计量经济学系列课件23一元线性回归模型检验.doc

合集下载

《线性回归分析》PPT课件

《线性回归分析》PPT课件

2019/5/8
金融与统计学院
2
古典线性回归分析三个基本特征
分析框架
“古典框架”,认为经济变量之间存在 确定的函数关系,计量经济分析就是发 现或推断这种关系。
需要确定的参数
线性模型中的线性参数,即线性函数的 系数。
2019/5/8
金融与统计学院
3
分析方法
主要是对因果关系的回归分析
相关分析用相关系数度量变量之间线 性联系的程度,回归分析用固定的解 释变量估计和预测被解释变量的平均 值。
相关分析中的变量对称,回归分析中 的变量不对称
相关分析中的变量随机,回归分析中 的解释变量固定(非随机)
2019/5/8
两个无聊但有钱的美国人W.N.Thurman和 M.E.Fisher (1988)针对1930~1983年美国 年鸡蛋产量和年鸡产量数据,分别用滞后1~4 期的检验式对“先有鸡还是先有蛋”做格兰杰 因果关系检验,结论是先有蛋。
2019/5/8
金融与统计学院
4
先讨论一元线性回归分析的原因
两个变量之间的线性因果关系在现实经济中普遍存 在;
2019/5/8
金融与统计学院
12
使用相关系数须注意
变量X、Y随机、对称
rXY rYX
相关系数反映变量之间的线性相关程度 样本相关系数是总体相关系数的估计值 相关系数不能确定变量之间的因果关系
2019/5/8
金融与统计学院
13
回归分析
回归:由英国著名生物学家兼统计学家 高尔顿(Francis Galton,1822— 1911 )在研究人类遗传问题时提出。
对于这个一般结论的解释是:大自然具有一种约束力, 使人类身高的分布相对稳定而不产生两极分化,这就是 所谓的回归效应。

计量经济学中的各种检验

计量经济学中的各种检验

需要说明的问题
❖ 在消费模型中, R2>0.28→F>3.80→该线性模 型在0.99的水平下显著成立。
有许多著名的模型, R2小于 0.5,支持了重要 的结论,例如收入差距的倒U型规律。
不要片面追求拟合优度
什么时候增加新的解释变量
❖ 在实际中,为了解释某一现象,研究者往往 面对如何取舍若干解释变量的问题。通常的 做法是,只要修正的判定系数值增加(即使 修正的判定系数可能小于非修正的判定系数 的值),就可以增加解释变量。但是什么时 候修正的判定系数值开始增加呢?可以证明, 如果增加变量的系数的t的绝对值大于1,修 正的判定系数就会增加。
拟合优度检验和F检验的关系
❖ F检验和拟合优度检验都是把总变差TSS分解 为回归平方和与残差平方和,并在这一分解 的基础上构造统计量进行的检验。区别在于 前者有精确的分布而后者没有。一般来说, 模型对观测值的拟合程度越高,模型总体线 性关系的显著性越强。
拟合优度检验和F检验的关系
❖ F显著==>拟合优度必然显著
线性回归模型的各种检验
❖ 理论检验(经济意义检验) ❖ 统计检验 ❖ 计量经济学检验 ❖ 预测检验 ❖ 这一节主要讨论各种统计检验
回归模型的统计检验
❖ 统计检验指的是根据统计学的理论,确定回 归参数估计值的统计可靠性。
❖ 统计检验主要包括:回归方程估计标准误差 的评价、拟合优度检验、回归模型的总体显 著性检验和回归系数的显著性检验等。
在Eviews中的实现
❖ 许多的计量经济学软件可以给出决定系数和 修正的决定系数,从而实现拟合优度检验。 Eviews中同样可以实现这一目的。估计完回 归方程后的结果中自动会包含决定系数和修 正的决定系数。
❖ 例。

计量经济学第2章 一元线性回归模型

计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)

计量经济学庞皓课件(第三章 多元线性回归模型)

计量经济学庞皓课件(第三章 多元线性回归模型)
2
怎样分析多种因素的影响?
分析中国汽车行业未来的趋势,应具体分析这样一些问题: 中国汽车市场发展的状况如何?(用销售量观测) 影响中国汽车销量的主要因素是什么?
(如收入、价格、费用、道路状况、能源、政策环境等)
各种因素对汽车销量影响的性质怎样?(正、负) 各种因素影响汽车销量的具体数量关系是什么? 所得到的数量结论是否可靠? 中国汽车行业今后的发展前景怎样?应当如何制定汽车的 产业政策? 很明显,只用一个解释变量已很难分析汽车产业的发展, 还需要寻求有更多个解释变量情况的回归分析方法。
ˆk
k
c jj
~
N (0,1)
21 21
2 未知时βˆ 的标准化变换
因 2 是未知的, 可用 ˆ 2 代替 2 去估计参数的
标准误差:

