电力电子技术实验报告()
电力电子技术实验报告全
电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。
二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。
通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。
常见的电力电子器件包括二极管、晶闸管、IGBT等。
三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。
2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。
3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。
4. 分析实验数据,验证电路设计的正确性和性能指标。
5. 根据实验结果,调整电路参数,优化电路性能。
六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。
实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。
七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。
实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。
这些技能对于我们未来的学习和工作都具有重要意义。
八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。
通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。
《电力电子技术》实验报告-1
河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制)目录实验报告一晶闸管的控制特性及作为开关的应用 (1)实验报告二单结晶体管触发电路 (3)实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6)实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8)实验报告五直流-直流集成电压变换电路的应用与调试 (10)实验报告一晶闸管的控制特性及作为开关的应用一、实训目的1.掌握晶闸管半控型的控制特点。
2.学会晶闸管作为固体开关在路灯自动控制中的应用。
二、晶闸管工作原理和实训电路1.晶闸管工作原理晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。
当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。
2.晶闸管控制特性测试的实训电路图1.1晶闸管控制特性测试电路3.晶闸管作为固体开关在路灯自动控制电路中的应用电路图1.2路灯自动控制电路三、实训设备(略,看实验指导书)四、实训内容与实训步骤(略,看实验指导书)五、实训报告要求1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。
记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。
2.简述路灯自动控制电路的工作原理。
实验报告二单结晶体管触发电路一、实训目的1.掌握单结晶体管触发电路的工作原理、接线和调试。
2.掌握单结晶体管触发电路各点电压波形的测定与分析。
二、实训电路与工作原理1.晶闸管触发电路的组成图2.1触发电路的组成2.单结晶体管触发电路的组成和工作原理单结晶体管是由两个基极(b1和b2)和一个阴极构成的一种特殊类型的晶体管,其构造示意图和符号如图2.2(a)、(b)所示。
电力电子技术实验报告山交院
电力电子技术实验二单相桥式全控整流电路实验一.实验目的1.了解单相桥式整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电动势负载时的工作。
3.熟悉触发电路(锯齿波触发电路)。
二.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感负载。
三.实验线路及原理1)电源控制屏位于NMCL -32/MEL-002T等。
2)锯齿触发电路位于NMCL -36C或NMCL -05D等。
3) L 平波电抗器位于NMCL -331。
4) Rd 可调电阻位于NMEL -03/4或NMCL -03等。
5) G 给定(Ug )位于NMCL -31或NMCL -31A或SMCL -01调速系统控制单元中。
6) Uct 位于锯齿触发电路中。
四.实验设备及仪器1.教学实验台主控制屏2.触发电路(锯齿波触发电路)组件3.变压器组件4.双踪示波器(自备)5.万用表(自备)五.实验结果五.注意事项1实验载必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,品闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U=0时,接通主电源。
然后逐渐增大Ua,使整流电路投入工作。
(3)断开整流电路时,应先把Ua降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
六.总结在可控整流电路中,两个整流二极管VD2、VD4既起到整流作用,又起到续流作用。
