (23-)>0,g (0)>0, ∴g (m )=0有唯一解,∴过点P (﹣1,0)可作1条直线与曲线y =f (x )相切.【点睛】本小题主要考查利用导数求函数的单调区间,考查利用导数研究函数的切线方程,考查化归与转化的数学思想方法,属于中档题.。

北京市人大附中2024届高三10月质量检测练习数学试题及答案

北京市人大附中2024届高三10月质量检测练习数学试题及答案

北京市人大附中2024届高三10月质量检测练习数学试题一、单选题1.已知集合{}[]2,0,3A x x B =≤=,则A B = ()A .{3}B .{0}C .[]0,2D .{0,3}2.下列函数既是偶函数且又在()0,∞+上是单调递减函数的是()A .()cos 2f x x=B .()exf x =C .()lg f x x=D .()23f x x-=3.已知角θ的终边过点()12,5P -,则tan θ=()A .512-B .125-C .125D .5124.若0.32131,0.3,log 32a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 大小关系为()A .a b c>>B .b a c>>C .c b a>>D .a c b>>5.设,a b ∈R ,且0a b <<,则()A .11a b<B .2b ab>C .2a bab +>D .2b a a b+>6.某物体做直线运动,若它所经过的位移s 与时间t 的函数关系为()212s t t t =+,则这个物体在时间段1,2内的平均速度为()A .2B .32C .3D .527.已知{}12|2,0,log 1xA y y xB x x ⎧⎫==<=>⎨⎬⎩⎭,则“x A ∈”是“x B ∈”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.如图是函数()y f x =的导函数()y f x '=的图象,下列结论正确的是()A .()y f x =在=1x -处取得极大值B .1x =是函数()y f x =的极值点C .2x =-是函数()y f x =的极小值点D .函数()y f x =在区间()1,1-上单调递减9.已知0a >且1a ≠,函数(),1,1x a x f x x a x ⎧≤=⎨-+>⎩,若函数()f x 在区间[]0,2上的最大值比最小值大52,则a 的值为()A .12或2B .23或2C .2或72D .12或7210.已知函数()11sin cos f x x x=+,在下列结论中:①2π是()f x 的一个周期;②()f x 的图象关于直线π4x =对称;③()f x 在区间π,02⎛⎫- ⎪⎝⎭上无最大值正确结论的个数为()A .0B .1C .2D .3二、填空题11.函数()()22ln 1xf x x x =++-的定义域为.12.已知函数()πsin 0,02y x ωϕωϕ⎛⎫=+><≤ ⎪⎝⎭,且此函数的一段图象如图所示,则ω=;ϕ=.13.在ABC V 中,60,2,3A AC BC ︒===则ABC V 的面积等于.14.扶贫小组帮助某农户建造一个面积为100㎡的矩形养殖区,有一面利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,则最低造价需要准备元.15.对函数(),f x 若存在区间[,](),M a b a b =<使得{|(),},y y f x x M M =∈=则称区间M 为函数()f x 的一个“稳定区间”,给出下列四个函数:(1)(),x f x e =(2)3(),f x x =(3)π()cos ,2f x x =(4)()ln 1,f x x =+其中存在“稳定区间”的函数有.(把所有可能的函数的序号都填上)三、解答题16.已知函数()321233f x x x =+-(1)求曲线()y f x =在点()()22f ,处的切线方程;(2)求函数()f x 的单调区间和极值.17.已知函数()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭(1)求()f x 的最小正周期;(2)当ππ,42x ⎡⎤∈⎢⎣⎦,求()f x 的最大值和最小值.18.某同学用“五点法”画函数()()||πsin 0,2f x A x k ωϕωϕ⎛⎫=++>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πxm π3n 5π6p ()sin A x kωϕ++1614-1(1)求出实数m ,n ,p 的值;(2)求出函数()f x 的解析式;(3)将()y f x =图象向左平移()0t t >个单位,得到()y g x =的图象.若()y g x =为偶函数,求t 的最小值.19.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足222sin sin sin sin sin 0A CB AC +-+=(1)求角B 的大小;(2)给出以下三个条件:条件①:22230a b c c -+-=:条件②:3a =;条件③:4ABC S =△从这三个条件中选择两个条件,使得ABC V 存在且唯一确定,请写出你选择的两个条件并回答下面的问题:(Ⅰ)求sin A 的值;(Ⅱ)点M 为线段AB 中点,点N 为线段BC 中点,点P 为线段MN 上一个动点,记PA PC λ=⋅ ,直接写出λ的最大值.20.已知函数()()32111,e ln 32x f x x x ax g x x x x -=++=+(1)判断函数()y g x =零点的个数,并说明理由;(2)对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x '≤'-求实数a 的取值范围;(3)在(2)的条件下,证明:0x ∀>,有()()g x f x ≥'.21.如图,T 是3行3列的数表,用(),1,2,3ij a i j =表示位于第i 行第j 列的数,且满足{}0,1ij a ∈.11a 12a 13a 21a 22a 23a 31a 32a 33a 数表中有公共边的两项称为相邻项,例如上表中11a 的相邻项仅有12a 和21a .对于数表T ,定义操作ij ϕ为将该数表中的ij a 以及ij a 的相邻项从x 变为1x -,其他项不变,并将操作的结果记为()ij T ϕ.已知数表0T 满足{}0,,1,2,3ij a i j =∈.记变换ψ为n 个连续的上述操作,即1122:,,,n n i j i j i j ϕϕϕψ ,使得()()()112210211,,,n n i j i j n i j n T T T T T T ϕϕϕ-=== ,并记()0n T T =ψ(1)给定变换112233:,,ϕϕϕψ,直接写出()30T T =ψ.(2)若T '满足122122231a a a a ====,其他项均为0.ψ是含n 次操作的变换且有()0T T '=ψ,求n 的最小值.(3)若变换ψ中每个操作ij ϕ至多只出现一次,则称变换ψ是一个“优变换”,证明:任给一个数表(){}{}:,0,1,,1,2,3ij ij T a a i j ∈∈,存在唯一的一个“优变换”ψ,使得()0T T =ψ.参考答案:题号12345678910答案CDABDBBCDB1.C【分析】按照交集的运算法则直接计算即可.【详解】因为集合{}[]{}2,0,303A x x B x x =≤==≤≤,所以{}[]020,2A B x x ⋂=≤≤=.故选:C.2.D【分析】根据余弦函数,指数函数,对数函数及幂函数的奇偶性和单调性逐一判断即可.【详解】对于A ,因为π3π044f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故()cos 2f x x =在()0,∞+上不是单调递减函数,A 不符题意;对于B ,函数()e xf x =在()0,∞+上是单调递增函数,故B 不符题意;对于C ,当()0,x ∈+∞时,()lg lg f x x x ==在()0,∞+上单调递增,故C 不符题意;对于D ,()()()()21233,0,,0f x xxx ∞∞--==∈+⋃-,因为203-<,所以函数()23f x x -=在()0,∞+上单调递减,因为()()()123f x x f x --==,所以()23f x x -=是偶函数,故D 符合题意.故选:D.3.A【分析】根据正切函数的定义计算.【详解】由题意,55tan 1212α==--.故选:A .【点睛】本题考查三角函数的定义,属于简单题.4.B【分析】由指数函数和对数函数的性质即可得出答案.