当为大样本时,用估计的参数标准误差对
^
β

标准化变换,所得 Z 统计量仍可视为服从正态分

●当为小样本时,用估计的参数标准误差对 βˆ 作标 准化变换,所得的 t 统计量服从 t 分布:
( X X )1 X 2 IX ( X X )1
2 ( X X )1
注意
βˆ 是向量
(i 1, 2,L ( j 1, 2,L
n) n)
(由无偏性)
(由OLS估计式)
(由同方差性)
其中:
ˆ ( X X )1 X Y ( X X )1 X ( Xβ + u) β ( X X )1 X u
0
两边左乘 X
X Y = X Xβˆ + X e
根据最小二乘原则 则正规方程为
Xe = 0
X Xβˆ = X Y
14
OLS估计式

计量经济学 第二章 一元线性回归模型

计量经济学  第二章  一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

计量经济学第二章 一元线性回归模型(1)(肖)

计量经济学第二章 一元线性回归模型(1)(肖)

10
2.在经济学中,经济学家要研究个人
消费支出与个人可支配收入的依赖关系。
这种分析有助于估计边际消费倾向,就是
可支配收入每增加一元引起消费支出的平
均变化。
11
3.在企业中,我们很想知道人们对企
业产品的需求与广告费开支的关系。这种
研究有助于估计出相对于广告费支出的需
求弹性,即广告费支出每变化百分之一的
(2.3)
想想:结合表2.1的资料 ,怎样理解式(2.3)
变量Y 的原因, 给定变量X 的值也不能具
体确定变量Y的值, 而只能确定变量Y 的
统计特征,通常称变量X 与Y 之间的这种
关系为统计关系。
16
例如,企业总产出Y 与企业的资本投入
K 、劳动力投入L 之间的关系就是统计关 系。虽然资本K 和劳动力L 是影响产出Y 的两大核心要素,但是给定K 、L 的值并 不能确定产出Y 的值。因为,总产出Y 除 了受资本投入K、劳动力投入L 的影响外

在进入正式的回归理论之前,先斟酌一下变量y与变 量x可以互换的不同名称、术语。 Y 因变量 X 自变量
被解释变量 响应变量
被预测变量
解释变量 控制变量
预测变量
回归子
归回元
22
第二节
一、引例
一元线性回归模型
假定我们要研究一个局部区域的居 民消费问题,该区域共有80户家庭组成 ,将这80户家庭视为一个统计总体。
32
函数f (Xi)采取什么函数形式,是一个
需要解决的重要问题。在实际经济系统
中,我们不会得到总体的全部数据,因
而就无法据已知数据确定总体回归函数 的函数形式。同时,对总体回归函数的 形式只能据经济理论与经验去推断。

3、计量经济学【一元线性回归模型——参数估计】

3、计量经济学【一元线性回归模型——参数估计】

ˆ Y i
(8) 651.8181 753.6363 855.4545 957.2727 1059.091 1160.909 1262.727 1364.546 1466.364 1568.182 11100
ˆ ei Yi Y i
(9)=(2)-(8) 48.18190 -103.6363 44.54550 -7.272700 40.90910 -10.90910 -62.72730 35.45450 83.63630 -68.18190

假设 5:随机误差项服从 0 均值,同方差的正态 分布,即

2 i ~ N (0, ), ,,,,,,,,, ,, i 1,2, n
以上这些假设称为线性回归模型的经典假
设,满足这些假设的线性回归模型,也称为 经典线性回归模型(classical linear regression model)。在回归分析的参数估计和统计检验 理论中,许多结论都是以这些假定作为基础 的。如果违背其中的某一项假定,模型的参 数估计就会存在问题,也就是说最小二乘法 (OLS)就不再适用,需对模型进行修正或 采用其他的方法来估计模型了。
二、参数的普通最小二乘估计(OLS) 三、最小二乘估计量的性质 四、参数估计量的概率分布及随机误差项
方差的估计