电阻电感性负载时,无论接或不接续流二极管,输出直流电压Ud的波形均与接电阻性负载时的直流电压波形相同。
实验中,根据VT1.上的电压波形确定移相控制角a的度数,因此误差较大。
从实验波形中可见续流二极管的作用。
在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压Ud失控。
电力电子实验报告
电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。
本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。
一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。
二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。
实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。
三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。
调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。
3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。
而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。
在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。
实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。
通过调整电路参数,可以实现不同电压、频率和波形的输出。
这为电力系统的稳定运行和能源的高效利用提供了技术支持。
五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。
电力电子技术实验报告--直流斩波电路的仿真
实验报告(理工类)
通过本实验,加深对直流斩波电路工作原理的理解,并学习采用仿真软件来研究电力电子技术及相关控制方法。
二、实验原理
V L/R
¥GVD u 。
图2.1直流降压电路原理图
直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其原理电路如图2.1所示。
U 。
=
&E=『E=aE (2-1) 4>n+^off /
式(2-1)中,T 为V 开关周期,%为导通时间,为占空比。
在本实验中,采用保持开关周期T 不变,调节开关导通时间&I 的脉冲宽度调制方式来实验对输出电压的控制。
仿真的模型线路如下图所示。
开课学院及实验室:
实验时间:年月日 一、实验目的
图2.2降压斩波电路仿真模型
在模型中采用了IGBT,IGBT的驱动信号由脉冲发生器产生,设定脉冲发生器的脉冲周期和脉冲宽度可以调节脉冲占空比。
模型中连接多个示波器,用于观察线路中各部分电压和电流波形,并通过傅立叶分析来检测输出电压的直流分量和谐波。
三、实验设备、仪器及材料
PC机一台、MATLAB软件
四、实验步骤(按照实际操作过程)
1.打开MATLAB,点击上方的SimUlink图标,进入SimUIinkLibraryBroWSer模式O
2.新建model文件,从SimulinkLibraryBrowser选择元器件,分别从sinks和SimPowerSystems 中选择,powergui单元直接搜索选取
3.根据电路电路模型正确连线
五、实验过程记录(数据、图表、计算等)
六、实验结果分析及问题讨论。
电力电子技术实验报告南邮
电力电子技术实验报告南邮一、实验目的本次实验旨在使学生深入了解电力电子技术的基本理论,掌握电力电子器件的工作原理及其在实际电路中的应用。
通过实践操作,培养学生的动手能力和解决实际问题的能力。
二、实验原理电力电子技术是研究利用电子技术对电能进行高效转换和控制的科学。
它涉及到半导体器件、电路设计、控制策略等多个方面。
在本次实验中,我们将重点研究整流器、逆变器等电力电子基本电路的工作原理和设计方法。
三、实验设备与材料1. 整流器模块2. 逆变器模块3. 直流电源4. 交流电源5. 电阻负载6. 示波器7. 万用表8. 连接线及工具四、实验步骤1. 检查实验设备是否完好,确保安全。
2. 根据实验要求,连接整流器和逆变器电路。
3. 调整直流电源,提供稳定的直流电压。
4. 将示波器连接到电路的输入和输出端,观察波形。
5. 改变负载电阻,记录不同负载下的输出电压和电流。
6. 根据实验数据,分析整流器和逆变器的工作特性。
7. 完成实验后,整理实验设备,确保实验室整洁。
五、实验结果在本次实验中,我们观察到了整流器和逆变器在不同负载条件下的输出波形。
通过调整负载电阻,我们发现输出电压和电流随着负载的变化而变化。
实验数据表明,整流器能够有效地将交流电转换为直流电,而逆变器则能够将直流电转换回交流电。
六、实验分析通过本次实验,我们对电力电子技术有了更深入的理解。
整流器和逆变器作为电力电子技术中的基本电路,其性能直接影响到整个系统的稳定性和效率。
在实验过程中,我们注意到了器件的选型、电路设计和控制策略对系统性能的影响。
此外,我们还学习了如何使用示波器和万用表来测量和分析电路参数。
七、实验结论本次电力电子技术实验成功地完成了预定的教学目标。
学生通过实际操作,加深了对电力电子技术的理解,并提高了解决实际问题的能力。
