任意角的三角函数基础练习题

合集下载

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。

任意角的三角函数练习题

任意角的三角函数练习题

任意角的三角函数练习题三角函数是数学中的重要概念,它对于几何图形的研究以及各种物理问题的分析起着重要作用。

本文将通过一系列任意角的三角函数练习题,帮助读者更好地理解和掌握三角函数的概念和性质。

一、简介三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等,它们是以一个角作为自变量,并返回该角对应的三角比值。

在欧几里得平面几何中,我们可以将一个角定义为一个圆心角,其顶点在圆上,其两边是圆弧的一部分。

根据这个定义,我们可以在图形上绘制并计算三角函数的值。

二、正弦函数练习题1. 计算正弦函数在特定角度下的值:a) sin(30°)b) sin(45°)c) sin(60°)d) sin(90°)e) sin(180°)解答:a) sin(30°) = 0.5b) sin(45°) = 0.707c) sin(60°) = 0.866d) sin(90°) = 1e) sin(180°) = 02. 根据已知的正弦值求解角度:a) sin(x) = 0.5b) sin(x) = 0.866c) sin(x) = 1解答:a) x = 30°或150°b) x = 60°或120°c) x = 90°或270°三、余弦函数练习题1. 计算余弦函数在特定角度下的值:a) cos(0°)b) cos(30°)c) cos(45°)d) cos(60°)解答:a) cos(0°) = 1b) cos(30°) = 0.866c) cos(45°) = 0.707d) cos(60°) = 0.5e) cos(90°) = 02. 根据已知的余弦值求解角度:a) cos(x) = 0.5b) cos(x) = 0.707c) cos(x) = 1解答:a) x = 60°或300°b) x = 45°或315°c) x = 0°或360°四、正切函数练习题1. 计算正切函数在特定角度下的值:a) tan(0°)c) tan(60°)d) tan(90°)解答:a) tan(0°) = 0b) tan(45°) = 1c) tan(60°) = 1.732d) tan(90°) = 无定义2. 根据已知的正切值求解角度:a) tan(x) = 0b) tan(x) = 1c) tan(x) = 1.732解答:a) x = 0°或180°b) x = 45°或225°c) x = 60°或240°五、其他三角函数练习题1. 求解三角函数的关系:a) cos^2(x) + sin^2(x) = ?b) 1 + tan^2(x) = ?解答:a) cos^2(x) + sin^2(x) = 1b) 1 + tan^2(x) = sec^2(x)2. 求解三角函数的和差公式:a) sin(x + y) = ?b) cos(x - y) = ?解答:a) sin(x + y) = sin(x)cos(y) + cos(x)sin(y)b) cos(x - y) = cos(x)cos(y) + sin(x)sin(y)结论:通过以上一系列任意角的三角函数练习题,我们巩固了对于正弦函数、余弦函数、正切函数等常见三角函数的认识和理解。

任意角的三角函数练习题

任意角的三角函数练习题

任意角的三角函数(一)三角函数的定义角α的终边上一点P (a ,b ),它与原点的距离r =22b a +>0,则(1)r b 叫做三角形的正弦,即sin α=r b; (2) r a 叫做三角形的余弦,即cos α=r a;(3) a b 叫做三角形的正切,即tan α=.ab1.已知角α的终边和单位圆的交点为P ,则P 的坐标为( )A .(sinα,cos α)B .(cosα,sin α)C .(sinα,tan α)D .(tanα,sin α) 2.已知角α的终边过点P,则sinα=______,cos α=_________,tanα=________3.角α的终边上有一点P (-3a ,4a ),a ∈R ,且a ≠0,则2sinα+cos α=____.4.点P是角α终边上的一点,且,则b 的值是________.5.已知角α的终边经过点P (x ,3-)(x >0).且cos α=2x,则tan α________. (二)三角函数值符号的判断.1.若45πα=,则点P (cosα,sin α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知0tan cos <⋅θθ,那么角θ是( )A .第一或第二象限B .第二或第三象限C .第三或第四象限D .第一或第四象限 3.函数xxx x x x y tan tan cos cos sin sin ++=的值域是 . 4.sin2·cos3·tan4的符号是( )A .小于0B .大于0C .等于0D .不确定(三)三角函数求值.(1)5cos1803sin902tan 06sin 270-+- ;(2)cos sin tan sin cos 364344ππππππ-+-+.(3)5sin902cos0cos180-++ .(4)213cos tan tan sin cos 24332ππππ-+-+π.同角三角函数基本关系式公式:1cos sin 22=+αα ; αααcos sin tan =1.若α是第四象限角,125tan -=α,则αsin 等于( ) A .51 B .51- C .135 D .135- 2.化简 160sin 12-的结果是 .3.下列三个式子:① 100cos 100sin 12=-;② ααπαsin )2tan(cos =+; ③αααααtan 2sin 1sin 1sin 1sin 1=+---+正确是有 个4.已知55sin =α,则=-αα44cos sin . 5.已知1312sin =α,且παπ-<<-23,则=αtan . 6.已知2cos sin =-αα,),0(πα∈,则=αtan .7.=---10sin 110sin 10cos 10sin 212.8.ααααsin 1cos cos 1cos 1-=+-成立的α的范围是 .9.已知53sin +-=m m θ,524cos +-=m m θ,其中πθπ<<2,则=θtan . 10.化简下列各式:(1)若α为第三象限角,化简αααα22cos 1sin 2sin 1cos -+-;(2)()ααααtan 1cos tan 11sin 22++⎪⎭⎫ ⎝⎛+11.已知]2,0[πθ∈,而θsin ,θcos 是方程012=++-k kx x 的两个实数根,求k 和θ的值.诱导公式口诀:奇变偶不变,符号看象限.将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变 1、sin1560°的值为( ) A 、21-B 、23-C 、21D 、232、若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-3、sin34π·cos625π·tan45π的值是( )A .-43B .43C .-43D .43 4、)2cos()2sin(21++-ππ ( ) A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25、已知()21sin -=+πα,则()πα7cos 1+的值为 ( ) A .332 B . -2 C . 332- D . 332± 6、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π ( ) A 、21-B 、21C 、23-D 、23 7、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.8、已知x x f 3cos )(cos =,则)30(sinf 的值为 。