给出一元线性回归模型的一般形式:
Yi 0 1 X i i ,,,, , i 1, 2, ,n
其中 Yi :被解释变量,X i :解释变量,0 和 1 :待估参 数; i :随机误差项;
ei2
(10) 2321.495 10740.48 1984.302 52.89217 1673.554 119.0085 3934.714 1257.022 6995.031 4648.771 33727.27

计量经济学实验二-一元线性回归模型的估计、检验和预测

计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。

实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。

实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。

实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。

实验二~实验十二主要都是用这些数据来完成一系列工作。

表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。

二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。

1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。

图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。

但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。

所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。

计量经济学第二章一元线性回归模型

计量经济学第二章一元线性回归模型
第二章 经典单方程计量经济学模型: 一元线性回归模型
回归分析概述 一元线性回归模型的参数估计 一元线性回归模型的检验 一元线性回归模型的预测 实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF) 三、随机扰动项 四、样本回归函数(SRF)
2020/3/6
LOU YONG
表 2.1.3 家庭消费支出与可支配收入的一个随机样本 Y 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 X 594 638 1122 1155 1408 1595 1969 2078 2585 2530
2020/3/6
LOU YONG
20
• 该样本的散点图(scatter diagram):
分i。
2020/3/6
LOU YONG
17
上式称为总体回归函数(PRF)的随机 设定形式。表明被解释变量除了受解释 变量的系统性影响外,还受其他因素的 随机性影响。
由于方程中引入了随机项,成为计量经 济学模型,因此也称为总体回归模型。
2020/3/6
LOU YONG
18
随机误差项主要包括下列因素 在解释变量中被忽略的因素的影响; 变量观测值的观测误差的影响; 模型关系的设定误差的影响; 其他随机因素的影响。
回归系数(regression coefficients)。
2020/3/6
LOU YONG
15
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该社 区家庭平均的消费支出水平。
但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。
称为观察值围绕它的期望值的离差 (deviation),是一个不可观测的随机变量, 又称为随机干扰项(stochastic disturbance)或 随机误差项(stochastic error)。

实验3计量经济学实验一元线性回归模型

实验3计量经济学实验一元线性回归模型
ˆ0~N(0,,n(2Xi XX i2 )2)
ˆ1 ~N(1,,
2
) (Xi X)2
三、知识点回顾
n 4、最小二乘估计量的性质及分布
随机干扰项 i 的方差 2 的估计 ˆ 0 和 ˆ 1 的方差表达式中都包含随机干扰项 i 的方差 2
,由于随机干扰项 i 实际上是无法观察测量的,因此其
量 Y 的平均值。
三、知识点回顾
1、四种重要的关系式
(2)总体回归函数(方程): E(YXi)01Xi
其中总体回归参数真值 0 , 1 是未知的;总体回归方程也是 未知的。
(3)样本回归函数(方程): Yˆi ˆ0 ˆ1Xi
在实际应用中,从总体中抽取一个样本,进行参数估计,从 而获得估计的回归方程,系数 ˆ 0 , ˆ1 为估计的回归系数;用 这个估计的回归方程近似替代总体回归方程,其中估计的回 归系数 ˆ 0 , ˆ1 是总体参数真值 0 , 1 的估计值;基于估计方程 计算的 Y ˆ i 就为 E (Y X i ) 的估计值; 由于我们从来就无法知道真实的回归方程,因此计量经济学 分析注重的是这个估计的回归方程和估计的回归系数;
据;普通最小二乘法给出的判断拟合程度的标准是:残差平
方和最小,即:m in Q ne i2n(Y i Y ˆi)2n Y i (ˆ0ˆ1 X i) 2
i 1
i 1
i 1
最小二乘法就是:在使上述残差平方和Q 达到最小时,确定
模型中的参数 ˆ 0 和 ˆ 1 的值,或者说在给定观测值之下,选
择出 ˆ 0 , ˆ1 的值,使残差平方和Q 达到最小。
接近,这也说明OLS估计值是非常有价值的。
三、知识点回顾
n 4、最小二乘估计量的性质及分布