实验结果表明,整流器和逆变器在实际应用中具有良好的性能,能够有效地实现电能的转换和控制。
八、实验心得通过本次实验,我们不仅学习了电力电子技术的基本理论和应用,还锻炼了实际操作能力。
电力电子技术实验报告
电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。
通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。
本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。
一、整流电路实验整流电路是电力电子技术中最基本的电路之一。
通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。
在实验中,我们使用了半波和全波整流电路进行测试。
半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。
实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。
实验结果显示,输出电压为正半周的峰值。
全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。
实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。
实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。
二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。
通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。
在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。
单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。
实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。
实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。
三相逆变电路是现代电力系统中常用的逆变电路。
它通过三个开关管和三个滤波电感将直流电转换为三相交流电。
实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。
实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。
三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。
通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。
电力电子技术实验报告
电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。
本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。
实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。
通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。
在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。
通过实验,我们进一步理解了直流电源的工作原理和设计方法。
实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。
通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。
实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。
这些结果对于电力系统的稳定运行和节能优化具有重要意义。
实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。
通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。
实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。
这对于提高电力系统的能效和稳定性具有重要意义。
实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。
通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。
实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。
这对于推广和应用太阳能发电技术具有重要意义。
结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。
实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。
我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。
电力电子技术实验报告
电力电子技术实验报告一、实验背景电力电子技术作为一个新兴的学科领域,已经逐渐成为电力系统的重要组成部分和关键技术之一。
随着电力电子技术的不断发展和进步,电力电子设备的种类和应用范围也在不断扩大,特别是在实现电力系统的高效、可靠、智能化方面具有至关重要的作用。
因此,掌握电力电子技术的基本原理和实验操作技能,对于打造应用型电力电子专业人才具有十分重要的意义。
本次实验主要涉及了电力电子技术的基础实验内容,包括单相桥式整流电路、单相半控桥整流电路、交流调压电路、直流稳压电源实验等。
通过实验,学生不仅能够加深对电力电子技术的理论知识的深入理解,也能够掌握实际操作技能和实验数据分析方法,培养学生的综合实际应用能力和创新能力。
二、实验原理(1)单相桥式整流电路单相桥式整流电路是电力电子技术最常见的电路之一。
其工作原理是通过控制四个二极管的导通和截止,将单相交流电转化为直流电,然后提供给直流负载使用。
这种电路结构简单、可靠性高、输出电压稳定等特点,被广泛应用于各种电力电子设备中。
(2)单相半控桥整流电路单相半控桥整流电路和单相桥式整流电路类似,不同之处在于只有一个晶闸管是可控的,其余三个二极管均为正向导通二极管。
这种电路可以实现对直流输出电压的连续调节,具有输出电压稳定、反向截止和可靠性高等特点,被广泛应用于变频调速、直流电动机控制等领域。
(3)交流调压电路交流调压电路是将变压器输出的交流电进行调制,通过控制可控硅的导通和截止,实现输出电压可调的电路。
这种电路在电力电子设备中广泛应用于电炉、电化学等领域,具有输出电压稳定、可靠性高、精度高等特点。
(4)直流稳压电源实验直流稳压电源实验是通过对不同的调节电路与稳压电路进行结合,实现直流电源输出电压、电流稳定的实验。
在电子学、通信、电力电子等领域中应用广泛,能够满足各种直流负载的需要。
三、实验步骤(1)单相桥式整流电路1. 将单相电源接入电路,调节电压调节器,使输出电压稳定。
电力电子技术实验报告
7实验一直流斩波电路实验一. 实验目的熟悉降压斩波电路、升压斩波电路及斩波控制电路的结构和工作原理,掌握以上两种基本斩波电路的工作状态和波形情况及调试方法。
二. 实验内容(1) 了解驱动电路的结构和实验电路的工作原理。
(2) 降压斩波电路的波形观察及电压测试。
(3) 升压斩波电路的波形观察及电压测试。
(4) 升降压斩波电路的波形观察及电压测试(选做,建议做)。
(5) Cuk 斩波电路的波形观察及电压测试(选做)。
(6) Sepic 斩波电路的波形观察及电压测试(选做)。
(7) Zeta 斩波电路的波形观察及电压测试(选做)。
(8) 电流测量(选做)。
三. 实验设备及仪器(1) 电力电子与运动控制教学实验平台(2) 示波器及高压隔离探头(3) 万用表(4) 连接导线四. 实验数据记录及整理分析1、了解MC0511 控制单元的工作原理,分析不同占空比和开关频率时波形的变化情况;分析驱动信号在连接MOSFET 前后波形的变化情况;说明“输出限幅”和“禁止”功能的作用。
在图1.1/1.2/1.3中,开关频率均为低频(5kHz),占空比依次为递增为20/40/60在图1.4/1.5/1.6中,占空比均为60,开关频率依次为为低频/高频/中频图1.7/1.8分别是将占空比旋钮调至最大所得到的波形。
输出限幅的接入可以限制输出波形占空比。
2、降压斩波电路性能研究(1)搭建电路如下所示(2)降压斩波电路测试结果表2.1 斩波电路测试结果电路形式:降压斩波电路开关频率:低频(5kHZ)负载情况:重载36V/90W表2.2 斩波电路测试结果电路形式:降压斩波电路开关频率:中频(12kHZ)负载情况:重载36V/90W表2.3 斩波电路测试结果电路形式:降压斩波电路开关频率:高频(20kHZ)负载情况:重载36V/90W(3)调节MC0511 控制单元上的“脉冲宽度调节”旋钮至约30%处,观察灯泡亮度的变化,用万用表测量并记录灯泡负载上的电压Uo 和斩波器输入直流电压E 的值。
电力电子技术实验报告
实验一单相桥式半控整流电路整流二极管两端电压U VD1的波形。
顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察并记录在不同α角时U d、U VT、U VD1的波形,测量相应电源电压U2和负载电压U d的数值,记录于下表中。
计算公式:Ud = 0.9U2(1+cosα)/2(3) 单相桥式半控整流电路带电阻、电感性负载①将单结晶体管触发电路的移相控制电位器RP1逆时针调到阻值最小位置、按下电源控制屏DJK01上的停止按扭断开主电路电源后,将负载换成电阻、电感性负载,即将平波电抗器L d(70OmH)与电阻R(双臂滑线变阻器和灯泡串联构成)串联。
②断开开关S1,先不入接续流二极管VD3。
接通主电路电源,顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,用示波器观察控制角α在不同角度时的Ud、UVT、UVD1、Id波形,并测定相应的U2、Ud数值,记录于下表中:③在α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD1、UVD2、Id的波形。
④将相控制电位器RP1逆时针调至最小,闭合开关S1,接入续流二极管VD3,然后顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察不同控制角α时Ud、UVD3、Id 的波形,并测定相应的U2、Ud数值,记录于下表中:⑤在接有续流二极管VD3及α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD2、UVD1和Id的波形。