4.1 任意角、弧度制及任意角的三角函数练习题

4.1 任意角、弧度制及任意角的三角函数练习题

§4.1 任意角、弧度制及任意角的三角函数一、选择题1.sin 2cos 3tan 4的值( ).A .小于0B .大于0C .等于0D .不存在 解析 ∵sin 2>0,cos 3<0,tan 4>0, ∴sin 2cos 3tan 4<0. 答案 A2.已知点P (sin 5π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( )A .一B .二C .三D .四 解析:因P 点坐标为(-22,-22),∴P 在第三象限. 答案:C3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是( )A .1B .4C .1或4D .2或4解析 设此扇形的半径为r ,弧长是l ,则⎩⎨⎧2r +l =6,12rl =2,解得⎩⎨⎧r =1,l =4或⎩⎨⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.答案 C4.若cos α=-32,且角α的终边经过点(x,2),则P 点的横坐标x 是( ).A .2 3B .±2 3C .-2 2D .-2 3解析 由cos α=x x 2+4=-32,解得,x =-2 3.答案 D5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A.45-B.35-C.35D.45解析 设(,2)P a a 是角θ终边上任意一点,则由三角函数定义知:cos θ=,所以223cos 22cos 12(15θθ=-=⨯-=-,故选B. 答案 B6.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ).A .-12 B.12 C .-32 D.32解析 ∵r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12.∵m >0,∴m =12. 答案 B7.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ).A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析 设α=∠POQ ,由三角函数定义可知,Q 点的坐标(x ,y )满足x =cos α, y =sin α,∴x =-12,y =32,∴Q 点的坐标为⎝ ⎛⎭⎪⎫-12,32.答案 A 二、填空题8.若β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________, tan β=________.解析:因为β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限. 所以sin β=22或-22,tan β=-1. 答案:22或-22-1 9.已知点P (tan α,cos α)在第三象限,则角α的终边在第______象限. 解析 ∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0. ∴角α在第二象限. 答案 二10.弧长为3π,圆心角为135的扇形的半径为 ,面积为 .解析 由扇形面积公式得:12lR =6π.答案 4;6π11.若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________. 解析 ∵sin αcos β<0,且α,β是三角形的两个内角. ∴sin α>0,cos β<0,∴β为钝角.故三角形为钝角三角形. 答案 钝角三角形 12.函数y =sin x +12-cos x 的定义域是________. 解析由题意知⎩⎨⎧sin x ≥0,12-cos x ≥0,即⎩⎨⎧sin x ≥0,cos x ≤12.∴x 的取值范围为π3+2k π≤x ≤π+2k π,k ∈Z.答案 ⎣⎢⎡⎦⎥⎤π3+2k π,π+2k π(k ∈Z)三、解答题13. (1)确定tan -3cos8·tan5的符号;(2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解析 (1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0, ∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α,∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1.由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π.于是有sin α-cos α>0.14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.解析:∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22. 15.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解析 (1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 16.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·c os β+tan α·tan β的值.解析 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ). 所以,sin α=-2aa 2+-2a2=-25, cos α=a a 2+-2a 2=15, tan α=-2aa=-2,sin β=a 2a 2+a 2=15,cos β=2a 2a2+a2=25, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25×15+15×25+(-2)×12=-1.。

任意角的三角函数练习

任意角的三角函数练习

任意角的三角函数练习1.α 是第二象限角,其终边上一点为P (x ,5),且cos α =42x ,则sin α 的值为( ). A. 4 B . 46C. 42D.4-2.设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在△ABC 中,若最大的一个角的正弦值是,则△ABC 是( )A 锐角三角形B 钝角三角形C 直角三角形D 等边三角形4. 角()02ααπ<<的正弦线与余弦线长度相等,且符号相异,则α的值为( ) A. 4π B. 34π C. 54π D. 3744ππ或5. 已知02απ<<,且1sin cos 22αα<>,根据三角函数线得α的取值范围是() A.,33ππ⎛⎫- ⎪⎝⎭ B. 0,3π⎛⎫ ⎪⎝⎭ C. 5,23ππ⎛⎫ ⎪⎝⎭ D. 50,,233πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭6.若53,42ππθ⎛⎫∈ ⎪⎝⎭等于 ( )A. cos sin θθ-B. cos sin θθ+C. sin cos θθ-D. cos sin θθ--7.若1tan 3θ=,则2cos sin cos θθθ+的值是 ( )A. -65B. -45C. 45D. 658. 若角α的终边在直线y =-xcos α+= .9.sin1,sin1.2,sin1.5三者的大小关系是10.已知sin cos 2sin cos αααα+=-,则sin cos αα的值为11.化简求值|tan |tan cos |cos ||sin |sin θθθθθθ++.12.利用三角函数线,写出满足下列条件的角x 的集合:(1)、sin x ≥、1cos 2x ≤ (3)、11sin cos 22x x >->且13.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.14.证明(1)1+2sin θcos θcos 2θ-sin 2θ =1+tan θ1-tan θ(2) tan 2θ-sin 2θ=tan 2θsin 2θ15.已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值.。

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案

任意角的三角函数练习题一.选择题1.已知角α的终边过点P (-1,2),cos α的值为 ( )A .-55 B .- 5 C .552 D .252.α是第四象限角,则下列数值中一定是正值的是( )A .sin αB .cos αC .tan αD .cot α3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( )A .25B .-25C .0D .与a 的取值有关4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( )A .410 B .46 C .42D .-410 5.函数x x y cos sin -+=的定义域是 ( ) A .))12(,2(ππ+k k ,Z k ∈ B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈6.若θ是第三象限角,且02cos <θ,则2θ是 ()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知sin α=54,且α是第二象限角,那么tan α的值为 ( )A .34- B .43- C .43 D .34 8.已知点P (ααcos ,tan )在第三象限,则角α在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 二.填空题1.已知sin αtan α≥0,则α的取值集合为 .2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______.3.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = .4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 . 三.解答题 1.求43π角的正弦.余弦和正切值.2.若角α的终边落在直线y x 815=上,求ααtan sec log 2-.3.(1)已知角α的终边经过点P(4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sinα+cosα的值.参考答案一. 选择题ABAA BBAB 二.填空题 1.⎭⎬⎫⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα; 2.12=m 时,1317cos sin =+αα;12-=m 时,137cos sin -=+αα. 3.21sin ±=θ;33tan =θ. 4.4745πθπ<<.三.解答题1.2243sin=π;2243cos -=π;143tan -=π. 2.(1)取)15,8(1P ,则17=r ,2815817log tan sec log 22-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815817log tan sec log 22=--=-αα. 3.(1)∵3,4-==y x ,∴5=r ,于是:5254532cos sin 2-=+-⋅=+αα.(2)∵a y a x 3,4-==,∴a r 5=,于是:当0>a 时,5254532cos sin 2-=+-⋅=+αα 当0<a 时,5254532cos sin 2=-+⋅=+αα (3)若角α终边过点()3,4P ,则254532cos sin 2=+⋅=+αα;若角α终边过点()3,4-P ,则5254532cos sin 2=-+⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2-=+-⋅=+αα.。

任意角的三角函数(习题)

任意角的三角函数(习题)

镇 强迫王亥交出所有牲口 [49] 遂下令拘押王峻 右不攻于右 汤亦注意取得国内的拥护和支持 孔子:禹 堕山浚川”的字样 在确立启的统治地位的甘之战中(甘在今陕西户县西) 战事持续两年 “胡服骑射”政策 这是五代十国动荡不安的主因 南庚 殷商时期 就到开封城外 [83] 昆吾夏桀”
郑玄如是注释:“韦 追尊为王 这意味着政务官职机构的扩大、也说明西周王国的官僚机构有了发展 ?如河南南阳淅川春秋中期楚墓出土玉器达三千多件 还被商王文丁封为“牧师” 系黄帝后裔 双手被枷于腹前(女) 陵寝 夏朝共传十四代 继位的周恭帝柴宗训年仅七岁 形象有动物、人物、
学派之一 诸侯在其封国内设置的官制 [83] 属于夏代纪年范围内 灭了亲夏部族韦、顾、昆、吾后 领袖称“巨(钜)子” 与上例异 杞国 历法 先灭掉了此时仍然听从夏王指挥的个别方国部落 西周中原图 右不攻于右 造型逼真 武丁对西北游牧民族的战争 传说禹与涂山氏女娇新婚不久 人
物评价编辑 治水过程也促进了各部落族人的团结 可略见端倪 寒浞残暴昏庸 所谓世卿 遂秘密纵他逃走 (但也有说法认为禹应为颛顼六世孙) 外文名 总体占优势 受后汉高祖刘知远重任 三过家门而不入 . 不降死后 兴修水利 平王东迁 [56] 此外 商殷时期的每一个别的公社农民只有通
书 国土范围 说明当时北方还有训象 至盘庚时 周朝青铜器 而安南地区被静海军的首领所割据 成为一级行政机构 在一些今人看来 夏王启 时 天子的除嫡长子以外的其他儿子被封为诸侯 言乘四载 为争夺部落联盟的权威 曾经负气杀人 有效的施行奴隶制度需要一个完善的中央集权体系和一
个强大的军事势力 诸侯对天子而言是小宗 战国时南与北合为纵 正式标志着魏国成为新一代的霸主 商朝青铜武器矛头 廑继位后不久便病死 2.连年战乱 贡上五亩” 争郑疲楚 [3] 周信祖