【详解】因为0.3110122a ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭,200.30.31b -=>=,1133log 3log 31c -===-,所以b a c >>.故选:B.5.D【分析】ABC 选项,可举出反例;D 选项,利用基本不等式进行求解.【详解】A 选项,当2,1a b =-=-时,111,12a b=-=-,故11a b >,A 错误;B 选项,当2,1a b =-=-时,21,2b ab ==,2b ab <,B 错误;C 选项,当2,1a b =-=-时,322a b +=-=,2a b+<,C 错误;D 选项,当0a b <<时,0,0b a a b >>,由基本不等式可得2b a a b +≥=,当且仅当ba ab=,即a b =时,等号成立,但a b ≠,故等号取不到,故2b aa b+>,D 正确.故选:D 6.B【分析】根据平均速度的公式计算.【详解】211211322212s v t ⎛⎫⨯+-+ ⎪∆⎝⎭===∆-.故选:B.7.B【分析】根据题意,化简集合,A B ,再由充分条件以及必要条件的定义判断即可.【详解】因为{}()2,00,1x A y y x ==<=,121log 10,2B x x ⎧⎫⎪⎪⎛⎫=>=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则B 是A 的真子集,所以“x A ∈”是“x B ∈”成立的必要不充分条件.故选:B 8.C【分析】根据导函数的正负即可求解()y f x =的单调性,即可结合选项逐一求解.【详解】由图象可知:当2x <-时,()()0,f x f x '<单调递减,当2x ≥-时,()()0,f x f x '≥单调递增,故2x =-是函数()y f x =的极小值点,()y f x =无极大值.故选:C 9.D【分析】按照a 与1的大小进行分类讨论,求出函数()f x 在[]0,2上的最值,从而可得a 的值.【详解】①当01a <<时,函数()f x 在[]0,1上是减函数,在(]1,2上也是减函数.∵()0011f a a ==>-+,∴函数的最大值为()01f =,而()()221f a a f =-+<=,∴函数()f x 的最小值为()22f a =-+,∴5212a -++=,解得()10,12a =∈,符合题意.②当1a >时,函数()f x 在[]0,1上是增函数,在(]1,2上是减函数.∵()11f a a =>-+,∴函数()f x 的最大值为()1f a =,而()22f a =-+,()001f a ==,当()1,3a ∈时,21a -+<,此时函数()f x 的最小值为()22f a =-+,因此有522a a -++=,无解;当[)3,a ∈+∞时,21a -+≥,此时函数()f x 的最小值为()01f =,因此有512a +=,解得()73,2a =∈+∞,符合题意.综上所述,实数a 的值为12或72.故选:D 10.B【分析】①②根据周期性和对称性满足的关系式判断;③利用换元法求函数()f x 在π,02x ⎛⎫∈- ⎪⎝⎭的最值情况.【详解】因为π11π112π07πππ7π44sin cos sin4444f f ⎛⎫⎛⎫-=+=-+=+= ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭,所以2π不是()f x 的一个周期,故①错误;()11π,π11cos sin 2ππ11π2sin cos ,22cos sin 2x x x f x f x x x x x x ⎧+≥⎪⎪⎛⎫-=+=≠⎨ ⎪⎛⎫⎝⎭⎪---+< ⎪⎪⎩⎝⎭,所以()f x 的图象不关于直线π4x =对称,故②错;()()()()222sin cos 11sin cos sin cos 1sin cos 1sin cos 2x x x x f x x x x x x x --=-+==----,π,02x ⎛⎫∈- ⎪⎝⎭,令πsin cos 4t x x x ⎛⎫=-=- ⎪⎝⎭,则3,444x ⎛⎫-∈-- ⎪⎝⎭πππ,)1t ⎡∈-⎣,22211t y t t t ==--,在)1t ⎡∈-⎣上单调递增,所以无最大值,即函数()f x 在π,02x ⎛⎫∈- ⎪⎝⎭上无最大值,故③正确.故选:B.11.[2,1)-【分析】根据函数特征直接求定义域即可.【详解】由函数()()2ln 1x f x x =+-可知,202,,21101x x x x x +≥≥-⎧⎧∴-≤<⎨⎨-><⎩⎩,所以定义域为[2,1)-.故答案为:[2,1)-12.2π4【分析】由图知7π3ππ2882T =-=,2πT ω=可得ω的值,再由()3π2πZ 8k k ϕ⨯+=∈以及π02ϕ<≤求得ϕ的值.【详解】由7π3ππ2882T =-=,可得πT =,所以2π2π=2πT ω==,此时解析式为()sin 2y x ϕ=+,由()3π2πZ 8k k ϕ⨯+=∈,可得()3ππZ 4k k ϕ=-+∈,又因为π02ϕ<≤,所以1k =,π4ϕ=,故答案为:2;π4.13【分析】利用三角形中的正弦定理求出角B ,C ,再利用三角形的面积公式求出△ABC 的面积.【详解】因为60,2,A AC BC ︒===2,,sin sin sin 60sin BC AC A B B︒=∴=sin 1,90,30,B BC ︒︒∴=∴==12sin 302ABC S ︒=⨯⨯=!14.3200【分析】假设正面铁栅和两侧墙长,可构造等式100xy =;列出造价409020z x y xy =++,利用基本不等式求得最小值.【详解】设正面铁栅长为x ,两侧墙长为y ,则100xy =于是造价为409020z x y xy=++则:4090202020120020003200z x y xy xy xy =++≥==+=,当且仅当4090 100x y xy ==,即20153x y ,==时取等号本题正确结果:3200【点睛】本题考查利用基本不等式解决实际问题,主要采用基本不等式求解和的最小值的方法.15.②③【详解】因为()x f x e =单调递增,所以若存在“稳定区间”则x e x =至少有两个解,而x e x >恒成立,所以()x f x e =不存在“稳定区间”;因为()3f x x =单调递增,所以若存在“稳定区间”则3x x =至少有两个解,显然成立,所以()3f x x =存在“稳定区间”;(3)因为[0,1],cos [0,1]2x x π∈∈,所以f(x)=π cos 2x 存在“稳定区间”;(4)因为()ln 1f x x =+单调递增,所以若存在“稳定区间”则ln 1x x +=至少有两个解,而ln 1x x +=只有一解x=1,所以()ln 1f x x =+不存在“稳定区间”;点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.16.(1)8100x y --=(2)递增区间为(),2-∞-和()0,∞+,递减区间为()2,0-,极大值为23,极小值为23-.【分析】(1)根据题意,求导得()f x ',由导数的几何意义即可得到结果.(2)根据题意,求导得()f x ',令()0f x '=即可得到极值点,从而得到结果.【详解】(1)因为()3212222633f =⨯+-=,且()22f x x x '=+,则()222228f '=+⨯=,所以曲线()y f x =在点()()22f ,处的切线方程为()682y x -=-,即8100x y --=.(2)因为()22f x x x '=+,令()0f x '=,解得2x =-或0x =,当(),2x ∞∈--时,()0f x '>,则函数()f x 单调递增;当()2,0x ∈-时,()0f x '<,则函数()f x 单调递减;当()0,x ∈+∞时,()0f x '>,则函数()f x 单调递增;所以()f x 的单调递增区间为(),2-∞-和()0,∞+,单调递减区间为()2,0-,当2x =-时,()f x 有极大值为()()3122224333f -=⨯-+-=,当0x =时,()f x 有极小值为()203f =-.综上所述,递增区间为(),2-∞-和()0,∞+,递减区间为()2,0-,极大值为23,极小值为23-.17.(1)()f x 的最小正周期为π.(2)最大值为2,最小值为1.【分析】(1)先化简()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭求出π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,然后由最小正周期公式求解即可.