计量经济学课件一元线性回归

计量经济学课件一元线性回归

二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS) 给出的判断标准是:二者之差的平方和
ˆ ˆ X )) 2 ˆ ) (Y ( Q (Yi Y i i 0 1 i
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
ˆ Y 顺便指出 ,记 y ˆi Y i
则有
ˆ ˆ X ) ( ˆ ˆ X e) ˆi ( y 0 1 i 0 1 ˆ (X X ) 1 e 1 i n i
可得
ˆx ˆi y 1 i
(**)
(**)式也称为样本回归函数的离差形式。
注意:
在计量经济学中,往往以小写字母表示对均值 的离差。
易知 故
x k x
i
i
2 i
0
k X
i
i
1
ˆ k i i 1 1
ˆ ) E ( k ) k E ( ) E( i i 1 i i 1 1 1
同样地,容易得出
ˆ ) E ( w ) E( ) w E ( ) E( i i i i 0 0 0 0
1 (2 ) n
n 2

1 2

计量经济学的2.3 一元线性回归模型的统计检验

计量经济学的2.3 一元线性回归模型的统计检验

ˆ ˆ P( ) 1
如果存在这样一个区间,称之为置信区间 (confidence interval); 1-称为置信系数(置信度) (confidence coefficient), 称为显著性水平(level of significance)(或犯第I类错误的概率,即拒真的概 率);置信区间的端点称为置信限(confidence limit) 或临界值(critical values)。置信区间以外的区间称 4 为临界域
由于置信区间一定程度地给出了样本参数估计 值与总体参数真值的“接近”程度,因此置信区间 越小越好。 (i t s , i t s )
2 i 2 i
要缩小置信区间,需要减小 (1)增大样本容量n,因为在同样的置信水平 下, n越大,t分布表中的临界值越小;同时,增大样本 容量,还可使样本参数估计量的标准差减小;
5
如何构造参数值的估计区间? 通过构造已知分布的统计量
6
构造统计量(1)
回顾: 在正态性假定下
以上统计量服从自由度为n-2的x2分布,n为样本量
7
构造统计量(2)
ˆ ˆ 0 和 1 服从正态分布
ˆ E ( 0 )= 0
ˆ E ( 1 )=1
Var 0) (ˆ
X
i 1 n i 1
§2.3 一元线性回归模型的统 计检验
一、参数的区间估计 二、拟合优度检验 三、参数的假设检验 (对教材内容作了扩充)
1
一、参数的区间估计
参数的两种估计:点估计和区间估计
点估计
通过样本数据得到参数的一个估计值。
(如:最小二乘估计、最大似然估计)
点估计不足:
(1)点估计给出在给定样本下估计出的参数的可能取值,但 它并没有指出在一次抽样中样本参数值到底离总体参数的真 值有多“近”。 (2)虽然在重复抽样中估计值的均值可能会等于真值,但由 于抽样波动,单一估计值很可能不同于真值。 2

第二章 经典单方程计量经济学模型:一元线性回归模型

第二章  经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。

Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 一元线性回归模型的统计检验回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。

尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。

那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。

主要包括拟合优度检验、变量的显著性检验及参数的区间估计。

一、拟合优度检验拟合优度检验,顾名思义,是检验模型对样本观测值的拟合程度。

检验的方法,是构造一个可以表征拟合程度的指标,在这里称为统计量,统计量是样本的函数。

从检验对象中计算出该统计量的数值,然后与某一标准进行比较,得出检验结论。

有人也许会问,采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要检验拟合程度?问题在于,在一个特定的条件下做得最好的并不一定就是高质量的。

普通最小二乘法所保证的最好拟合,是同一个问题内部的比较,拟合优度检验结果所表示优劣是不同问题之间的比较。

例如图2.3.1和图2.3.2中的直线方程都是由散点表示的样本观测值的最小二乘估计结果,对于每个问题它们都满足残差的平方和最小,但是二者对样本观测值的拟合程度显然是不同的。

图2.3.1 图2.3.21、总离差平方和的分解已知由一组样本观测值),(i i Y X ,i =1,2…,n 得到如下样本回归直线ii X Y 10ˆˆˆββ+= 而Y 的第i 个观测值与样本均值的离差)(Y Y y i i -=可分解为两部分之和:i ii i i i i y e Y Y Y Y Y Y y ˆ)ˆ()ˆ(+=-+-=-= (2.3.1) 图2.3.3示出了这种分解,其中,)ˆ(ˆY Y y ii -=是样本回归直线理论值(回归拟合值)与观测值i Y 的平均值之差,可认为是由回归直线解释的部分;)ˆ(ii i Y Y e -=是实际观测值与回归拟合值之差,是回归直线不能解释的部分。