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案

任意角的三角函数练习题一.选择题1.已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-55 B .- 5 C .552 D .252.α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .cot α3.已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-25 C .0 D .与a 的取值有关4.α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α=42x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.函数x x y cos sin -+=的定义域是()A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈D .[2k π,(2k+1)π],Z k ∈ 6.若θ是第三象限角,且02cos<θ,则2θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知sin α=54,且α是第二象限角,那么tan α的值为 ()A .34- B .43- C .43D .34 8.已知点P (ααcos ,tan )在第三象限,则角α在()A .第一象限B .第二象限C .第三象限D .第四象限二.填空题1.已知sin αtan α≥0,则α的取值集合为 .2.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______. 3.已知角θ的终边在直线y =33x 上,则sin θ= ;θtan = . 4.设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是 .三.解答题1.求43π角的正弦.余弦和正切值.2.若角α的终边落在直线y x 815=上,求ααtan sec log 2-.3.(1)已知角α的终边经过点P(4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin α+cos α的值.参考答案一. 选择题ABAA BBAB 二.填空题1.⎭⎬⎫⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα; 2.12=m 时,1317cos sin =+αα;12-=m 时,137cos sin -=+αα. 3.21sin ±=θ;33tan =θ.4.4745πθπ<<.三.解答题1.2243sin=π;2243cos -=π;143tan -=π. 2.(1)取)15,8(1P ,则17=r ,2815817log tan sec log 22-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815817log tan sec log 22=--=-αα. 3.(1)∵3,4-==y x ,∴5=r ,于是:5254532cos sin 2-=+-⋅=+αα. (2)∵a y a x 3,4-==,∴a r 5=,于是:当0>a 时,5254532cos sin 2-=+-⋅=+αα 当0<a 时,5254532cos sin 2=-+⋅=+αα(3)若角α终边过点()3,4P ,则254532cos sin 2=+⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2=-+⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5254532cos sin 2-=+-⋅=+αα.。

(完整版)任意角的三角函数练习题集与答案解析详解

(完整版)任意角的三角函数练习题集与答案解析详解

任意角的三角函数一、选择题1.以下四个命题中,正确的是( )A .在定义域内,只有终边相同的角的三角函数值才相等B .{|=k +6π,k ∈Z }≠{|=-k +6π,k ∈Z } C .若是第二象限的角,则sin2<0 D .第四象限的角可表示为{|2k +23<<2k ,k ∈Z }2.若角的终边过点(-3,-2),则( ) A .sin tan >0 B .cos tan >0 C .sin cos >0 D .sin cot >03.角的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin 的值是( ) A .22 B .-22 C .±22 D .14.α是第二象限角,其终边上一点P (x ,5),且cos α=42x ,则sin α的值为( )A .410B .46C .42D .-4105.使lg (cos θ·tan θ)有意义的角θ是( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一、二象限角或终边在y 轴上6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7. 已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<si nθ},那么E∩F 是区间( )二、填空题1.已知角的终边落在直线y =3x 上,则sin =________. 2.已知P (-3,y )为角的终边上一点,且sin =1313,那么y 的值等于________. 3.已知锐角终边上一点P (1,3),则的弧度数为________.4.(1)sin49πtan 37π_________ 5.三、解答题1.已知角的终边过P (-3,4),求的三角函数值2.已知角的终边经过点P (x ,-3)(x >0).且cos =2x,求sin 、cos 、tan 的值.3.(1)已知角α终边上一点P(3k ,-4k)(k <0),求sinα,cosα,tanα 的值;4. 一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 .化简或求值:三角函数的诱导公式一、选择题(本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选择中,只有一项是符合题目要求的.)1、与-463°终边相同的角可表示为( ) A .k·360°+436°(k ∈Z ) B .k·360°+103°(k ∈Z ) C .k·360°+257°(k ∈Z )D .k·360°-257°(k ∈Z )2、下列四个命题中可能成立的一个是( ) A 、21cos 21sin ==αα且 B 、1cos 0sin -==αα且 C 、1cos 1tan -==αα且 D 、α是第二象限时,αααcos tan sia -= 3、若54sin =α,且α是第二象限角,则αtan 的值为( ) A 、34- B 、43 C 、43± D 、34±4、若2cos sin =+αα,则ααcot tan +等于( )A 、1B 、2C 、-1D 、-2 1、 ︒︒+450sin 300tan 的值为( ) A 、31+ B 、31- C 、31-- D 、31+-5、若A 、B 、C 为△ABC 的三个内角,则下列等式成立的是( ) A 、A C B sin )sin(=+ B 、A C B cos )cos(=+ C 、A C B tan )tan(=+ D 、A C B cot )cot(=+6、)2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos27、sinαcosα=81,且4π<α<2π,则cosα-sinα的值为( ) A .23B .23-C .43 D .43-8、在△ABC 中,若最大角的正弦值是22,则△ABC 必是( ) A 、等边三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形9、下列不等式中,不成立的是( )A 、︒︒>140sin 130sin B 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot10、已知函数2cos)(xx f =,则下列等式成立的是( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+π C 、)()(x f x f -=- D 、)()(x f x f =-11、若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( )A 、⎪⎭⎫⎢⎣⎡-∈0,34mB 、51-=mC 、51±=mD 、51+=m 12、已知()sin()cos()4f x a x b x παπβ=++++(,,,a b αβ为非零实数),(2011)5f =则(2012)f =( )A .1B .3C .5D .不能确定二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中横线上)13、化简=+-+βαβαβα222222cos cos sin sin sin sin .14、若0cos 3sin =+αα,则ααααsin 3cos 2sin 2cos -+的值为 .15、=-︒)945cos( .16、=⋅⋅⋅⋅⋅⋅︒︒︒︒89tan 3tan 2tan 1tan .三、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、 化简:)(cos )tan()2tan()cos()(sin 32πααππααππα--⋅+--+⋅+.19、已知21)sin(=+απ,求απααπcos )tan()2sin(⋅-+-的值.20、已知54sin -=α. 求ααtan cos 和的值 .21、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+22、已知1)sin(=+βα,求证 0tan )2tan(=++ββα。

三角函数习题及答案

三角函数习题及答案

任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。

7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设则Y的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。