(2)求()f x 在闭区间上的最大值和最小值即可.【详解】(1)()()2π2sin πcos 2f x x x x ⎛⎫=+-+ ⎪⎝⎭)22sin cos cos 2sin 2x x x x x =+--+-,πsin 222sin 23x x x ⎛⎫==- ⎪⎝⎭,所以()f x 的最小正周期为:2ππ2T ==.(2)由(1)可知,π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,因为ππ,42x ⎡⎤∈⎢⎥⎣⎦,所以ππ2π2,363⎡⎤-∈⎢⎥⎣⎦x .所以当ππ232x -=时,max ()2f x =,当ππ236x -=时,min ()1f x =.所以当ππ,42x ⎡⎤∈⎢⎥⎣⎦,()f x 的最大值为2,最小值为1.18.(1)π12m =,712n =π,1312p =π(2)()5sin 216f x x ⎛⎫=-+ ⎪⎝⎭π(3)π3【分析】(1)根据表格列方程,解方程得到m ,n ,p ;(2)根据表格得到sin 01πsin 62A k A k +=⎧⎪⎨+=⎪⎩,解方程得到51A k =⎧⎨=⎩,然后结合(1)中结论即可得到()f x 的解析式;(3)根据图象的平移变换得到()g x ,根据()g x 为偶函数得到()0g 为最值,然后解方程求t 即可.【详解】(1)由题意得0ππ32π5π3π622πm n p ωϕωϕωϕωϕωϕ+=⎧⎪⎪+=⎪⎪+=⎨⎪⎪+=⎪⎪+=⎩,解得2π6π127π1213π12m n p ωϕ=⎧⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪=⎪⎩,所以π12m =,712n =π,1312p =π.(2)由题意得sin 01πsin 62A k A k +=⎧⎪⎨+=⎪⎩,解得51A k =⎧⎨=⎩,所以()5sin 216f x x ⎛⎫=-+ ⎪⎝⎭π.(3)由题意得()5sin 2216g x x t ⎛⎫=+-+ ⎪⎝⎭π,因为()g x 为偶函数,所以()05sin 2166g t ⎛⎫=-+= ⎪⎝⎭π或()04g =-,即sin 216t ⎛⎫-=± ⎪⎝⎭π,即2,62t k k -=+∈πππZ ,解得,32k t k =+∈ππZ ,因为0t >,所以当0k =时,t 最小,最小为π3.19.(1)2π3B =(2)(Ⅰ)见解析;(Ⅱ)6-【分析】(1)由正弦定理和余弦定理得到1cos 2B =-,得到2π3B =;(2)(Ⅰ)选择①②和①③求出边长均不合要求,选择②③,得到ABC V 存在且唯一,并求出5c =,7b =,得到sin A (Ⅱ)取AC 的中点H ,推出22PA PC PH CH ⋅=- ,并得到点P 与N 重合时,PH 最大值为52,并求出λ的最大值.【详解】(1)222sin sin sin sin sin 0A C B A C +-+=,由正弦定理得2220a c b ac +-+=,故2221cos 222a cb ac B ac ac +--===-,因为()0,πB ∈,所以2π3B =,(2)(Ⅰ)选择①②,222222030a c b ac a b c c ⎧+-+=⎨-+-=⎩,解得30ac c +=,又3a =,所以60c =,解得0c =,此时ABC V 不存在,选择①③,222222030a c b ac a b c c ⎧+-+=⎨-+-=⎩,解得30ac c +=,又0c >,故3a =-,不合要求,此时ABC V 不存在,选择②③,1sin 2ABC S ac B == 21π3n 23si c ⨯=5c =,又3a =,2220a c b ac +-+=,故2925150b +-+=,解得7b =,由于357+>,故满足ABC V 存在且唯一,由正弦定理得sin sin a b A B =,即372πsin sin 3A =,解得sin A ,(Ⅱ)取AC 的中点H ,连接PH ,则2PA PC PH += ,2PA PC CH -= ,两式平方后相减得22PA PC PH CH ⋅=- ,其中72CH = ,当点P 与M 重合或与N 重合时,PH 最大,当点P 与M 重合时,1322PH a == ,当点P 与N 重合时,1522PH c == ,故PH 最大值为52PH = ,故22PA PC PH CH λ=⋅=- 最大值为2549644-=-.20.(1)1个(2)(],1-∞-(3)证明见解析【分析】(1)先求定义域,转变为求1()e ln x k x x -=+的零点个数,求导,根据单调性与零点的存在性定理即可求;(2)任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-,可转化为()()12max max 2f x g x ''≤-,则求出()1max f x ',()2max g x '即可求出实数a 的取值范围;(3)指对缩放不等式可知()1e 11x x x -≥-+=,1ln 1x x≥-(需证明),则可得12e ln 1x x x x x x -+≥+-,则不等式可证.【详解】(1)由()1e ln x g x x x x -=+,定义域为0+∞(,),()y g x =的零点等价于1()e ln x k x x -=+的零点,11()e 0x k x x -'=+>,所以()y k x =在(0,)+∞上单调递增,又11e 1(1)10,()e 10ek k -=>=-<,所以()y k x =在1(,1)e上只有一个零点,所以()y k x =的零点个数为1个,则()y g x =的零点个数也为1个.(2)因为()321132f x x x ax =++,所以()221124f x x x a x a ⎛⎫'=++=++- ⎪⎝⎭,所以()f x '在区间(]0,1上单调递增,故()()max 12f x f a ''==+.因为()1eln x g x x x x -=+,所以()()111e e ln 11e ln 1x x x g x x x x x ---'=+++=+++.令()()11e ln 1x h x x x -=+++,则()()112e x h x x x-'=++,又(]0,1x ∈,所以()0h x '>,故()g x '在区间(]0,1上单调递增,所以()()max 13g x g ''==.又对任意的(]10,1x ∈,存在(]20,1x ∈,使()()122f x g x ''≤-,所以()()max max 2f x g x ''≤-,即232a +≤-,解得1a ≤-,故实数a 的取值范围为(],1-∞-.(3)令()1e -=-x s x x ,0x >,则()1e 1-'=-x s x .令()0s x '=,解得1x =,则当()0,1x ∈时,()0s x '<,()s x 单调递减;当()1,x ∈+∞时,()0s x '>,()s x 单调递增,所以()()10s x s ≥=,即1e x x -≥(当且仅当1x =时,等号成立).令()1ln 1F x x x =+-,则()22111x F x x x x-'=-=.令()0F x '=,解得1x =,则当()0,1x ∈时,()0F x '<,()F x 单调递减;当()1,x ∈+∞时,()0F x '>,()F x 单调递增,所以()()10F x F ≥=,即1ln 1x x≥-+(当且仅当1x =时,等号成立),故11e ln 1x x x x-+≥-+(当且仅当1x =时,等号成立).又0x >,所以12e ln 1x x x x x x -+≥+-.因为1a ≤-,所以221x x x x a +-≥++,故12e ln x x x x x x a -+≥++,即()()'≥g x f x .21.(1)100010001(2)n 的最小值为3(3)证明过程见解析【分析】(1)按照题意进行求解即可;(2)先得到T ',分析得到T '的对称性和奇偶性质,当1n =,2n =时,不满足要求,3n =时,取变换111213:,,ϕϕϕψ,得到答案;(3)设A 是所有优变换的集合,B 是所有数表的集合,构造:f A B →,证明A 中的优变换和B 中数表为一一对应关系,证明出数表中的数据都可通过变换单独被改变,从而证明出结论.