海南省琼中县2019年数学中考一模试卷及参考答案
2019年海南省中考数学模拟试卷(4月份)精编含解析

2019年海南省中考数学模拟试卷(4月份)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)比﹣1大的数是()A.﹣2B.﹣3C.﹣15D.02.(3分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×1043.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)在下列所表示的不等式的解集中,不包括﹣5的是()A.x≤﹣4B.x≥﹣5C.x≤﹣6D.x≥﹣75.(3分)下列计算,正确的是()A.3a2﹣a2=2B.a2•a3=a6C.a8÷a2=a6D.(﹣2a)3=﹣2a26.(3分)代数式m﹣2与1﹣2m的差是0,则m等于()A.0B.1C.2D.37.(3分)若8名学生的体重(单位:kg)分别是:40,42,43,45,47,47,47,58,则这组数据的中位数是()A.44B.45C.46D.478.(3分)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.﹣=4B.=4C.=4D.=49.(3分)已知圆锥的高为12,母线长为13,则该圆锥的侧面积等于()A.65πB.36πC.27πD.9π10.(3分)如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°11.(3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5B.4C.7D.1412.(3分)向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.13.(3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)14.(3分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.2二、填空题(本大题满分16分,每小题4分)15.(4分)计算(+)(﹣)的结果为.16.(4分)点P(3,6)关于原点对称的对称点P′坐标为.17.(4分)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB =8,AD=12,则四边形ENFM的周长为.18.(4分)如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为.三、解答题(本大题满分62分)19.(10分)(1)计算:(2)解不等式组,并把它的解集在数轴上表示出来20.(8分)某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,购买这两种树苗共用去21000元.求甲、乙两种树苗各购买了多少株?21.(8分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是人.22.(8分)如图,某市为增加新建地铁车站出入口上下楼梯的高度,已知原楼梯BD长20米,在楼梯水平长度(BC)不发生改变的前提下,楼梯的倾斜角由30°增大到45°,那么新修建的楼梯高度将会增加多少米?(结果保留整数,参考数据:≈1.4l4,≈1.732)23.(14分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:△AEO≌△CDO;(2)当∠BAC为直角时,求证:四边形ADCE是菱形;(3)在(2)的条件下,若AB=AO,求tan∠OAD的值.24.(14分)如图,已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).(1)求出抛物线的解析式;(2)写出抛物线的对称轴方程及顶点坐标;(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 的坐标;(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.2019年海南省中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)比﹣1大的数是()A.﹣2B.﹣3C.﹣15D.0【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣1>﹣2,﹣1>﹣3,﹣1>﹣15,﹣1<0,∴所给的数中,比﹣1大的数是0.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:300 000=3×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图所示的几何体的左视图是()A.B.C.D.【分析】根据左视图是从左面看得到的视图,以及看到的两个正方形的位置关系解答即可.【解答】解:从左面看,为两个正方形,小正方形在右上角,所以,该几何体的左视图是C.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看到的视图.4.(3分)在下列所表示的不等式的解集中,不包括﹣5的是()A.x≤﹣4B.x≥﹣5C.x≤﹣6D.x≥﹣7【分析】检验﹣5是否满足不等式的解集,就可以进行选择.【解答】解:A,∵﹣5<﹣4,∴x≤﹣4包括﹣5;B,∵﹣5=﹣5,∴x≥﹣5包括﹣5;C,∵﹣5>﹣6,∴x≤﹣6不包括﹣5;D,∵﹣5>﹣7,∴x≥﹣7包括﹣5;故选:C.【点评】本题较简单,主要是比较数的大小.两个负数中,绝对值大的数反而小.5.(3分)下列计算,正确的是()A.3a2﹣a2=2B.a2•a3=a6C.a8÷a2=a6D.(﹣2a)3=﹣2a2【分析】直接利用积的乘方运算法则以及合并同类项法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、a2•a3=a5,故此选项错误;C、a8÷a2=a6,正确;D、(﹣2a)3=﹣8a3,故此选项错误.故选:C.【点评】此题主要考查了积的乘方运算以及合并同类项、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.(3分)代数式m﹣2与1﹣2m的差是0,则m等于()A.0B.1C.2D.3【分析】根据“代数式m﹣2与1﹣2m的差是0”,列出关于m的一元一次方程,依次去括号,移项,合并同类项,系数化为1,解之即可.【解答】解:根据题意得:(m﹣2)﹣(1﹣2m)=0,去括号得:m﹣2﹣1+2m=0,移项得:m+2m=2+1,合并同类项得:3m=3,系数化为1得:m=1,故选:B.【点评】本题考查了解一元一次方程和整式的加减,正确掌握解一元一次方程的方法是解题的关键.7.(3分)若8名学生的体重(单位:kg)分别是:40,42,43,45,47,47,47,58,则这组数据的中位数是()A.44B.45C.46D.47【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有8个,故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数.故这组数据的中位数是(45+47)=46.故选:C.【点评】考查中位数的概念.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.8.(3分)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.﹣=4B.=4C.=4D.=4【分析】设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据“乘坐高铁列车比乘坐普通快车能提前4h到达”可列方程.【解答】解:设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据题意,可得:﹣=4,故选:B.【点评】本题主要考查分式方程的应用,理解题意抓住相等关系并以此列出方程是关键.9.(3分)已知圆锥的高为12,母线长为13,则该圆锥的侧面积等于()A.65πB.36πC.27πD.9π【分析】根据勾股定理求出圆锥的底面半径,根据扇形面积公式计算即可.【解答】解:由勾股定理得,圆锥的底面半径==5,∴圆锥的底面周长=10π,∴圆锥的侧面积=×10π×13=65π,故选:A.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.10.(3分)如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.11.