八、实验报告(1) 画出电阻性负载、电阻电感性负载时U d/U2=f(α)的曲线。
(2)画出电阻性负载、电阻电感性负载,α角分别为30°、60°、90°时的U d、U VT的波形。
(3) 说明续流二极管对消除失控现象的作用。
在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压ud失控。
电力电子技术实验报告
实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
二、实验所需挂件及附件三、实验线路图图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。
三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。
(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?答:晶闸管的额定工作电流可作为整流电路的最大输出电流。
六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应d2U d=0.675U2[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud、α=90°时的Ud 及Id波形图。
七、实验报告1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。
α =30o 时Ud的波形α =30o 时Uvt的波形α =60o 时Ud的波形α =60o 时Uvt的波形α =90o 时Ud的波形α =90o 时Uvt的波形α =120o 时Ud的波形α =120o 时Uvt的波形α =150o 时Ud的波形α =150o 时Uvt的波形α =90o 时Ud的波形实验总结:第一次去实验的时候,并没有完成第一个实验,只是熟悉了实验仪器,加上没有对实验内容进行预习,所以没有完成实验内容。
电力电子技术实验报告
电力电子技术实验报告电力电子技术实验报告电子电子技术实验报告《电力电子技术实验》报告年级专业姓名学号实验一单相交流调压电路实验一.实验目的:1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二.实验内容:1.单相调压电路带电阻性负载实验;2.单相交流调压电路带电阻电感性负载实验。
三.实验过程:1、电阻性负载实验:按图1-1接好线路(蓝色为电源电压波形,黄色为负载电压波形,红色为负载电流波形)图1-1晶闸管脉冲触发角度:绘制波形:结论:2、带电阻电感性负载实验:按图1-2接好线路图1-2第1页电子电子技术实验报告分别取脉冲触发角大于,等于和小于功率因数角φ三种情况。
当选R1和L时,φ=48o当选R2和L时,φ=20o当选R3和L时,φ=18o绘制波形:结论:第2页电子电子技术实验报告实验二功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法;2.掌握MOSFET对驱动电路的要求;3.掌握一个实用驱动电路的工作原理与调试方法。
二.实验内容:1.MOSFET静态特性及主要参数测试:(1)MOSFET主要参数测量:VDS恒定VGSId开启阀值电压VGS(th)=跨导gm=绘制转移特性曲线(2)输出特性测量:VdSVGS=3.5VIdVdSVGS=3.8VIdVdSVGS=4VId导通电阻Ron=绘制输出特征曲线第3页电子电子技术实验报告(3反向特征曲线测量。
VSDId绘制反向输出特征曲线:2.驱动电路研究:(1)快速光耦输入、输出延时时间测试;波形记录:VgS恒定延迟时间(2)驱动电路的输入、输出延时时间的测试;波形记录:延迟时间3.动态特性测试:(1)电阻负载MOSFET开关特性测试;波形记录:开关时间:第4页电子电子技术实验报告(2)电阻、电感负载MOSFET开关特性测试;波形记录: 开关时间:(3)RCD缓冲电路对MOSFET开关特性的影响测试;波形记录:开关时间:(4)栅极反压电路对MOSFET开关特性的影响测试;波形记录:开关时间:(5)不同栅极电阻对MOSFET开关特性的影响测试。
电力电子技术实验报告
电力电子技术实验报告实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的(1)掌握各种电力电子器件的工作特性。
(2)掌握各器件对触发信号的要求。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
3 DJK07 新器件特性实验 4 DJK09 单相调压与可调负载5 万用表自备三、实验线路及原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下图所示:四、实验内容(1)晶闸管(SCR)特性实验。
(2)可关断晶闸管(GTO)特性实验。
(3)功率场效应管(MOSFET)特性实验。
(4)大功率晶体管(GTR)特性实验。
(5)绝缘双极性晶体管(IGBT)特性实验。
五、实验方法(1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压Ug 调节第1页(共13页)过程中回路电流Id以及器件的管压降Uv。
电力电子技术实验报告
学号:13061113 姓名:陈益锐专业:自动化实验五三相半波可控整流电路的研究一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
实验线路见图1-5。