【详解】(1)0T 为000000000()1110T T ϕ=,故1T 为110100000()2221T T ϕ=,故2T 为100011010()3332T T ϕ=,故()30T T =ψ为100010001(2)T '为010111000由题意得,1113223133,,,,ϕϕϕϕϕ均改变了表格中的奇数个数据,定义为奇操作,12212332,,,ϕϕϕϕ均改变了表格中的偶数个数据,定义为偶操作,两次同样的操作,表格中数据不变,例如1111:,ϕϕψ不改变表格中数据,故n 的最大值为9,且变换满足交换律,例如1112:,ϕϕψ和1211:,ϕϕψ,结果相同,观察到T '是关于122232,,ϕϕϕ变换所在直线对称的,故变换也要关于这条直线轴对称,T '中有4个1,故相对于0T 改变了4个数,若1n =,通过验证,发现不能得到T ',若2n =,结合对称性和奇偶性,有1113:,ϕϕψ,2123:,ϕϕψ,3133:,ϕϕψ,1232:,ϕϕψ四种变换,经过验证,均不满足,若3n =,结合对称性和奇偶性,不妨取变换111213:,,ϕϕϕψ,()1110T T ϕ=,故1T 为110100000()2121T T ϕ=,故2T 为001110000()3132T T ϕ=,故()30T T =ψ为10111故n 的最小值为3;(3)设A 是所有优变换的集合,则A 中的优变换的个数为92,B 是所有数表的集合,则B 中的数表的个数为92,构造:f A B →,下面证明A 中的优变换和B 中数表为一一对应关系,由于,A B 中元素个数相同,要证每种变换都能等价变换为唯一的优变换,只需证每个数表都能通过变换得到,由(2)可知,11121322:,,,ϕϕϕϕψ可以得到以下数表,000000010由对称性可知,12212332,,,a a a a 可以单独被改变,又经过11:ϕψ变换得到110100000又1221,a a 可单独被改变,故可得到100000000即11a 可单独被改变,同理经过变换133133,,a a a 可单独被改变,经过22:ϕψ变换得到:111010又经过变换,12212332,,,a a a a 可单独被改变,可得到000010000故任给一个数表(){}{}:,0,1,,1,2,3ij ij T a a i j ∈∈,存在唯一的一个“优变换”ψ,使得()0T T =ψ.【点睛】新定义问题,要充分发掘题目中信息,将复杂问题抽丝剥茧,化难为简.(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.。

2020年北京市人大附中高考数学模拟试卷(4月份)(带答案)

2020年北京市人大附中高考数学模拟试卷(4月份)(带答案)

2020年北京市人大附中高考数学模拟试卷(4月份)题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.集合A={x|x>2,x∈R},B={x|x2-2x-3>0},则A∩B=()A. (3,+∞)B. (-∞,-1)∪(3,+∞)C. (2,+∞)D. (2,3)2.已知复数z=a2i-2a-i是正实数,则实数a的值为()A. 0B. 1C. -1D. ±13.下列函数中,值域为R且为奇函数的是()A. y=x+2B. y=sin xC. y=x-x3D. y=2x4.设等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,则S6=()A. 10B. 9C. 8D. 75.在平面直角坐标系xOy中,将点A(1,2)绕原点O逆时针旋转90°到点B,设直线OB与x轴正半轴所成的最小正角为α,则cosα等于()A. -B. -C.D. -6.设a,b,c为非零实数,且a>c,b>c,则()A. a+b>cB. ab>c2C.D.7.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A. 2,且∉SB. 2,且∈SC. ,且D. ,且8.已知点M(2,0),点P在曲线y2=4x上运动,点F为抛物线的焦点,则的最小值为()A. B. 2(-1) C. 4 D. 49.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方程是()①绕着x轴上一点旋转180°;②沿x轴正方向平移;③以x轴为轴作轴对称;④以x轴的某一条垂线为轴作轴对称.A. ①③B. ③④C. ②③D. ②④10.设函数f(x)=,若关于x的方程f(x)=a(a∈R)有四个实数解x i(i=1,2,3,4),其中x1<x2<x3<x4,则(x1+x2)(x3-x4)的取值范围是()A. (0,101]B. (0,99]C. (0,100]D. (0,+∞)二、填空题(本大题共5小题,共25.0分)11.在二项式(x2+2)6的展开式中,x8的系数为______.12.若向量满足,则实数x的取值范围是______.13.在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.如图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.①______.②______.14.函数的最小正周期为______;若函数f(x)在区间(0,a)上单调递增,则a的最大值为______.15.集合A={(x,y)||x|+|y|=a,a>0},B={(x,y)||xy|+1=|x|+|y|},若A∩B是平面上正八边形的顶点所构成的集合,则下列说法正确的为______.①a的值可以为2;②a的值可以为;③a的值可以为2+;三、解答题(本大题共6小题,共85.0分)16.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)满足下列3个条件中的2个条件:①函数f(x)的周期为π;②x=是函数f(x)的对称轴;③f()=0且在区间(,)上单调.(Ⅰ)请指出这二个条件,并求出函数f(x)的解析式;(Ⅱ)若x∈[0,],求函数f(x)的值域.17.在四棱锥P-ABCD的底面ABCD中,BC∥AD,CD⊥AD,PO⊥平面ABCD,O是AD的中点,且PO=AD=2BC=2CD=2.(Ⅰ)求证:AB∥平面POC;(Ⅱ)求二面角O-PC-D的余弦值;(Ⅲ)线段PC上是否存在点E,使得AB⊥DE,若存在指出点E的位置,若不存在,请说明理由.18.2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如图:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求X的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m的最小值.(结论不要求证明)19.设函数f(x)=a ln x+x2-(a+2)x,其中a∈R.(Ⅰ)若曲线y=f(x)在点(2,f(2))处切线的倾斜角为,求a的值;(Ⅱ)已知导函数f'(x)在区间(1,e)上存在零点,证明:当x∈(1,e)时,f (x)>-e2.20.设椭圆,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1、l2分别与椭圆E相交于A,B两点和C,D两点.(Ⅰ)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(Ⅱ)若直线l1的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD能否为矩形,说明理由.21.对于正整数n,如果k(k∈N*)个整数a1,a2,…,a k满足1≤a1≤a2≤…≤a k≤n,且a1+a2+…+a k=n,则称数组(a1,a2,…,a k)为n的一个“正整数分拆”.记a1,a2,…,a k均为偶数的“正整数分拆”的个数为f n;a1,a2,…,a k均为奇数的“正整数分拆”的个数为g n.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数n(n≥4),设(a1,a2,…,a k)是n的一个“正整数分拆”,且a1=2,求k的最大值;(Ⅲ)对所有的正整数n,证明:f n≤g n;并求出使得等号成立的n的值.(注:对于n的两个“正整数分拆”(a1,a2,…,a k)与(b1,b2,…,b n),当且仅当k=m且a1=b1,a2=b2,…,a k=b m时,称这两个“正整数分拆”是相同的.)2020年北京市人大附中高考数学模拟试卷(4月份)答案和解析【答案】1. A2. C3. C4. B5. A6. C7. D8. D9. D10. B11. 6012. (-3,1)13. 甲省控制较好,确诊人数趋于减少;乙省确诊人数相对稳定,也向好的趋势发展14. π15. ②③16. 解:(Ⅰ)由题意知选择①②;由函数f(x)的周期为π,得ω==2;又x=是函数f(x)的对称轴,所以2×+φ=+kπ,k∈Z;解得φ=+kπ,k∈Z;又|φ|<,所以φ=;所以f(x)=sin(2x+).