显然,如果i Y 落在样本回归线上,则Y 的第i 个观测值与样本均值的离差,全部来自样本回归拟合值与样本均值的离差,即完全可由i X X 图2.3.3对于所有样本点,则需考虑这些点与样本均值离差的平方和。

由于 ∑∑∑∑++=i i i i ie y e yyˆ2ˆ222 可以证明∑=0ˆii e y,所以有∑∑∑+=222ˆi i ie yy(2.3.2) 记TSS Y Y yi i=-=∑∑22)(,称为总离差平方和(Total Sum of Squares ),反映样本观测值总体离差的大小;ESS Y Y yii=-=∑∑22)ˆ(ˆ,称为回归平方和(Explained Sum of Squares ),反映由模型中解释变量所解释的那部分离差的大小;∑∑=-=RSS Y Y eii i22)ˆ(,称为残差平方和(Residual Sum of Squares ),反映样本观测值与估计值偏离的大小,也是模型中解释变量未解释的那部分离差的大小。

(2.3.2)表明Y 的观测值围绕其均值的总离差平方和可分解为两部分,一部分来自回归线,另一部分则来自随机势力。

因此,可用来自回归线的回归平方和占Y 的总离差的平方和的比例来判断样本回归线与样本观测值的拟合优度。

读者也许会问,既然RSS 反映样本观测值与估计值偏离的大小,可否直接用它作为拟合优度检验的统计量?这里提出了一个普遍的问题,即作为检验统计量的一般应该是相对量,而不能用绝对量。

因为用绝对量作为检验统计量,无法设置标准。

在这里,RSS ,即残差平方和,与样本容量关系很大,当n 比较小时,它的值也较小,但不能因此而判断模型的拟合优度就好。

2、可决系数2R 统计量 根据上述关系,可以用TSSRSSTSS ESS R -==12(2.3.3) 检验模型的拟合优度,称2R 为可决系数(coefficient of determination )。

显然,在总离差平方和中,回归平方和所占的比重越大,残差平方和所占的比重越小,则回归直线与样本点拟合得越好。

如果模型与样本观测值完全拟合,则有12=R 。

当然,模型与样本观测值完全拟合的情况是不可能发生的,2R 不可能等于1。

但毫无疑问的是该统计量越接近于1,模型的拟合优度越高。

在实际计算可决系数时,在1ˆβ已经估计出后,一个较为简单的计算公式为: ⎪⎪⎭⎫⎝⎛=∑∑22212ˆi i y x R β (2.3.4) 这里用到了样本回归函数的离差形式来计算回归平方和: ∑∑∑===221212ˆ)ˆ(ˆii ix x yESS ββ。

在例2.1.1的收入-消费支出例中,9766.045900207425000)777.0(ˆ222212=⨯==∑∑ii yx R β说明在线性回归模型中,家庭消费支出总变差(variation )中,由家庭可支配收入的变差解释的部分占97.66%,模型的拟合优度较高。

由(2.3.3)知,可决系数的取值范围为102≤≤R ,是一个非负的统计量。

它也是随着抽样的不同而不同,即是随抽样而变动的统计量。

为此,对可决系数的统计可靠性也应进行检验,这将在第3章中进行。

二、变量的显著性检验变量的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系是否显著成立作出推断,或者说考察所选择的解释变量是否对被解释变量有显著的线性影响。