三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.教学实验台主控制屏2.NMCL—33B组件3.NMEL—03组件4.NMCL—18D组件5.双踪示波器(自备)6.万用表(自备)五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。
(1)用示波器观察NMCL—33B的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。
2.研究三相半波可控整流电路供电给电阻性负载时的工作合上主电源,接上电阻性负载,调节主控制屏输出电压U uv 、U vw 、U wv ,从0V 调至110V :(a ) 改变控制电压U ct ,观察在不同触发移相角α时,记录相应的U d 、I d 、U ct 值。
1. α=0°时, Ud=77V Id=0.07AUd 波形 Uvt 波形2. α=30°时, Ud=67V Id=0.06图1-5 三相半波可控整流电路Ud波形Uvt波形3. α=60°时,Ud=44V Id=0.03Ud波形Uvt波形4. α=90°时,Ud=21V Id=0.01Ud波形Uvt波形5. α=120°时,Ud=4V Id=-0.01AUd波形Uvt波形3.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入NMCL—331的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。
电力电子技术实验报告张小芳
《电力电子技术》实验报告姓名:卢雪飞班级:0831104学号:2011212893指导老师:李敏实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
(3)验证晶闸管的导通条件。
二、实验所需挂件及附件序号型号备注1 DZ01 电源控制屏包含“三相电源输出”等几个模块2 DJK03 晶闸管触发电路包含“单结晶体管触发电路”等模块3 双踪示波器包含探头2根三、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察。
四、实验方法(1) 观测单结晶体管触发电路:将DZ01电源控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后用两根导线将220V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路(图1-3),经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相。
图1-1 单结晶体管触发电路原理图(2) 记录单结晶体管触发电路各点波形:当α=60o时,单结晶体管触发电路的各观测点波形描绘如下,得到结论,与教科书中的各波形一致。
图1-2 α=60o时,单结晶体管触发电路的各观测点波形(3)晶闸管导通条件的测试:在不加门极触发电压,加正向阳极电压(交流15V)的情况下,观察晶闸管是否导通;在加阳极反向电压(交流15V),加正向门极触发电压(由单结晶体管触发电路提供)的情况下,观察晶闸管是否导通;加正向门极触发电压,加正向阳极电压(交流15V)的情况下,观察晶闸管是否导通,并将结果记录到下表。
仅+U AK-U AK,+U GK+U AK,+U GK VT状态导通导通关断五、思考题1.单结晶体管触发电路的振荡频率与电路中C的数值有什么关系?1答:C1越大,振荡频率越小。
电力电子技术实验报告
实验一:单相桥式全控整流电路(电阻性负载)一、实验内容如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
idR图1-1二、实验原理1、在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。
2、在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
3、在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
4、在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b 流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况三、实验过程启动MATLAB,进入SIMULINK后新建一个仿真模型的新文件。
在这里可以任意添加电路元器件模块。
然后对照电路系统模型,依次往文档中添加相应的模块。
在此实验中,我们按下表添加模块:表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况添加好模块后,要对各元器件进行布局。
一个良好的布局面板,更有利于阅读系统模型及方便调试。
图1-3设置模块参数。
依次双击各模块,在出现的对话框内设置相应的参数。
1、交流电源参数设置:电压设置为220V,频率设为50Hz,其它默认。
图1-42、脉冲触发器设置:振幅(amplitude)设为5。
周期(Period)设为0.02秒。
电力电子技术实验报告
电力电子技术实验报告实验目的,通过本次实验,掌握电力电子技术的基本原理和实验操作,提高学生对电力电子技术的理论和实践能力。
实验仪器设备,电力电子技术实验箱、直流电源、交流电源、示波器、电流表、电压表等。
实验原理,电力电子技术是指利用电子器件对电能进行调节、变换和控制的技术。