(Ⅱ)x∈[0,]时,2x+∈[,],所以sin(2x+)∈[,1],所以函数f(x)在x∈[0,]内的值域是[,1].17. 解:(Ⅰ)连接OC,∵O是AD的中点,AD=2BC=2,BC∥AD,∴OA∥BC,且OA=BC=1,∴四边形AOBC是平行四边形,∴AB∥OC,∵AB不在平面POC内,OC在平面POC内,∴AB∥平面POC;(Ⅱ)由(Ⅰ)可知,四边形OBCD也为平行四边形,又OD=CD=1,CD⊥AD,∴四边形OBCD是正方形,则OB⊥OD,又PO⊥平面ABCD,故以O为坐标原点,OB,OD,OP所在直线分别为x轴,y轴,z 轴建立如图所示的空间直角坐标系,则O(0,0,0),P(0,0,2),C(1,1,0),D(0,1,0),,设平面OPC的一个法向量为,则,可取,设平面PCD的一个法向量为,则,可取,设二面角O-PC-D的平面角为θ,则;(Ⅲ)假设线段PC上存在点E,且满足,使得AB⊥DE,设E(r,t,s),则(r,t,s-2)=λ(1,1,-2)=(λ,λ,-2λ),故,即E (λ,λ,2-2λ),∴,又,∴,解得,故线段PC上存在点E,且满足,使得AB⊥DE.18. 解:(I)由图表可知,测试成绩在80分以上的女生有2人,占比为,在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数约为50×0.1=5万人;(II)由图表得,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人,记其中测试成绩在70分以上的人数为X,选出的8名男生中随机抽取2人,则X=0,1,2,则P(X=0)=,P(X=1)=,P(X=2)=,x01 2 p故E(X)=0,(III)m的最小值为4.19. (Ⅰ)解:根据条件f′(x)=+2x-(a+2),则当x=2时,f′(2)=+4-(a+2)=-+2=tan=1,解得a=2;(Ⅱ)证明:因为f′(x)=+2x-(a+2)=,又因为导函数f′(x)在(1,e)上存在零点,所以f′(x)=0在(1,e)上有解,则有1<<e,即2<a<2e,且当1<x<时,f′(x)<0,f(x)单调递减,当<x<e时,f′(x)>0,f(x)单调递增,所以f(x)≥f()=a ln+-(a+2)=a lna--(1+ln2)a,设g(x)=x lnx--(1+ln2)x,2<x<2e,则g′(x)=ln x+1--(1+ln2)=ln x--ln2,则g′′(x)=-<0,所以g′(x)在(2,2e)上单调递减,所以g(x)在(2,2e)上单调递减,则g(2e)=2e ln2e-e2-2e(1+ln2)=-e2<g(2),所以g(x)>-e2,则根据不等式的传递性可得,当x∈(1,e)时,f(x)>-e2.20. 解:(Ⅰ)由题意可得,,且四边形ABCD为矩形,∴;(Ⅱ)证明:由题可设,l1:x=ty+m(t∈R),A(x1,y1),B(x2,y2),由得,(t2+2)y2+2mty+m2-2=0,∴,且△=4m2t2-4(t2+2)(m2-2)>0,即t2-m2+2>0,∴==,同理可得,∵四边形ABCD为平行四边形,∴|AB|=|CD|,即m2=n2,由m≠n,故m=-n,即m+n=0,即得证;(Ⅲ)不能为矩形,理由如下:点O到直线l1,直线l2的距离分别为,由(Ⅱ)可知,m=-n,∴点O到直线l1,直线l2的距离相等,根据椭圆的对称性,原点O应为平行四边形ABCD的对称中心,假设平行四边形ABCD为矩形,则|OA|=|OB|,那么,则,∴x1=x2,这是直线l1⊥x轴,这与直线l1的斜率存在矛盾,故假设不成立,即平行四边形ABCD不为矩形.21. 解:(Ⅰ)解:整数4的所有“正整数分拆”有:(4),(1,3),(2,2),(1,1,2),(1,1,1,1,).(Ⅱ)解:欲使k最大,只须a i最小,当n为偶数时,a1=a2=…=a k=2,k=,当n为奇数时,a1=a2=…=a k-1=2,a k=3,k=.(Ⅲ)证明:①当n为奇数时,不存在a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,即f n=0,满足f n≤g n;②当n为偶数时,设(a1,a2,…,a k)为满足a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,则他至少对应了(1,1,…,1)和(1,1,…,1,a1-1,a2-1,…,a k-1)这两种各数均为奇数的分拆,∴f n≤g n;③当n=2时,a i均为偶数的“正整数分拆“只有:(2),a i均为奇数的”正整数分拆“只有:(1,1),f2=g2;当n=4时,a i均为偶数的”正整数分拆“只有:(4),(2,2),a i均为奇数的”正整数分拆“只有:(1,1,1),(1,3),f4=g4;当n≥6时,对于每一种a i均为偶数的”正整数分拆“,除了各项不全为1的奇数分拆之外至少多出一个各为1的”正整数分拆“(1,1,…,1),∴f n≤g n.综上,使得f n≤g n中等号成立的n的值为2,4.【解析】1. 解:A={x|x>2,x∈R},B={x|x2-2x-3>0}={x|x>3或者x<-1},则A∩B=(3,+∞),故选:A.求出集合B,再求出交集考查集合的运算及其交集,基础题.2. 解:因为z=a2i-2a-i是正实数,所以,解可得a=-1.故选:C.结合已知及复数的概念进行求解即可.本题主要考查了复数概念的简单应用,属于基础试题.3. 解:A:y=x+2为非奇非偶函数,不符合题意;B:y=sin x的值域[-1,1],不符合题意;C:y=x-x3为奇函数且值域为R,符合题意;D:y=2x为非奇非偶函数,不符合题意.故选:C.分别结合奇偶性及函数的值域判断各选项即可求解.本题主要考查了基本初等函数的奇偶性的判断及值域的求解,属于基础试题.4. 解:等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,∴a3-2d+a3+d=5,∴4-d=5,解得d=-1,∴a1=2+2=4,a6=a1+5d=4-5=-1,∴S6===9,故选:B.先求出公差,再根据求和公式即可求出.本题考查了等差数列的通项公式和求和公式,属于基础题.5. 解:在平面直角坐标系xOy中,将点A(1,2)绕原点O逆时针旋转90°到点B,设点B(x,y),则x+yi=(1+2i)•(cos90°+i sin90°),即x +yi=-2+i,∴x=-2,y=1,即B(-2,1).由题意,sin(α-90°)==-cosα,∴cosα=-=-,故选:A.由题意利用任意角的三角函数的定义,复数乘法的几何意义,诱导公式,求出cosα的值.本题主要考查任意角的三角函数的定义,复数乘法的几何意义,诱导公式,属于基础题.6. 解:∵a>c,b>c,∴a+b>2c,∴.故选:C.利用不等式的可加性得a+b>2c,由此可判断选项C正确.本题考查不等式性质的运用,属于基础题.7. 解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:AB=BC=CD=AD=DE=2,AE=CE=2,BE=.故选:D.首先把三视图转换为几何体,进一步求出个各棱长.本题考查的知识要点:三视图和几何体之间的转换,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8. 解:设P(x,y),可得===x≥2=4.当且仅当x=2时取得最小值4.故选:D.设出P的坐标,利用已知条件化简表达式,通过基本不等式求解最小值即可.本题考查抛物线的简单性质以及基本不等式的应用,是基本知识的考查.9. 解:由图象可知,函数f(x)具有周期性,且有对称轴,故②④正确.故选:D.结合图象直接观察得解.本题主要考查函数图象的变换,考查数形结合思想,属于基础题.10. 解:函数f(x)=的图象如右:关于x的方程f(x)=a(a∈R)有四个实数解,可得y=f(x)的图象与直线y=a有四个交点,可以判断0<a≤1,x1+x2=2×(-5)=-10,|lg x3|=|lg x4|≤1,且≤x3<1,1<x4≤10,可得-lg x3=lg x4,即lg x3+lg x4=0,即有x3x4=1,x4=,故(x1+x2)(x3-x4)=-10(x3-),又由函数y=x-在[,1)上递增,可得函数y=x-在[,1)上的值域为[-9.9,0),可知-10(x3-)的取值范围为(0,99].故选:B.由函数的图象及性质判断出x1,x2,x3,x4之间的关系,进而把所求式子转化为函数y=x-在[,1)上取值范围,即可得到所求范围.本题考查函数图象的运用及函数方程的关系,考查数形结合思想,正确作出函数图象,并从图象中挖掘出有效信息是解题的关键,属于中档题.11. 