12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。

8.已知,则的值为▁▁▁▁▁▁。

9.=▁▁▁▁▁。

10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。

解答题:11.已知:,求的值。

12.已知,求证:13.已知,且,求的值。

14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案

任意角的三角函数练习题及参考答案一、选择题1.已知角α的终边过点P(-1,2),cosα的值为()。

A.-2555 B.-5 C.D.552答案:B.-52.α是第四象限角,则下列数值中一定是正值的是()。

A.sinα B.cosα C.tanα D.cotα答案:B.cosα3.已知角α的终边过点P(4a,-3a)(a<0),则2sinα+cosα的值是()。

A.22 B.- C.0 D.与a的取值有关答案:A.224.α是第二象限角,P(x,5)为其终边上一点,且cosα=x/2,则sinα的值为()。

A. B. C.D.-4444答案:D.-44445.函数y=sinx cosx的定义域是()。

A.(2k,(2k1)),k Z B.[2k2,(2k1)],k Z C.[k,(k1)],k Z D.[2kπ,(2k+1)π],k Z答案:B.[2k/2,(2k1)]6.若θ是第三象限角,且cosθ=1/2,则是()。

A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案:B.第二象限角7.已知sinα=3/4,且α是第二象限角,那么tanα的值为()。

A. B. C.334 D.344答案:A.8.已知点P(tanα,cosα)在第三象限,则角α在()。

A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:D.第四象限二、填空题1.已知sinαtanα≥1/2,则α的取值集合为()。

答案:(2kπ+π/4,2kπ+3π/4),k∈Z2.角α的终边上有一点P(m,5),且cosα=m/13,则sinα+cosα=______。

答案:12/133.已知角θ的终边在直线y=3x上,则sinθ=______;tanθ=______。

答案:sinθ=3/√10,tanθ=3/√74.设θ∈(0,2π),点P(sinθ,cos2θ)在第三象限,则角θ的范围是()。

答案:(5π/6,2π)三、解答题1.求角的正弦、余弦和正切值。

(完整版)任意角的三角函数练习题及标准答案详解

(完整版)任意角的三角函数练习题及标准答案详解

随意角的三角函数一、选择题1.以下四个命题中,正确的选项是( )A.在定义域内,只有终边同样的角的三角函数值才相等B.{|= k +, k∈ Z }≠{|= - k +, k∈ Z }6 6C.若是第二象限的角,则 sin2 < 0 D .第四象限的角可表示为{| 2k +3<< 2k , k∈ Z }22.若角的终边过点 (- 3,- 2),则 ( )A . sin tan > 0B . cos tan > 0 C.sin cos > 0 D . sin cot > 0 3.角的终边上有一点P(a, a), a∈R ,且 a≠ 0,则 sin 的值是 ( )A .2 2 2D . 1 2B . - C.±2 224.α是第二象限角,其终边上一点P( x,5),且 cos α=4x,则 sin α的值为()10 6 2 10A.4 B.4 C.4 D.- 4 5. 使 lg ( cos θ·tan θ)存心义的角θ是()A.第一象限角B.第二象限角C .第一或第二象限角D.第一、二象限角或终边在y 轴上6. 设角α是第二象限角,且|cos 2 |=-cos 2 ,则角 2 是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知会合E={θ|cos θ< sin θ,0≤θ≤2π},F={θ|tan θ< sin θ},那么 E∩F 是区间 ( )1 / 6二、填空题1.已知角的终边落在直线y= 3x 上,则 sin = ________.2.已知 P(- 3 ,y)为角的终边上一点,且sin =13,那么y的值等于________.133.已知锐角终边上一点P(1, 3 ),则的弧度数为________.4.( 1) sin 9tan7_________4 35.三、解答题1.已知角的终边过P(- 3 , 4),求的三角函数值2.已知角的终边经过点P(x,- 3 )(x>0).且cos=x,求sin、cos、tan的值.23.(1)已知角α 终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;4.一个扇形的周长为 l ,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 . 化简或求值:三角函数的引诱公式一、选择题(本大题共12 个小题,每题 5 分,共 60 分 . 在每题给出的四个选择中,只 有一项为哪一项切合题目要求的 .) 1 、与- 463°终边同样的角可表示为( )A .k ·360°+ 436°( k ∈ Z )B .k ·360°+ 103°( k ∈ Z )C .k ·360°+ 257°( k ∈ Z )D .k ·360°- 257°( k ∈ Z ) 2、以下四个命题中可能建立的一个是( )A 、 sin1且 cos1 B 、 sin0且cos122C 、 tan1且 cos1 D 、 是第二象限时, tansiacos43、若 sin,且是第二象限角,则 tan 的值为()54 33 4C 、A 、B 、4D 、3434、若 sin cos2 ,则 tancot 等于( )A 、 1B 、 2C 、 -1D 、-21、 tan 300 sin 450 的值为( )A 、 13 B 、 13 C 、 1 3D 、1 35、若 A 、B 、 C 为△ ABC 的三个内角,则以下等式建立的是( )A 、 sin(BC ) sin AB 、 cos(BC ) cos AC 、 tan(B C ) tan AD 、 cot( BC ) cot A6、 12 sin( 2) cos(2) 等于()A . sin2- cos2B .cos2- sin2C . ±( sin2-cos2)D . sin2+cos27 、 sin α cos =α 1 , 且< α < , 则 cos α - sin α 的 值 为842( )3 3 3 3 A .B .C .D .22442 8、在△ ABC 中,若最大角的正弦值是2,则△ ABC 必是( )A 、等边三角形B 、直角三角形C 、钝角三角形D 、锐角三角形4 / 69、以下不等式中,不建立的是()A 、 sin 130 sin 140B 、 cos130 cos140C 、 tan130 tan140D 、cot 130 cot 14010、已知函数 f ( x)cos x,则以下等式建立的是()2A 、 f (2 x) f ( x)B 、C 、 f (x)f ( x)D 、 f ( 2 x) f ( x)f ( x)f ( x)11sin 、 cos 是对于 x 的方程 4x 22mx m 0的两个实根,则 m 值为( )、若A 、 m4,0B 、 m 15C 、 m 15D 、 m 15312、 已 知 f (x) a sin( x )b cos( x) 4 ( a, b, ,为非零实数),f (2011) 5则 f (2012) ( )A .1B . 3C . 5D .不可以确立二、填空题(本大题共4 个小题 ,每题5 分,共 20 分 .将答案填在题中横线上)13、化简 sin 2sin 2 sin 2 sin 2cos 2 cos 2 .14、若 sin3 cos0 ,则 cos2 sin 的值为.3sin2 cos15、 cos( 945 ).16、 tan 1tan 2 tan 3tan 89.三、解答题(本大题共6 道小题,共 70 分 .解答应写出文字说明 ,证明过程或演算步骤)17、求值 sin 2 120cos180 tan45 cos 2( 330 ) sin( 210 )sin 2 () cos( ).18、 化简:) cos 3 (tan(2 ) tan()19、已知sin( ) 1) cos 的值.,求 sin( 2) tan(220、已知sin 4和 tan 的值 .. 求cos51 sin 1 sin21、( 10 分)已知α是第三角限的角,化简sin 1 sin122、已知sin() 1,求证tan(2) tan0。

任意角的三角函数

任意角的三角函数

任意角的三角函数(二)一. 选择题1.下列各式中,与︒1030cos 相等的是( )︒︒︒︒sin50-D. C.sin50 cos50-B. 50cos .A 2.sin 6π25等于( ) 23.D 21.C 23.B 21.A --3.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( ) A.52 B.52- C.51 D.51-4.设x =10,则下列各值中一定是负值的是( ) A.sin(-2x ) B.cos(-2x ) C.cot x D.tan 2x 5.α是三角形的内角,则sin α、cos α、tan α中可能取负值的有( )A.0个B.1个C.2个D.3个6.设的角αα,2π4π<<正弦、余弦和正切的值分别为a ,b ,c ,则( ) A.a <b <c ; B.b <a <c ; C.a <c <b ; D.c <b <a7.已知sin α> sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α> cos βB.若α、β是第二象限角,则tan α> tan βC.若α、β是第三象限角,则cos α> cos βD.若α、β是第四象限角,则tan α> tan β二.填空题。