常见的电力电子器件有二极管、晶闸管、场效应管、三相全控桥等,它们可以实现电能的变换、调节和控制。
实验步骤:1. 实验一,单相半波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
2. 实验二,单相全波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
3. 实验三,三相半波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
4. 实验四,三相全波可控整流电路。
a. 按照电路图连接实验箱和电源,调节电源输出电压和频率。
b. 接通电源,观察示波器波形,记录电流和电压的变化。
c. 改变触发脉冲宽度,观察输出波形的变化。
实验结果与分析:通过本次实验,我们成功搭建了单相和三相可控整流电路,并观察到了不同触发脉冲宽度下的输出波形变化。
实验结果表明,在不同触发脉冲宽度下,电压和电流的变化规律不同,进一步验证了电力电子技术的原理和应用。
结论:本次实验通过实际操作,使我们更加深入地理解了电力电子技术的原理和应用,提高了我们的实践能力和动手能力。
同时,也为今后的学习和科研工作打下了坚实的基础。
总结:电力电子技术在现代电力系统中具有重要的应用价值,通过本次实验,我们不仅掌握了电力电子技术的基本原理和实验操作,还提高了我们的实践能力和动手能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
二、实验所需挂件及附件三、实验线路图图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。
三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。
(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?答:晶闸管的额定工作电流可作为整流电路的最大输出电流。
六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应d2U d=0.675U2[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud、90°时的Ud 及Id波形图。
1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。
α =30o 时Ud的波形α =30o 时Uvt的波形α =60o 时Ud的波形α =60o 时Uvt的波形α =90o 时Ud的波形α =90o 时Uvt的波形α =120o 时Ud的波形α =120o 时Uvt的波形α =150o 时Ud的波形α =150o 时Uvt的波形α =90o 时Ud的波形实验总结:第一次去实验的时候,并没有完成第一个实验,只是熟悉了实验仪器,加上没有对实验内容进行预习,所以没有完成实验内容。
第二次去实验的时候才开始做第一个实验,在实验中遇到了许多问题,尤其是在使α=170o,必须弄清示波器每一格的分度值。
还有整流电路与三相电源连接时,一定要注意相序,必须一一对应。
实验二三相桥式半控整流电路实验一、实验目的(1) 了解三相桥式半控整流电路的工作原理及输出电压,电流波形。
(2) 了解晶闸管在带电阻性及电阻电感性负载,在不同控制角α下的工作情况。
二、实验所需挂件及附件三、实验线路图3.2 三相桥式半控整流电路实验原理图四、实验内容(1) 三相桥式半控整流供电给电阻负载。
(2) 三相桥式半控整流供电给电阻电感性负载。
五、思考题(1) 为什么说可控整流电路供电给电动机负载与供电给电阻性负载在工作上有很大差别?答:电阻负载的电流和电压是同相位的,电压过零时电流也同时过零,所以导通角=180°-触发角(单相的情况),在整个波形的任意角度都可以触发并可控;而电机是一个感性负载,电流的相位滞后于电压,电压过零时电流不一定过零,使可控触发的角度大大减小。
(2)实验电路在电阻性负载工作时能否突加一个阶跃控制电压?在电动机负载工作时呢?答:实验电路在电阻性负载工作时能突加一个阶跃控制电压,在电动机负载工作时不能。
电阻负载电压和电流同相位,任意角度都可以触发,突加一个阶跃控制电压相当于加了一个触发信号能达到触发的目的。
而电动机负载是感性负载,可控触发角范围很小,如果阶跃控制电压加入的角度不在范围内就无法实现控制的目的。
六、实验结果(1) 三相半控桥式整流电路供电给电阻负载时的特性测试。
按图3.2接线,将给定输出调到零,负载电阻放在最大阻值位置,按下“启动”按钮,缓慢调节给定,观察α在30°、60°、90°、120°等不同移相范围内,整流电路的输出电压Ud ,输出电流Id以及晶闸管端电压UVT的波形,并加以记录。
(2) 三相半控桥式整流电路带电阻电感性负载。
将电抗700mH 的Ld接入重复(1)步骤。
七、实验报告(1) 绘出实验的整流电路供电给电阻负载时的Ud=f(t),Id=f(t)以及晶闸管端电压UVT=f(t)的波形。
(2) 绘出整流电路在α=60o与α=90o时带电阻电感性负载时的波形。
α=60°时电阻负载波形α=60°时电阻电感负载波形α=60°时Uvt波形α=90°时电阻负载波形α=90°时电阻电感负载波形α=90°时Uvt波形实验总结:这次实验和第一次实验内容相似,开始出发电路的调试是一样的,不同的是这次实验的触发角等于150o.实验三三相半波有源逆变电路实验一、实验目的研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。