解:二项式(x2+2)6展开式的通项公式为T r+1=•x12-2r•2r=2r•x12-2r,令12-2r=8,解得r=2,故二项式(x2+2)6展开式中的x8项的系数为:22=60,故答案为:60.先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式的x8项的系数.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12. 解:因为:向量;∴=x2+2x;∴⇒x2+2x<3⇒-3<x<1;故实数x的取值范围是:(-3,1).故答案为:(-3,1).先利用向量数量积的坐标运算得出,再解关于x的不等式即可.本题考查向量数量积的坐标运算,不等式的解法,属于基础题目.13. 【分析】本题考查频率折线图,考查学生读取图表的能力,属于基础题.直接由频率折线图得结论.【解答】解:由频率折线图可知,甲省控制较好,确诊人数趋于减少;乙省确诊人数相对稳定,也向好的趋势发展.故答案为:①甲省控制较好,确诊人数趋于减少;②乙省确诊人数相对稳定,也向好的趋势发展.14. 解:函数的最小正周期为;若函数f(x)在区间(0,a)上单调递增,当x=0时,2x+=;当x=a时,2x+=2a+,∴2a+≤,∴0<a≤,故答案为:π;.由题意利用正弦函数的周期性和单调性,得出结论.本题主要考查正弦函数的周期性和单调性,属于基础题.15. 解:A={(x,y)||x|+|y|=a,a>0},x≥0,y≥0时,即x+y=a表示在第一象限内的线段将x,y分别换成-x,-y方程不变,因此|x|+|y|=a关于x轴对称,也关于y轴对称那么,集合A={(x,y)||x|+|y|=a,a>0}表示点集为正方形,∵|xy|+1=|x|+|y|∴|xy|-|x|-|y|+1=0即(|x|-1)(|y|-1)=0∴|x|=1或|y|=1即x=±1,y=±1B={(x,y)|x=±1,或x=±1},表示2组平行线,A∩B为8个点,构成正八边形①如图1,∠AOB=45°又A(1,a-1),∴tan∠xOA=a-1,tan∠AOB=tan2∠xOA===1,即2a-2=2a-a2,∴a2=2∵a>0,∴a=②如图2,∠AOB=45°又A(a-1,1)∴tan∠xOA=,tan∠AOB=tan2∠xOA====1,即2a-2=-2a+a2,∴a2-4a+2=0,解得a=2+或a=2-(舍),综上a=或a=2+.故答案为:②③.根据曲线性质求出集合A,B对应的图象,结合两角和差的正切公式进行求解即可.本题主要考查集合的基本运算,利用曲线的轨迹,结合两角和差的正切公式是解决本题的关键.综合性较强,难度较大.16. (Ⅰ)由题意知应选择①②,由①求出ω的值,由②结合题意求出φ的值,写出函数的解析式;(Ⅱ)根据x的取值范围,利用三角函数的图象与性质求出函数的值域.本题主要考查三角函数的图象与性质的应用问题,也考查了运算求解能力,是基础题.17. (Ⅰ)易证四边形AOBC是平行四边形,进而得到AB∥OC,由此得证;(Ⅱ)建立空间直角坐标系,求出平面OPC及平面PCD的法向量,利用向量公式得解;(Ⅲ)假设存在,设出点E的坐标,通过AB⊥DE时,它们的数量积为0,建立方程即可得出结论.本题考查线面平行的判定,空间向量与二面角以及通过数量积来证明线线垂直,考查逻辑推理能力,运算求解能力,数形结合思想等,属于中档题.18. (I)由图表可知,测试成绩在80分以上的女生有2人,占比为,再求出结论即可;(II)根据题意,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人,X=0,1,2,求出分布列和数学期望;(III)根据题意,求出即可.本题考查了茎叶图,考查了离散型随机变量求分布列和数学期望,考查运算能力和实际应用能力,中档题.19. (Ⅰ)求出函数在x=2处的导数f′(2)=-+2=tan=1,解得a=2;(Ⅱ)根据导函数在(1,e)上存在零点,则f′(x)=0在(1,e)上有解,则有1<<e,即2<a<2e,得到函数f(x)的最小值,构造函数g(x)=x lnx--(1+ln2)x,2<x<2e,利用导数判断出其单调性,结合不等式传递性可证.本题考查利用导数表示曲线上某点处的斜率,考查导数的综合应用,属于难题20. (Ⅰ)易知,此时四边形ABCD为矩形,且,由此求得面积;(Ⅱ)设直线l1的方程,并与椭圆方程联立,可得到|AB|的长度,同理可得|CD|的长度,由|AB|=|CD|,可得m2=n2,进而得证;(Ⅲ)运用反证法,假设平行四边形ABCD为矩形,但此时推出直线l1⊥x轴,与题设矛盾,进而得出结论.本题考查直线与椭圆的综合运用,涉及了弦长公式以及点到直线的距离公式的运用,考查逻辑推理能力以及计算求解能力,属于中档题.21. (Ⅰ)由“正整数分拆”的定义能求出整数4的所有“正整数分拆”.(Ⅱ)欲使k最大,只须a i最小,由此根据n为偶数和n为奇数,能求出k的最大值.(Ⅲ)当n为奇数时,f n=0,满足f n≤g n;当n为偶数时,设(a1,a2,…,a k)为满足a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,则他对应了各数均为奇数的分拆,从而f n≤g n;当n=2时,f2=g2;当n=4时,f4=g4;当n≥6时,f n≤g n.由此能证明f n≤g n,并能求出等号成立的n的值为2,4.本题考查正整数分拆的定义及应用,最大的实数值的求法,考查不等式的证明,考查分类讨论思想,考查推理论证能力、运算求解能力,是中档题.。

北京市中国人民大学附属中学2020届高三数学开学复习质量检测试题(含解析)

北京市中国人民大学附属中学2020届高三数学开学复习质量检测试题(含解析)

北京市中国人民大学附属中学2020届高三数学开学复习质量检测试题(含解析)一、选择题1.设i 为虚数单位,则复数1i z =-的模z =( ).A. 1C. 2D. 【答案】B 【解析】分析:根据复数模的定义求解.详解:1i z =-,z ==B .点睛:对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、对应点为(,)a b 、共轭为.-a bi 2.已知全集U =R ,若集合{}2|0=-<A x x x ,则UA( ).A. {|0x x ≤或}1x ≥B. {|0x x <或}1x >C. {}1|0x x <<D. {}|1x x ≥【答案】A 【解析】分析:先解一元二次不等式得集合A ,再根据补集定义得结果. 详解:∵集合{}{}2|0|01A x x x x x =-<=<<,∴{|0Ux A x =≤或1}x ≥,故选A .点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解. 3.命题p :∀x>0,1x e >,则p ⌝是 A. ∃00x ≤,01x e ≤ B. ∃00x >,01x e ≤ C. ∀0x >,1x e ≤ D. ∀0x ≤,1x e ≤【答案】A【解析】试题分析:p ⌝是00,1xx e ∃>≤考点:本题考查命题的否定点评:全称命题的否定将任意改为存在,否定结论4.若a , b 是两个非零的平面向量,则“||a b =”是“()()0a b a b +⋅-=”的( ). A. 充分且不必要条件 B. 必要且不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】()()220a b a b ab +⋅-=-=,得a b =,所以是充要条件,故选C.5.已知1211ln ,sin ,222a b c -===,则a ,b ,c 的大小关系为( )A. a b c <<B. a c b <<C. b a c <<D. b c a <<【答案】A 【解析】 【分析】结合指数、对数及三角函数的性质判断大小即可【详解】1ln 02a =<,11sin sin ,262b π=<=10,2b ⎛⎫∴∈ ⎪⎝⎭,121222c -==>=,1,12c ⎛⎫∴∈ ⎪⎝⎭,故a b c <<,故选:A【点睛】本题考查根据指数函数、对数函数、三角函数的性质比大小,熟记基本函数的图象特点是关键,属于基础题6.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( )A. 最长棱的棱长为6B. 最长棱的棱长为3C. 侧面四个三角形都是直角三角形D. 侧面四个三角形中有且仅有一个是正三角形 【答案】C 【解析】【详解】本题考查空间几何体的三视图和线线垂直,根据四棱锥的三视图,可得到四棱锥的直观图S ABCD -(如图所示):由图可知,2SA AD ==,1AB BC ==,SA ⊥面ABCD ,AD ⊥面SAB ,AD BC ∥, 所以Rt SAB ,Rt SAD ,Rt SBC △中,5SB =6SC =,22SD =2CD =,所以222SC CD SD +=,所以SCD 是直角三角形,所以最长的棱长是2,侧面都是直角三角形. 