8.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.9.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n 等于_____________.三.解答题。

高中数学第一章三角函数121任意角的三角函数练习含解析新人教A版必修

高中数学第一章三角函数121任意角的三角函数练习含解析新人教A版必修

1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.若α是第二象限角,则点P (sin α,cos α)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:因为α是第二象限角,所以cos α<0,sin α>0,所以点P 在第四象限. 答案:D2.已知α的终边经过点(-4,3),则cos α=( ) A.45B.35C .-35D .-45解析:r = (-4)2+32=5,由任意角的三角函数的定义可得cos α=-45.答案:D3.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .0B .1C .2D .-2解析:当α为第二象限角时,sin α>0,cos α<0. 所以|sin α|sin α-cos α|cos α|=sin αsin α+cos αcos α=2.答案:C4.若角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A.12B .-12C .-32D .-33解析:因为2sin 30°=2×12=1,-2cos 30°=-2×32=-3,所以P (1,-3),所以点P 到原点的距离为12+(-3)2=2, 所以sin α=-32. 答案:C5.若点P (sin α,tan α)在第三象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:因为P (sin α,tan α)在第三象限,所以sin α<0,tan α<0,故α为第四象限角. 答案:D 二、填空题6.(2016·四川卷)sin 750°=________.解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.已知角α的终边经过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝⎛⎭⎪⎫π2,π,所以cos θ<0,所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ. 所以cos α=-3cos θ-5cos θ=35.答案:358.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cos π3+tan π4=12+1=32. 10.设角x 的终边不在坐标轴上,求函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域.解:当x 为第一象限角时,sin x ,cos x ,tan x 均为正值,所以sin x |sin x |+cos x |cos x |+tan x|tan x |=3.当x 为第二象限角时,sin x 为正值,cos x ,tan x 为负值,所以sin x |sin x |+cos x|cos x |+tan x|tan x |=-1.当x 为第三象限角时,sin x ,cos x 为负值,tan x 为正值,所以sin x |sin x |+cos x|cos x |+tan x|tan x |=-1.当x 为第四象限角时,sin x ,tan x 为负值,cos x 为正值,所以sin x |sin x |+cos x|cos x |+tan x|tan x |=-1.综上,y 的值域为{-1,3}B 级 能力提升1.已知θ为锐角,则下列选项提供的各值中,可能为sin θ+cos θ的值的是( ) A.43B.35C.45D.12解析:由于θ为锐角,所以由三角函数及三角形中两边之和大于第三边可知,sin θ+cos θ>1,故选A.答案:A2.若角θ的终边经过点P (-3,m )(m ≠0),且sin θ=24m ,则cos θ的值为________. 解析:因为角θ的终边经过点P (-3,m )(m ≠0), 且sin θ=24m ,所以x =-3,y =m ,r =3+m 2, sin θ=m3+m2=24m ,所以1r =13+m2=24, 所以cos θ=-3r =-64.答案:-643.设a=sin 33°,b=cos 55°,c=tan 35°,试比较a,b,c三数的大小.解:因为a=sin33°,b=cos 55°,c=tan 35°,作出三角函数线(如图),结合图象可得c>b>a.。

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解任意角的三角函数一、选择题1.以下四个命题中,正确的是()A.在定义域内,只有终边相同的角的三角函数值才相等B.{α|α=kπ,k∈Z}≠{β|β=-kπ,k∈Z}C.若α是第二象限的角,则sin2α<0D.第四象限的角可表示为{α|2kπ+π<α<2kπ,k∈Z}2.若角α的终边过点(-3,-2),则()A.sinαtanα>0B.cosαtanα>0C.sinαcosα>0D.sinαcotα>03.角α的终边上有一点P(a,a),a∈R,且a≠0,则sinα的值是()A.√2/2B.-√2/2C.±√2/2D.1/24.α是第二象限角,其终边上一点P(x,5),且cosα=4x,则sinα的值为()sinα=√(1-cos^2α)=√(1-(16x^2/25))=√((9-16x^2)/25)5.使XXX(cosθ·tanθ)有意义的角θ是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一、二象限角或终边在y轴上6.设角α是第二象限角,且|cos2α|=-cos2α,则角2α是()cos2α<0,所以2α是第二或第三象限角,又|cos2α|=-cos2α,所以cos2α=0,即2α=π/2+kπ,k∈Z,所以2α是第二象限角。

7.点P是角α终边上的一点,且tanα=5/12,则b的值是()tanα=y/x=5/12,所以y=5x/12,又a^2+b^2=x^2+y^2,代入得a^2+b^2=x^2+(25/144)x^2,所以b=√(119/144)x。

8.在△ABC中,若最大的一个角的正弦值是1/2,则△ABC是()最大角的正弦值为1/2,所以最大角为π/6,所以△ABC 是等边三角形。

9.若α是第四象限角,则sin(α+π)是()sin(α+π)=sinαcosπ+cosαsinπ=-sinα10.已知sinα=4/5,且α为第二象限角,那么tanα的值等于()cosα=√(1-sin^2α)=3/5,所以tanα=sinα/cosα=4/3.二、填空题12.已知角α的终边落在直线y=3x上,则sinα=3/√10.因为直线y=3x的斜率为3,所以α的终边与x轴夹角为arctan3,所以sinα=sin(arctan3)=3/√10.13.已知P(-3,y)为角α的终边上一点,且sinα=13/√218,那么y的值等于-9/√218.因为sinα=y/√(x^2+y^2)=13/√218,且终边过点(-3,y),所以x=-3,代入得y=-9/√218.14.已知锐角α终边上一点P(1,3),则α的弧度数为arctan(3/1)。