从上面的拟合优度检验中可以看出,拟合优度高,则解释变量对被解释变量的解释程度就高,线性影响就强,可以推测模型线性关系成立;反之,就不成立。

但这只是一个模糊的推测,不能给出一个统计上的严格的结论。

因此,还必须进行变量的显著性检验。

变量的显著性检验所应用的方法是数理统计学中假设检验。

1、假设检验假设检验是统计推断的一个主要内容,它的基本任务是根据样本所提供的信息,对未知总体分布的某些方面的假设作出合理的判断。

假设检验的程序是,先根据实际问题的要求提出一个论断,称为统计假设,记为H 0;然后根据样本的有关信息,对H 0的真伪进行判断,作出拒绝H 0或接受H 0的决策。

假设检验的基本思想是概率性质的反证法。

为了检验原假设H 0是否正确,先假定这个假设是正确的,看由此能推出什么结果。

如果导致一个不合理的结果,则表明“假设H 0为正确”是错误的,即原假设H 0不正确,因此要拒绝原假设H 0。

如果没有导致一个不合理现象的出现,则不能认为原假设H 0不正确,因此不能拒绝拒绝原假设H 0。

概率性质的反证法的根据是小概率事件原理,该原理认为“小概率事件在一次试验中几乎是不可能发生的”。

在原假设H 0下构造一个事件,这个事件在“原假设H 0是正确”的条件下是一个小概率事件。

随机抽取一组容量为n 的样本观测值进行该事件的试验,如果该事件发生了,说明“原假设H 0是正确”是错误的,因为不应该出现的小概率事件出现了。

因而应该拒绝原假设H 0。

反之,如果该小概率事件没有出现,就没有理由拒绝原假设H 0,应该接受原假设H 0。

2、变量的显著性检验用以进行变量显著性检验的方法主要有三种:F 检验、t 检验、z 检验。

它们的区别在于构造的统计量不同。

应用最为普遍的t 检验,在目前使用的计量经济学软件包中,都有关于t 统计量的计算结果。

我们在此只介绍t 检验。

对于一元线性回归方程中的1ˆβ,已经知道它服从正态分布 ),(~ˆ2211∑ixN σββ进一步根据数理统计学中的定义,如果真实的2σ未知,而用它的无偏估计量)2ˆ22-=∑n e i σ替代时,可构造如下统计量 1ˆ112211ˆˆˆβββσββS xt i-=-=∑ (2.3.5)则该统计量服从自由度为)2(-n 的t 分布。

因此,可用该统计量作为1β显著性检验的t 统计量。

如果变量X 是显著的,那么参数1β应该显著地不为0。

于是,在变量显著性检验中设计的原假设为:0:10=βH给定一个显著性水平α,查t 分布表(见附录),得到一个临界值)2(2-n t α。

因为t 分布是双尾分布,所以按照α2查t 分布表中的临界值。

于是 t >)2(2-n t α(这里的t 已不同于(2.3.5) 式,其中01=β)为原假设H 0下的一个小概率事件。

在参数估计完成后,可以很容易计算t 的数值。

如果发生了t >)2(2-n t α,则在(1-α)的置信度下拒绝原假设H 0,即变量X 是显著的,通过变量显著性检验。

如果未发生t >)2(2-n t α,则在(1-α)置信度下接受原假设H 0,即变量X 是不显著的,未通过变量显著性检验。

对于一元线性回归方程中的0β,可构造如下t 统计量进行显著性检验: 0ˆ02220ˆˆˆβββσββS xn Xt ii-=-=∑∑ (2.3.6)同样地,该统计量服从自由度为)2(-n 的t 分布,检验的原假设一般仍为00=β。

在例2.1.1及例2.2.1的收入-消费支出例中,首先计算2σ的估计值134022107425000777.045900202ˆ2ˆ2221222=-⨯-=--=-=∑∑∑n x y n e i iiβσ于是0ˆβ和1ˆβ的标准差的估计值分别是: 0425.00018.07425000/13402ˆ22ˆ1====∑ixS σβ41.98742500010/5365000013402ˆ222ˆ0=⨯⨯==∑∑i i x n X S σβ t 统计量的计算结果分别为:29.180425.0777.0ˆ1ˆ11===ββS t 048.141.9817.103ˆ0ˆ00-=-==ββS t 给定一个显著性水平α=0.05,查t 分布表中自由度为8(在这个例中8)2(=-n )、α=0.05的临界值,得到=)8(2αt 2.306。

可见1t >)2(2-n t α,说明解释变量家庭可支配收入在95%的置信度下显著,即通过了变量显著性检验。

但0t <)2(2-n t α,表明在95%的置信度下,无法拒绝截距项为零的假设。

三、参数的置信区间假设检验可以通过一次抽样的结果检验总体参数可能的假设值的范围(最常用的假设为总体参数值为零),但它并没有指出在一次抽样中样本参数值到底离总体参数的真值有多“近”。

要判断样本参数的估计值在多大程度上可以“近似”地替代总体参数的真值,往往需要通过构造一个以样本参数的估计值为中心的“区间”,来考察它以多大的可能性(概率)包含着真实的参数值。

这种方法就是参数检验的置信区间估计。

要判断估计的参数值iβˆ离真实的参数值i β有多“近”,可预先选择一个概率)10(<<αα,并求一个正数δ,使得随机区间(random interval ))ˆ,ˆ(δβδβ+-ii 包含参数i β的真值的概率为1-α。

相关文档
最新文档