本题选择C 选项.点睛:1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决. 2.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线; (2)理解“长对正、宽平齐、高相等”.7.已知函数f (x )=|ln x |-1,g (x )=-x 2+2x +3,用min{m ,n }表示m ,n 中的最小值.设函数h (x )=min{f (x ),g (x )},则函数h (x )的零点个数为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】画图可知四个零点分别为-1和3,1e和e ,但注意到f (x )的定义域为x >0,故选C.8.已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP ∠=,则实数m 的取值范围是( )A. (4,8)B. (4,)+∞C. (0,4)D. (8,)+∞【答案】B 【解析】试题分析:设200(,)4y Q y ,由90OQP ∠=得0OQ PQ ⋅=,即222000()044y y m y -⋅+=,显然00y ≠,因此2044y m =-,所以40m ->,即4m >.选B .考点:向量的垂直,圆锥曲线的存在性问题. 二、填空题9.双曲线22:14x C y -=的离心率是 ;渐近线方程是 .512y x =± 【解析】试题分析:222224,15a b c a b ==∴=+=,所以离心率e=5c a =,渐近线方程为12b y x x a =±=±, 考点:本题考查双曲线的标准方程,离心率,渐近线点评:有双曲线的标准方程得到,a,b,c 求出离心率,渐近线方程 10.若等比数列{}n a 满足135a a +=,且公比2q ,则35a a +=_____.【答案】20. 【解析】 【分析】利用等比数列的通项公式及其性质即可得出. 【详解】223513()2520a a q a a +=+=⨯=, 故答案为:20.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.11.在△ABC 中,3a =,13b =,60B =,则c = ;△ABC 的面积为_______. 【答案】,【解析】 由余弦定理,得,解得;由三角形的面积公式,得.考点:余弦定理、三角形的面积公式.12.已知圆C 的圆心位于第二象限且在直线21y x =+上,若圆C 与两个坐标轴都相切,则圆C 的标准方程是 ______.【答案】22111()()339x y ++-= 【解析】试题分析: 设圆心坐标为(a,2a+1),圆与两坐标轴相切,所以a=-(2a+1),13a ∴=-,所以圆心为11(,)33-,半径13,所以圆的标准方程为22111()()339x y ++-=,考点:本题考查圆的标准方程点评:圆心在直线上,设圆心坐标为一个未知数,又因为圆与两坐标轴相切,所以圆心互为相反数,半径为圆心坐标的绝对值13.已知函数()sin a x x f x =-的一条对称轴为6x π=-,()()120f x fx +=,且函数()f x 在()12,x x 上具有单调性,则12x x +的最小值为______. 【答案】23π 【解析】 【分析】分析式子特点可知,当6x π=-时,函数应该取到最值,将6x π=-代入()sin a x x f x =-再结合辅助角公式可先求得a ,结合()()120f x f x +=分析可知,()()2112,,,x y y x 两点关于对称中心对称,求出12x x +的通式,即可求解 【详解】()()sin ,tan f aa x x x x ϕϕ=-=+=-,由题可知 sin 666f a πππ⎛⎫⎛⎫⎛⎫---=⎪ ⎪ ⎪⎝=⎝-⎭⎭⎝⎭,化简可得2a =,则 ()4sin 3f x x π⎛⎫=- ⎪⎝⎭,()()120,f x f x +=且函数()f x 在()12,x x 上具有单调性,()()1122,,,x y x y ∴关于对称中心对称,故有1233,2x x k k Z πππ-+-=∈,解得1222,3x x k k Z ππ+=+∈,当0k =时,12x x +的最小值为23π,故答案:23π【点睛】本题考查由三角函数图像性质求参数,三角函数对称轴与对称中心的应用,属于中档题14.函数()x xf ae e x b -=+(,a R b R ++∈∈),已知()f x 的最小值为4,则点(),a b 到直线20x y +-=距离的最小值为______.【解析】分析】可采用基本不等式求得ab,再结合点到直线距离公式即可求解【详解】由题知,a Rb R++∈∈,则()4x xae bef x-=≥=+,当且仅当x xae be-=时取到,则4ab=,点(),a b到直线20x y+=距离d=≥===,mind∴=【点睛】本题考查基本不等式、点到直线距离公式的应用,数学中的转化思想,属于中档题三、解答题15.设函数()()()()22sin cosf x x x xωωω=⋅-+0>ω)的图象上相邻最高(1)求函数()f x的周期及ω的值;(2)求函数()f x的单调递增区间. 【答案】(1)12,2Tπω==;(2)52,2,66x k k k Zππππ⎡⎤∈-++∈⎢⎥⎣⎦【解析】【分析】(1)先将表达式结合降幂公式化简,即可求得周期和最值,结合相邻最高点与最低点的距离ω及周期;(2)结合整体法和三角函数图像的性质即可求得;【详解】(1)()()()()22sin cosf x x xxωωω=⋅-=sin222sin23x x xπωωω⎛⎫=-⎪⎝⎭,则2A=,22Tππωω==,图象上相邻最高点与最=12,2Tπω==;(2)()2sin22sin33f xx xππω⎛⎫⎛⎫-=-⎪ ⎪⎝⎝=⎭⎭,令2,2,322x k k k Zπππππ⎡⎤-∈-++∈⎢⎥⎣⎦,解得52,2,66x k k k Zππππ⎡⎤∈-++∈⎢⎥⎣⎦【点睛】本题考查三角函数解析式的化简,由三角函数的性质求参数,求复合型三角函数的单调区间,属于中档题16.某校高三1班共有48人,在“六选三”时,该班共有三个课程组合:理化生、理化历、史地政其中,选择理化生的共有24人,选择理化历的共有16人,其余人选择了史地政,现采用分层抽样的方法从中抽出6人,调查他们每天完成作业的时间.(1)应从这三个组合中分别抽取多少人?(2)若抽出的6人中有4人每天完成六科(含语数英)作业所需时间在3小时以上,2人在3小时以内.现从这6人中随机抽取3人进行座谈.用X表示抽取的3人中每天完成作业所需时间在3小时以上的人数,求随机变量X的分布列和数学期望.【答案】(1)3;2;1(2)分布列见详解;EX=2【解析】【分析】(1)按照分层抽样按比例分配的原则进行计算即可;(2)可明确X的取值有1,2,3,再结合超几何分布求出对应的概率,列出分布列,再求解数学期望即可;【详解】(1)由题知,选择史地政的人数为:4824168--=人,故选择理化生、理化历、史地政的人数比为:3:2:1,故从这三个组合中应抽取理化生的人数为:3636⨯=人;抽取理化历的人数为:2626⨯=人;抽取理化历的人数为:1616⨯=人;(2)由题可知X的取值有1,2,3,()124236115C CP XC===;()214236325CC P X C ===;()304236135C C P X C ===; 故随机变量X 的分布列为:X 1 2 3P15 35 151311232555EX =⨯+⨯+⨯=【点睛】本题考查分层抽样的求法,超几何公式的运用,离散型随机变量的分布列与期望的求法,属于中档题17.在四棱锥P ABCD -中,平面ABCD ⊥平面PCD ,底面ABCD 为梯形,//AB CD ,AD PC ⊥,M 为PD 的中点,过A ,B ,M 的平面与PC 交于N.23DC =,2DA PD ==,1AB =,120PDC ∠=.(1)求证:N 为PC 中点; (2)求证:AD ⊥平面PCD ;(3)T 为PB 中点,求二面角T AC B --的大小. 