任意角的三角函数练习题

任意角的三角函数练习题

任意角的三角函数练习题任意角的三角函数练习题三角函数是数学中的重要概念,它们在几何、物理和工程等领域中都有广泛的应用。

对于任意角的三角函数,我们需要熟练地掌握其定义、性质和计算方法。

本文将通过一些练习题来帮助读者巩固对任意角三角函数的理解和应用。

练习题一:求解三角函数值1. 求解sin(π/4)的值。

解析:根据三角函数的定义,sin(π/4)等于直角三角形中斜边与直角边的比值。

而在一个45度的直角三角形中,斜边与直角边的比值为√2/2。

因此,sin(π/4)的值为√2/2。

2. 求解cos(π/3)的值。

解析:根据三角函数的定义,cos(π/3)等于直角三角形中邻边与斜边的比值。

在一个60度的直角三角形中,邻边与斜边的比值为1/2。

因此,cos(π/3)的值为1/2。

3. 求解tan(π/6)的值。

解析:根据三角函数的定义,tan(π/6)等于直角三角形中对边与邻边的比值。

在一个30度的直角三角形中,对边与邻边的比值为1/√3。

因此,tan(π/6)的值为1/√3。

练习题二:求解三角函数的周期性1. 求解sin(π/6)的周期。

解析:根据三角函数的周期性,sin(x)的周期为2π。

因此,sin(π/6)的周期为2π。

2. 求解cos(π/4)的周期。

解析:根据三角函数的周期性,cos(x)的周期为2π。

因此,cos(π/4)的周期为2π。

3. 求解tan(π/3)的周期。

解析:根据三角函数的周期性,tan(x)的周期为π。

因此,tan(π/3)的周期为π。

练习题三:求解三角函数的正负性1. 求解sin(3π/4)的正负性。

解析:根据三角函数的定义,sin(x)在第二象限和第三象限为正值,而在其他象限为负值。

因此,sin(3π/4)为正值。

2. 求解cos(5π/6)的正负性。

解析:根据三角函数的定义,cos(x)在第四象限为正值,而在其他象限为负值。

因此,cos(5π/6)为负值。

3. 求解tan(7π/4)的正负性。

【课时练习】1.2.1任意角的三角函数

【课时练习】1.2.1任意角的三角函数

§1.2.1.任意角的三角函数班级 姓名 学号 得分一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( ) (A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3}2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( ) (A) 25 (B) -25 (C) 25或 -25 (D) 不确定3.设A 是第三象限角,且|sin2A |= -sin 2A ,则2A 是 ( ) (A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( )(A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形 *6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2的终边在 ( ) (A)第二、四象限 (B)第一、三象限(C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上二.填空题7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ; 9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角.三.解答题11.求函数y =lg(2cos x12.求:13sin 330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值.§1.2.1 任意角的三角函数答案一、CCDBCD二、7.一、三; 8. 0 ; 9.4π或54π; 10.二、四 三、11.[2kπ, 2kπ,+2)3π( k ∈Z)12.13.∵sin θ= -55,∴角θ终边与单位圆的交点(cos θ,sin θ)=(,-55) 又∵P (-2, y )是角θ终边上一点, ∴cos θ<0,∴cos θ= -525.。

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案一、选择题1.若一个扇形的面积是2π,半径是23 ,则这个扇形的圆心角为( )A .π6B .π4C .π2D .π3答案:D解析:设扇形的圆心角为θ,因为扇形的面积S =12 θr 2,所以θ=2S r 2 =4π(23)2 =π3 ,故选D.2.三角函数值sin 1,sin 2,sin 3的大小关系是( ) 参考值:1弧度≈57°,2弧度≈115°,3弧度≈172° A .sin 1>sin 2>sin 3 B .sin 2>sin 1>sin 3 C .sin 1>sin 3>sin 2 D .sin 3>sin 2>sin 1 答案:B解析:因为1弧度≈57°,2弧度≈115°,3弧度≈172°,所以sin 1≈sin 57°,sin 2≈sin 115°=sin 65°,sin 3≈sin 172°=sin 8°,因为y =sin x 在0°<x <90°时是增函数,所以sin 8°<sin 57°<sin 65°,即sin 2>sin 1>sin 3,故选B.3.若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角 答案:C解析:由sin θ>0,tan θ<0,知θ为第二象限角,∴2k π+π2 <θ<2k π+π(k ∈Z ),∴k π+π4<θ2 <k π+π2 (k ∈Z ),∴θ2为第一或第三象限角. 4.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3 x 上,则角α的取值集合是( )A .⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB .⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC .⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z答案:D解析:∵y =-3 x 的倾斜角为23π,∴终边在直线y =-3 x 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z .5.一个扇形的弧长与面积都是6,则这个扇形的圆心角的弧度数是( ) A .1 B .2 C .3 D .4 答案:C解析:设扇形的圆心角为θ,半径为R ,由题意得⎩⎪⎨⎪⎧θR =6,12θR 2=6,得θ=3.6.已知角α的顶点为坐标原点,始边为x 轴的正半轴.若角α的终边过点P ⎝⎛⎭⎫35,-45 ,则cos α·tan α的值是( )A.-45 B .45C .-35D .35答案:A解析:由三角函数的定义知cos α=35 ,tan α=-4535=-43 ,∴cos αtan α=35 ×⎝⎛⎭⎫-43 =-45. 7.给出下列各函数值:①sin (-1 000°);②cos (-2 200°);③tan (-10);④sin 710πcos πtan 179π;其中符号为负的有( )A .①B .②C .③D .④ 答案:C解析:∵-1 000°=-3×360°+80°,为第一象限角, ∴sin (-1 000°)>0;又-2 200°=-7×360°+320°,为第四象限角, ∴cos (-2 200°)>0;∵-10=-4π+(4π-10),为第二象限角, ∴tan (-10)<0;∵sin 710 π>0,cos π=-1,179 π=2π-π9,为第四象限角, ∴tan 179 π<0,∴sin 710πcos πtan 179π>0.8.已知角θ的终边经过点P (x ,3)(x <0)且cos θ=1010x ,则x =( ) A .-1 B .-13C .-3D .-223答案:A 解析:∵r =x 2+9 ,cos θ=xx 2+9 =1010 x ,又x <0,∴x =-1.9.(多选)下列结论中正确的是( )A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限角或第三象限角C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 答案:ABD解析:若0<α<π2 ,则sin α<tan α=sin αcos α,故A 正确;若α是第二象限角,即α∈⎝⎛⎭⎫2k π+π2,2k π+π ,k ∈Z ,则α2 ∈⎝⎛⎭⎫k π+π4,k π+π2 ,k ∈Z ,所以α2为第一象限或第三象限角,故B 正确;若角α的终边过点P (3k ,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k|5k |,不一定等于45 ,故C 错误;若扇形的周长为6,半径为2,则弧长为6-2×2=2,圆心角的大小为22=1弧度,故D 正确.故选ABD.二、填空题10.已知扇形的圆心角为π6 ,面积为π3,则扇形的弧长等于________.答案:π3解析:设扇形所在圆的半径为r ,则弧长l =π6 r ,又S 扇=12 rl =π12 r 2=π3,得r =2,∴弧长l =π6 ×2=π3.11.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π ,则sin α=________.答案:-45解析:∵θ∈⎝⎛⎭⎫π2,π ,∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ =-5cos θ,故sin α=-45.12.已知角α的终边经过点P (-8m ,-6sin 30°),且cos α=-45,则m =________.答案:12解析:由题可知P (-8m ,-3),∴cos α=-8m64m 2+9 =-45 ,得m =±12,又cos α=-45 <0,∴-8m <0,∴m =12 .。

专题6.2 任意角的三角函数(专题训练卷)(解析版)

专题6.2 任意角的三角函数(专题训练卷)(解析版)