二、实验所需挂件及附件三、实验线路图3.3 三相半波有源逆变电路实验原理图四、实验内容三相半波整流电路在整流状态工作下带电阻电感性负载的研究。
五、思考题(1) 在不同工作状态时可控整流电路的工作波形。
(2) 可控整流电路在β=60°和β=90°时输出电压有何差异?答:β=90°时,Ud波形每60°中有30°为0,直到α继续增大至120°,整流输出电压Ud波形将全为0,其平均值为0,移相范围为0°~ 120°六、实验结果(1) DJK02和DJK02-1上的“触发电路”调试(2) 三相半波整流及有源逆变电路①按图3.3 接线,将负载电阻放在最大阻值处,使输出给定调到零。
②按下“启动”按钮,此时三相半波处于逆变状态,α=150°,用示波器观察电路输出电压Ud波形,缓慢调节给定电位器,升高输出给定电压。
观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°,继续升高给定电压,输出电压由零向正的电压升高,进入整流区。
在这过程中记录α=30°、60°、90°、120°、(1) 画出实验所得的各特性曲线与波形图。
(2) 对可控整流电路在整流状态与逆变状态的工作特点作比较。
α=30°α=60°α=90°α=120°α=150°实验总结:我觉得这次实验是比较难的,虽然触发电路的调试和以前一样,但后边三相半波整流及有源逆变比较难,在实验接线过程中,注意三相心式变压器高压侧和中压侧的中线不能接在一起。
要认真观看实验指导书后边的注意事项,可以减少很多错误的发生。
实验四单相斩控式交流调压电路实验一、实验目的(1) 熟悉斩控式交流调压电路的工作原理。
(2) 了解斩控式交流调压控制集成芯片的使用方法与输出波形。
二、实验所需挂件及附件三、实验线路及原理斩控式交流调压主电路原理如图3.4 所示。
图3.4 斩控式交流调压主电路原理图一般采用全控型器件作为开关器件,其基本原理和直流斩波电路类似,只是直流斩波电路的输入是直流电压,而斩控式交流调压电路输入的是正弦交流电压。
在交流电源ui 的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在ui的负半周,用V2进行斩波控制,用V4给负载电流提供续流通道。
设斩波器件V1、V2的导通时间为ton,开关周期为T,则导通比为α=ton/T,和直流斩波电路一样,通过对α的调节可以调节输出。
电压U图3.5 给出了电阻负载时负载电压U0和电源电流i1(也就是负载电源)的波形。
可以看出电源电流的基波分量是与电源电压同相位的。
即位移因数为1。
电源电流不含低次谐波,只含和开关周期T有关的高次谐波,这些高次谐波用很小的滤波器即可滤除,这时电路的功率因数接近于1。
图3.5 电阻负载斩控式交流调压电路波形斩控式交流调压控制电路方框图如图3.6 所示,PWM 占空比产生电路使用美国Silicon General公司生产的专门PWM集成芯片SG3525,其内部电路结构及各引脚功能查阅相关资料。
的正半周,V1进行斩波控制,用V3给负载电流提供续流通道,V4关断;在交流电源ui在u的负半周,V2进行斩波控制,V3关断,用V4给负载电流提供续流通道。
控制信号与主i电路的电源必须保持同步。
图3.6 斩控式交流调压控制电路方框图四、实验内容(1) 控制电路波形观察。
(2) 交流调压性能测试。
五、思考题(1) 比较斩控式交流调压电路与相控交流调压电路的调压原理、特征及其功率因数?答:斩控式交流调压电路的基本原理和直流斩波电路有类似之处,只是输入的正玄交流电压。
用V1、V2进行斩波控制,V3、V4给负载电流提供续流通道。
可通过改变导通比调节输出电压,当滤除高次谐波时,电路的功率因数接近1。
相控式交流调压电路通过改变触发延迟角就可实现对输出电压的控制,随着触发延迟角的增大,Uo逐渐减小。
直到触发延迟角等于180°,Uo=0.此外,触发延迟角等于0时。
功率因数等于1,随着触发延迟角的增大,输入电流滞后于电压且发生畸变,功率因数也逐渐降低。
(2)采用何种方式可提高斩控式交流调压电路输出电压的稳定度?答:在输出端串联一个小的平波电抗器,可以起到稳定输出电压的作用。
(3)对斩控式交流调压电路的输出电压波形作谐波分析?答:电源电流中不含低次谐波,只含和开关周期T有关的高次谐波,这些高次谐波用很小的滤波器即可滤除,这时电路功率因数接近1.六、实验结果由于主电路的电源必须与控制信号保持同步,因此主电路的电源不需要外部接入。
但是为了能同时观察两路控制信号之间的相位关系,主电路的开关K 是串接在电源开关之后的。
在观察控制信号时将开关打在断状态。
(1) 控制电路波形观察①断开开关K,使主电路不得电,接通电源开关,用双踪示波器观察控制电路的波形,并记录参数。
②测量控制信号V1与V4、V2与V3之间的死区时间。
(2) 交流调压性能测试①接入电阻负载(220V/25W 的白炽灯),接通开关K,调节PWM 占空比调节电位器,改变导通比α,(即改变Ur 值)使负载电压由小增大,记录输出电压的波形,并测量输在方格纸上画出控制信号与不同负载下的输出电压波形并分析。
电阻负载:Ur=1.53 Ur=1.55Ur=1.57 Ur=1.58Ur=1.62 Ur=1.80Ur=1.93 Ur=2.00阻感负载:Ur=1.35 Ur=1.5Ur=1.63 Ur=1.75Ur=1.90 Ur=2.05Ur=2.20 Ur=2.35实验总结:这次实验是四个实验中最简单的一个,只需要根据直言指导书的步骤来,就可以完成这次实验,但应该注意示波器的调试,必须熟练掌握示波器的调试方法,这样才可以迅速的得到理想的波形。