【答案】(1)证明见解析;(2)证明见解析;(3)45° 【解析】 【分析】(1)利用线面平行的性质可得AB MN ∥,又由M 为PD 的中点,即可求证N 为PC 中点;(2)利用面面垂直的性质,可过点D 作DH DC ⊥,可证DH AD ⊥,再结合线面垂直的判定定理即可求证;(3)采用建系法以DA 为x 轴,DC 为y 轴,DH 为z 轴建立空间直角坐标系,利用向量法即可求出二面角T AC B --的大小 【详解】(1)//AB CD ,CD ⊂平面PCD ,AB ⊄平面PCD ,//AB ∴平面PCD ,由线面平行的性质可得,//AB MN , 又//AB CD ,//MN CD ∴,M 为PD 的中点,N ∴为PC 的中点;(2)过点D 作DH DC ⊥交PC 与点H ,又平面ABCD ⊥平面PCD ,交线为CD ,故DH ⊥平面ABCD ,又AD ⊂平面ABCD ,DH AD ∴⊥, 又AD PC ⊥,PCDH H =,∴AD ⊥平面PCD ;(3)由(2)可知AD ⊥平面PCD ,AD CD ∴⊥,故以DA 为x 轴,DC 为y 轴,DH 为z 轴建立空间直角坐标系,如图:求得(()()()0,3,2,0,0,0,23,0,2,1,0P A C B -,T 为PB 的中点,故3T ⎛ ⎝⎭,3AT ⎛=- ⎝⎭,()223,0AC =-,, 可设平面ABC 的法向量为()10,0,1n =,平面TAC 的法向量为()2,,n x y z =,故有222230302n AC x y n AT x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取3x =得1,2y z ==,则()23,1,2n =,故1212122cos ,2122n n n n n n ⋅===⨯⋅,故二面角T AC B --的大小为45° 【点睛】本题考查线面平行性质,面面垂直性质,面面垂直平判定定理的应用,建系法求解二面角的大小,属于中档题 18.已知函数()3215132f x x x a x =-+-. (Ⅰ)当6a =时,求函数()f x 在()0,∞+上的单调区间; (Ⅱ)求证:当0a <时,函数()f x 既有极大值又有极小值.【答案】(1)单调递增区间是(0,2),(3,)+∞,单调递减区间是(2,3);(2)证明见解析. 【解析】 【分析】(1)求出导函数()2'56f x x x =-+,解二次不等式即可得到单调区间;(2)当0a <时,对x 分类讨论,结合极值概念,即可得到结果. 【详解】(1)当6,0a x =>时,()32156132f x x x x =-+- 所以()()()2'5623f x x x x x =-+=--, 令()'0,f x =得2x =,或3x =.当x 变化时,()()',f x f x 的变化情况如下表:所以()f x 在()0,+∞上的单调递增区间是()0,2,()3,+∞,单调递减区间是()2,3. (2)当0a <时, 若0x <,则()3215132f x x x ax =---,所以()()2'55f x x x a x x a =--=--因为0,0x a <<,所以()'0f x > 若0x >,则()3215132f x x x ax =-+-, 所以()2'5f x x x a =-+ 令()'0,f x = 2540a ∆=->,所以有两个不相等的实根12,x x ,且120x x <不妨设20x >,所以当x 变化时,()()',f x f x 的变化情况如下表:因为函数()f x 图象是连续不断的,所以当0a <时,()f x 即存在极大值又有极小值.【点睛】本题主要考查了利用导数的符号变化判断函数的单调性及判断函数的极值问题,此类问题由于含有参数,常涉及到分类讨论的思想,还体现了方程与函数相互转化的思想.19.已知椭圆C :22221x y a b+=(0a b >>)的左、右顶点分别为A ,B ,左焦点为F ,O 为原点,点P 为椭圆C 上不同于A 、B 的任一点,若直线PA 与PB 的斜率之积为34-,且椭圆C 经过点31,2⎛⎫⎪⎝⎭. (1)求椭圆C 的方程;(2)若P 点不在坐标轴上,直线PA ,PB 交y 轴于M ,N 两点,若直线OT 与过点M ,N 的圆G 相切.切点为T ,问切线长OT 是否为定值,若是,求出定值,若不是,请说明理由.【答案】(1)22143x y +=;(2)是定值,定值为3 【解析】【分析】(1)由斜率之积可求得a ,b 的关系,将31,2⎛⎫⎪⎝⎭代入可再得a ,b 的关系,解出a ,b 的值,即可求出椭圆的方程;(2)由(1)得A ,B 的坐标,设(,)P m n ,满足椭圆的方程,得直线AP ,BP ,求出M ,N 的坐标,再用圆中切割线定理得切线长的值.【详解】(1)设(,)P x y ,由题意得(,0)A a -,(,0)B a ,222AP BPy y y k k x a x a x a ∴⋅=⋅=+--, ∴22234y x a =--而22221x y a b+=得:2234b a =①, 又过22319(1,)124a b∴+=②,所以由①②得:24a =,23b =;所以椭圆C 的方程:22143x y +=;(2)由(1)得:(2,0)A -,(2,0)B 设(,)P m n ,22143m n +=,则直线的方程:(2)2n PA y x m =++,令0x =,则22n y m =+,所以M 的坐标2(0,)2nm +, 直线PB 的方程:(2)2n y x m =--,令0x =,2n y m -=-,所以坐标2(0,)2nN m --,OT ON OTN OMT OM OT ∆∆∴=∽(圆的切割线定理),再联立22143m n +=,2224||||||34n OT ON OM m ∴===-【点睛】本题考查椭圆上过对称点直线的两点和椭圆上一点的斜率之积的证明,可当作结论作为记忆:两对称点为()()1111,,,,A x y B x y --椭圆上一点为(),P x y ,则有22PA PBb k k a⋅=-;也考查了过定点的直线是否存在满足一定条件定值的证明,合理的转化,利用几何关系转化至关重要,属于难题20.定义:给定整数i ,如果非空集合满足如下3个条件:①A N *⊆;②{}1A ≠;③,x y N *∀∈,若x y A +∈,则xy i A -∈.则称集合A 为“减i 集”(1){}1,2P =是否为“减0集”?是否为“减1集”? (2)证明:不存在“减2集”;(3)是否存在“减1集”?如果存在,求出所有“减1集”;如果不存在,说明理由. 【答案】(1)是“减0集”;不是“减1集”(2)证明见解析;(3)存在;{1,3},{1,3,5},{1,3,5,7},⋯⋯{1,3,5,⋯⋯,21n -,}⋯⋯,*()n N ∈ 【解析】 【分析】(1)*P N ⊆,{1}P ≠,112P +=∈,110P ⨯-∈,即可得出P 是“减0集”,同理可得P 不是“减1集”.(2)假设存在A 是“减2集”,则若x y A +∈,那么2xy A -∈,当2x y xy +=-时,有(1)(1)3x y --=,对x ,y 分类讨论即可得出.(3)存在“减1集” A .{1}A ≠.假设1A ∈,则A 中除了元素1以外,必然还含有其它元素.假设2A ∈,11A +∈,而111A ⨯-∉,因此2A ∉.假设3A ∈,12A +∈,而121A ⨯-∈,因此3A ∈.因此可以有{1A =,3}.假设4A ∈,13A +∈,而131A ⨯-∉,因此4A ∉.假设5A ∈,14A +∈,141A ⨯-∈,235+=,231A ⨯-∈,因此5A ∈. 因此可以有{1A =,3,5}.以此类推可得所有的A .【详解】(1)*P N ⊆,{1}P ≠,112P +=∈,110P ⨯-∈,P ∴是“减0集” 同理,*P N ⊆,{1}P ≠,112P +=∈,111P ⨯-∉,P ∴不是“减1集”. (2)假设存在A 是“减2集”,则若x y A +∈,那么2xy A -∈,当2x y xy +=-时,有(1)(1)3x y --=, 则x ,y 一个为2,一个为4,所以集合A 中有元素6,但是33A +∈,332A ⨯-∉,与A 是“减2集”,矛盾,故不存在“减2集” (3)存在“减1集”A .{1}A ≠.①假设1A ∈,则A 中除了元素1以外,必然还含有其它元素. 假设2A ∈,11A +∈,而111A ⨯-∉,因此2A ∉. 假设3A ∈,12A +∈,而121A ⨯-∈,因此3A ∈. 因此可以有{1A =,3}.假设4A ∈,13A +∈,而131A ⨯-∉,因此4A ∉.假设5A ∈,14A +∈,141A ⨯-∈,235+=,231A ⨯-∈,因此5A ∈. 因此可以有{1A =,3,5}.以此类推可得:{1A =,3,5,⋯⋯,21n -,}⋯⋯,*()n N ∈, 以及A 的满足以下条件的非空子集:{1,3},{1,3,5},{1,3,5,7},⋯⋯ 【点睛】本题考查集合新定义,元素与集合的关系,逻辑推理能力,属于难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档