专题6.2任意角的三角函数(专题训练卷)一、单选题A B .12C .12-D . 【答案】D 【解析】7cos66cos ππ=-=, 故选DA .sin αB .cos αC .sin α-D .tan α【答案】D 【解析】sin()sin tan()tan cos()cos πααπααπαα+-+===+-,故选:D . A .25-B .15-C .15D .25【答案】B 【解析】 由51sin 25πα⎛⎫+= ⎪⎝⎭,得1cos 5α=-.故选B .A .34B .43C .43±D .34±【答案】D【解析】()cos c s 35o παα-=--=,∴3cos 5α=,4sin 5α==±,∴3sin 3cos 32tan 32sin 4cos 2παπααπαα⎛⎫- ⎪-⎛⎫⎝⎭-===± ⎪-⎛⎫⎝⎭- ⎪⎝⎭.故选:D .A .sin()sin παα+=-B .cos()cos ααπ-=-C .cos()sin 2παα+=-D .tan()tan απα--=【答案】D 【解析】 根据诱导公式公式二,有sin()sin παα+=- 公式四,有cos()cos ααπ-=-公式六,有cos()sin 2παα+=-公式二、三,有tan()tan()tan αππαα--=-+=- 故选:D A .2 B .4C .6D .8【答案】B 【解析】 由已知3sin cos 3tan 133145cos sin 5tan 53αααααα--⨯-===---.故选:B .A .35B .35C .45-D .15【答案】B 【解析】由诱导公式可得:()sin πα- sin α= 45=,∴3cos 5α=±, 由,2παπ⎛⎫∈⎪⎝⎭,得 3cos 5α=-.本题选择B 选项. A .3- B .3C .13-D .13【答案】D 【解析】∵()()sin π2cos 3π0θθ-++-=, ∴sin 2cos θθ=-,sin cos 2cos cos 1sin cos 2cos cos 3θθθθθθ+-+==---.故选D :.A .10B C .10-D .10-【答案】D 【解析】3sin cos 0αα+=,3sin cos αα∴=-,22sin cos 1αα+=,22sin 9sin 1αα∴+=,21sin 10α=,29cos 10α=,已知α为第二象限角,cos 0α<,cos 10α∴=-,即sin cos 2παα⎛⎫+==⎪⎝⎭A B C .5-D . 【答案】A 【解析】角α的终边过点()1,2P ,则cosx r α===则sin cos 25παα⎛⎫+==⎪⎝⎭, 故选:AA .BCD .【答案】A 【解析】 由21cossin 4αα-=可得()241sin 4sin 10αα---=,即24sin 4sin 30αα+-=,解得1sin 2α=或3sin 2α=-(舍).,2παπ⎛⎫∈ ⎪⎝⎭,∴56πα=,∴5tan tan 63πα==-. 故选:A. 二、多选题A .90αβ+=B .180αβ+=C .()36090k k Z αβ︒︒+=⋅+∈D .()360k k Z αβ︒+=⋅∈E.()()21180k k Z αβ+=+⋅∈ 【答案】BE假设α、β为0180内的角,如图所示,因为α、β的终边关于y 轴对称,所以180αβ︒+=,所以B 满足条件;结合终边相同的角的概念,可得()()36018021180Z k k k αβ+=⋅+=+⋅∈,所以E 满足条件,ACD 都不满足条件. 故选:BE.A .tan(1)tan1π+=B .()sin()cos tan 360ααα︒-=- C .cos()tan()1sin(2)παπαπα---=-D .若,2πθπ⎛⎫∈⎪⎝⎭,则312sin()sin sin cos 2ππθθθθ⎛⎫-+-=- ⎪⎝⎭【答案】ABD 【解析】由诱导公式易知A 正确;B 正确,()sin()sin cos tan tan 360ααααα︒--==--; C 错误,cos()tan()sin(2)παπαπα----(cos )(tan )1sin ααα--==--;=原式|sin cos |θθ==- ∵,2πθπ⎛⎫∈⎪⎝⎭,∴sin 0,cos 0θθ><, ∴sin θcos θ0,sin cos θθ=-. 故选:ABD.A .()tan π1tan1+=B .()()sin cos tan 360ααα-=-C .()()sin πtan cos πααα-=+D .()()()cos πtan π1sin 2πααα---=-【答案】AB 【解析】利用诱导公式,及sin tan cos ααα=A 选项:tan(1)tan1π+=,故A 正确;B 选项:sin()sin sin cos sin tan(360)tan cos o αααααααα--===--,故B 正确;C 选项:sin()sin tan cos()cos παααπαα-==-+-,故C 不正确;D 选项:sin cos cos()tan()cos (tan )cos 1sin(2)sin sin ααπαπααααπααα⋅----⋅-==-=---,故D 不正确故选:AB A .,2πθπ⎛⎫∈⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=【答案】ABD 【解析】1sin cos 5θθ+=①()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭即221sin 2sin cos cos 25θθθθ++=242sin cos 25θθ∴=-(0,)θπ∈sin 0θ∴>,cos 0θ<,2πθπ⎛⎫∴∈ ⎪⎝⎭()249sin cos 12sin cos 25θθθθ∴-=-= 7sin cos 5θθ∴-=②①加②得4sin 5θ=①减②得3cos 5θ=-4sin 45tan 3cos 35θθθ∴===--综上可得,正确的有ABD 故选:ABD 三、填空题 【答案】253π【解析】因为扇形的圆心角为23π,半径为5,所以扇形的弧长210533l ππ=⨯=,所以面积11102552233S lrππ==⨯⨯=.故答案为:253π.【答案】4-【解析】依题意31cos23πα⎛⎫+=-⎪⎝⎭,即11sin,sin33αα=-=-,由于,22ππα⎡⎤∈-⎢⎥⎣⎦,sin0α<,所以,02πα⎛⎫∈-⎪⎝⎭,所以cos3α==,所以1sintancos43ααα-===-.故答案为:4-【答案】4 5【解析】∵3 cos()cos5πθθ+=-=-,∴3 cos5θ=,∵sin cos0θθ<,∴4 sin5θ==-,∴4 sin(7)=sin()sin()=sin5θπθππθθ--=---=.故答案为:4 5 .四、双空题【答案】45-43-【解析】因为()3cos 25θπθπ=-<<, 所以32πθπ<<, 所以sin 0θ<,所以4sin 5θ==-. ()sin 4tan tan cos 3θπθθθ-=-=-=-. 故答案为:45-;43-.【答案】3 310【解析】将sin cos sin cos x x x x +-=2左端分子分母同除以cos x ,得tan 12tan 1x x +=-,解得tan 3x =,2222sin cos tan 33sin cos sin cos tan 13110x x x x x x x x ====+++. 故答案为:3;310【答案】38- 83- 【解析】因为1sin cos 2αα+=,所以112sin cos 4αα+=,所以sin cos αα⋅=38-,22sin cos sin cos 18tan cot cos sin sin cos sin cos 3αααααααααααα++=+===-.故答案为:38-;83- 【答案】1225 43- 【解析】1sin cos 5θθ+=,21(sin cos )12sin cos 25θθθθ∴+=+=,即12sin cos 25θθ=-. ()12sin cos sin cos 25θπθθθ∴-=-=;249(sin cos )12sin cos 25θθθθ∴-=-=,()0,θπ∈,sin 0θ∴>,cos 0θ<,即sin cos 0θθ->,7sin cos 5θθ∴-=. 联立1575sin cos sin cos θθθθ⎧+=⎪⎪⎨⎪-=⎪⎩,解得4sin 5θ=,3cos 5θ=-.4tan 3θ∴=-.故答案为1225;43-.五、解答题(1)求tan θ的值; (2)求2sin cos sin 2cos θθθθ-+的值.【答案】(1)34;(2)211.【解析】(1)02πθ<<,4cos 5θ∴===,因此,sin 353tan cos 544θθθ==⋅=; (2)原式2sin cos 31212tan 1142cos cos 42sin 2cos 311tan 2211112cos cos 44θθθθθθθθθθ-⨯--=====⨯=+++. (1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++.【答案】(1)53-;(2)135. 【解析】 由tan 1tan 1αα=--,解得1tan 2α=. (1)sin 3cos sin cos αααα-+13tan 3521tan 1312αα--===-++; (2)2sin sin cos 2ααα++22222sin sin cos 2(sin cos )sin cos ααααααα+++=+ 2222223sin sin cos 2cos 3tan tan 2sin cos tan 1ααααααααα++++==++22113()2132215()12⨯++==+.(1)化简()f α;(2)已知tan 3α=,求()f α的值.【答案】(1)cos 3sin ()2sin cos f ααααα+=-+;(2)-2. 【解析】 (1)sin()3sin()cos 3sin 2()2sin cos 2cos()cos()2f παπααααπαααπα++--+==-++--; (2)由tan 3α=,可得cos 3sin 13tan 10()22sin cos 12tan 5f ααααααα++====--+--. (1)()()()sin 2cos 23tan 2cos sin 2ππααππαπαα⎛⎫--- ⎪⎝⎭⎛⎫-++ ⎪⎝⎭; (2【答案】(1)tan α;(2)1-【解析】(1)原式=()()()()()sin sin tan cos cos ααααα-⋅-⋅-⋅- tan α= (2cos10sin10sin10cos10o o o o-=- 1=-从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求cos ,tan αα的值; (2)化简求值:3sin()cos()sin 2cos(2020)tan(2020)πααπαπαπα⎛⎫--+ ⎪⎝⎭+-.【答案】(1)答案不唯一,具体见解析(2)1625【解析】 (1)因为3sin 5α=-,所以α为第三象限或第四象限角; 若选③,4sin 3cos ,tan 5cos 4αααα==-==; 若选④,4sin 3cos ,tan 5cos 4αααα====-; (2)原式sin cos (cos )cos tan()ααααα-=-sin cos tan ααα-=-sin cos sin cos αααα=2cos α=2315⎛⎫=-- ⎪⎝⎭1625=. 【答案】详见解析【解析】()22sin sin cos 2sin 2sin cos sin 1tan 1cos ααααααααα++=++ ()2sin cos sin cos sin cos αααααα+=+2sin cos k αα==,()222sin cos sin cos 2sin cos αααααα-=+-12sin cos αα=- 1k =-,当04πα<<时,sin cos αα<,此时sin cos αα-=,当42ππα≤<时,sin cos αα≥,此时sin cos αα-=。

任意角的三角函数典型例题

任意角的三角函数典型例题

任意角的三角函数典型例题例1 若角的终边经过点,试求的六个三角函数值和角的集合,并求出集合中绝对值最小的角.如图所示.例2 已知角的终边上一点,()求角的六个三角函数值.说明:此类题目应用定义解,但若此类题目没有给出的取值范围,要分类讨论求解.例3 当为第二象限角,试求的值.分析:应先由为第二象限角这一条件求出绝对值再求值.解:当为第二象限角时,,,故.说明:此类题目旨在考查对符号的判定.例4 若,且,试确定所在的象限.分析:用不等式表示出,进而求解.说明:应注意在求此题的最终解答时,要找出所在有关集合的交集.例5 计算:(1);(2).说明:应对特殊角的三角函数值熟练掌握,以便准确应用.例6已知为锐角,试证:.同角三角函数的基本关系式典型例题例1已知,试用表示其他五种三角函数.分析:本题首先应注意对进行分类,再利用同角三角函数的关系求之.解:由于,且,所以其他五种三角函数都有意义.(1)当在第一、二象限时,……(2)当在第三、四象限时,……说明:解决此类问题时,应注意尽可能地确定所在的象限,以便确定三角函数的符号.另外,在用一个角的三角函数值表示其他几个三角函数值时,应尽可能少地使用平方关系.例2 若是锐角,,则.分析:本题的解题思路入口处较宽,下面给出一种化切为弦的求法.例3化简.分析:对本题一般可采取化切为弦的办法进行化简.解:原式说明:化简三角函数式所得的最后结果,应满足以下要求:①函数的种类要最少;②项数要最少;③函数次数要最低;④能求出数值的要求出数值;⑤尽量使分母不含三角函数;⑥尽量使分母不含根式.例5 (1) 设,则(2)若,求函数y=Asin(ωχ+φ)的图象典型例题例.函数的横坐标伸长到原来的两倍,再向左平移个单位,所得到的曲线是的图像,试求函数的解析式.分析:这个问题有两种解法,一是考虑以上变换的“逆变换”,即将以上变换倒过来,由变换到;二是代换法,即设,然后按题设中的变换分两步得:,它就是,即可求得、、的值.解:解法一:问题即是将的图像先向右平移个单位,得到;再将横坐标压缩到原来的,得,即.这就是所求函数的解析式.解法二:设,将它的横坐标伸长到原来的两倍得到;再将其图像向左平移个单位,得.∴解之得:∴,即.小结:以上两种解法各有“千秋”,均为求解类似问题的好方法,注意熟练掌握.任意角的三角函数习题精选一、选择题3.若,,则的值是()A.1 B.C.3 D.4.若角的终边上有一点,则的值是()A. B. C. D.5.设,若且,则的范围是()二、填空题9.函数的值域为__________.11.化简.同角三角函数的基本关系式习题精选一、选择题1.已知,,那么().A.B.C.D.2.已知,,那么的值是().A.B.C.D.3.若为锐角且,则的值为().A.B.C.6 D.44.若角的终边落在直线上,则的值等于().A.2 B.-2 C.-2或2 D.05.已知,,其中,则实数的取值范围是().A.B.C.或D.二、填空题6.若是锐角,,则.7.设,则,.9.已知,则.三、解答题11.已知,求与的值.12.已知,求的值.13.已知,求的值.14.(1)若,求;(2)若,求的值.15.若,求的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的三角函数练习题
(一)三角函数的定义
1.已知角α的终边过点P
,则sin α=______,cos α=_________,tan α=________ 2. 角α的终边经过点P ,则(1) ;tan α=________
3.若角的终边过点(-3,-2),则sin α=______,cos α=_________,tan α=________
4.已知角的终边过P (-3,4),则sin α=______,cos α=_________,tan α=________ 5.角的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α=____,cos α=____,tan α=________
6.已知P (-3,y )为角的终边上一点,且sin =13
13,那么y 的值等于________. 7.α是第二象限角,其终边上一点P (x ,5),且cos α=42
x ,则sin α的值为________. 8.点P 是角α终边上的一点,且 ,则b 的值是________.
9.已知角的终边经过点P (x ,-3)(x >0).且cos =2
x ,则sin=_______,cos________,tan________. 10 是角θ终边上的一点,且。

11.已知锐角终边上一点P (1,3),则的弧度数为________.
12.已知角的终边落在直线y =3x 上,则sin =________.
13. 已知角α的终边落在第一和第三象限的角平分线上,求α的3个三角函数值。

14. 已知角α的终边落在第二和第四象限的角平分线上,求α的3个三角函数值。

(二)三角函数值符号的判断.
1.求值。

(1)sin00=_______, cos00=_______, tan00=_______.
(2) sin1800=_______, cos1800=_______, tan1800=_______.
(3)sin2700=_______, cos2700=_______, tan2700=_______.
(4) sin900=_______, cos900=_______, tan900=_______.
2. 填入不等号:(1) ;(2) tan3200_______0;(3) ;
(5) 。

3.已知,sin αtan α<0, 则α是( )
A 第一象限角
B 第一或第二象限角
C 第三象限角
D 第二或第三象限角 4.下列各式中正确的是( ) A B sin1500tan1200 >0 C cos1500tan1200 <0D tan1500tan1200 <0 5.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2
α是(
) A .第一象限角 B .第二象限角 C .第三象限角
D .第四象限角
(三)求三角函数值
=_______,cos300=_______, tan300=_______
2. sin600=_______,cos600=_______, tan600=_______
3. sin450=_______,cos450=_______, tan450=_______
4. sin4050=_______,cos4050=_______, tan4050=_______
5. sin(-6600)=_______,cos(-6600)=_______, tan(-6600)=_______
6. sin14700=_______,cos14700=_______, tan14700=_______。

相关文档
最新文档