(3分)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5B.4C.7D.14【分析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=AB=×7=3.5.故选:A.【点评】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.12.(3分)向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.【分析】看阴影部分的面积占总面积的多少即为所求的概率.【解答】解:∵盘底被等分成12份,其中阴影部分占4份,∴落在阴影区域的概率=.故选C.【点评】用到的知识点为:概率=相应的面积与总面积之比.13.(3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)【分析】先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.【解答】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选:B.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.14.(3分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.2【分析】由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N(,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.【点评】本题考查了反比例函数的系数k 的几何意义,轴对称﹣最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.二、填空题(本大题满分16分,每小题4分)15.(4分)计算(+)(﹣)的结果为 ﹣1 .【分析】根据平方差公式:(a +b )(a ﹣b )=a 2﹣b 2,求出算式(+)(﹣)的结果为多少即可.【解答】解:(+)(﹣)==2﹣3 =﹣1∴(+)(﹣)的结果为﹣1. 故答案为:﹣1.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看“多项式”.(2)此题还考查了平方差公式的应用:(a +b )(a ﹣b )=a 2﹣b 2,要熟练掌握. 16.(4分)点P (3,6)关于原点对称的对称点P ′坐标为 (﹣3,﹣6) . 【分析】关于原点对称的两个点的横纵坐标分别互为相反数.【解答】解:点P (3,6)关于原点对称的点的坐标是 (﹣3,﹣6). 故答案是:(﹣3,﹣6).【点评】本题考查了关于原点对称的点的坐标.两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P ′(﹣x ,﹣y ).17.(4分)如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点.若AB =8,AD =12,则四边形ENFM 的周长为 20 .【分析】根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.【解答】解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.【点评】本题考查了三角形的中位线,勾股定理以及矩形的性质,是中考常见的题型,难度不大,比较容易理解.18.(4分)如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为40°.【分析】连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠ABD的度数,然后用同弧所对的圆周角相等,求出∠E的度数.【解答】解:如图:连接BD,∵AB是直径,∴∠ADB=90°,∵BC切⊙O于点B,∴∠ABC=90°,∵∠C=40°,∴∠BAC=50°,∴∠ABD=40°,∴∠E=∠ABD=40°.故答案为:40°.【点评】本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠E的度数.三、解答题(本大题满分62分)19.(10分)(1)计算:(2)解不等式组,并把它的解集在数轴上表示出来【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式=,(2),解不等式①得:x≥﹣3,解不等式②得:x>2,所以不等式组的解集为:x>2,解集在数轴上表示为:【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(8分)某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,购买这两种树苗共用去21000元.求甲、乙两种树苗各购买了多少株?【分析】根据关键描述语“购买甲、乙两种树苗共800株,”和“购买两种树苗共用21000元”,列出方程组求解.【解答】解法一:解:设购买甲种树苗x株,则乙种树苗y株,由题意得:(1分),(5分)解得(7分)答:购买甲种树苗500棵,乙种树苗300棵.(8分)解法二:解:设甲种树苗购买了x棵,根据题意得:(1分)24x+30(800﹣x)=21000,(5分)解得x=500,(6分)800﹣500=300(棵),(7分)答:购买甲种树苗500棵,乙种树苗300棵.(8分)【点评】此题主要考查了二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程组即可求解.21.(8分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于36度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180人.【分析】(1)根据条形图可知阅读小说的有80人,根据在扇形图中所占比例得出调查学生数;(2)根据条形图可知阅读其他的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据科普常识的学生所占比例,即可估计全校人数.【解答】解:(1)80÷40%=200人,(2)20÷200×360°=36°,(3)200×30%=60(人),如图所示:(4)600×30%=180人,故答案为:(1)200,(2)36,(4)180.【点评】此题主要考查了条形图与扇形图的综合应用,根据图形得出正确信息,两图形有机结合是解决问题的关键.22.(8分)如图,某市为增加新建地铁车站出入口上下楼梯的高度,已知原楼梯BD长20米,在楼梯水平长度(BC)不发生改变的前提下,楼梯的倾斜角由30°增大到45°,那么新修建的楼梯高度将会增加多少米?(结果保留整数,参考数据:≈1.4l4,≈1.732)【分析】在直角△BCD中,利用30°角所对的边与斜边的关系,求出CD、BC,在直角△BCA中,利用45°角,求出CA,最后求出AD的长.【解答】解:在Rt△BCD中,∵∠DBC=30°,BD=20米,∴CD=BD=10米,BC==10(米).在Rt△ABC中,∵∠ABC=45°∴∠A=ABC.∴AC=BC=10(米)∴AD=AC﹣CD=10﹣10≈17.32﹣10=7.32≈7(米)答:新修建的楼梯高度将会增加7米.【点评】本题考查了解直角三角形及特殊角的三角函数.理解题意掌握直角三角形的边角关系及特殊角的三角函数值是解决本题的关键.23.(14分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:△AEO≌△CDO;(2)当∠BAC为直角时,求证:四边形ADCE是菱形;(3)在(2)的条件下,若AB=AO,求tan∠OAD的值.【分析】(1)由AE∥BC,DE∥AB,可证得四边形ABDE为平行四边形,又由AD是边BC上的中线,可得AE =CD,即可证得四边形ADCE是平行四边形,根据平行四边形对角线互相平分,可证得结论;(2)根据直角三角形斜边中线可得AD=CD,所以结合(1)中四边形ADCE是平行四边形,可得结论;(3)根据(2)知:AB=AO=AC,由三角函数定义可得结论.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,∴AO=OC,OE=OD,∴△AEO≌△CDO(SSS);(2)∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,由(1)得:四边形ADCE是平行四边形,∴四边形ADCE是菱形;(3)由(2)知:∵AD=CD,∴∠OAD=∠ACD,∵AB=AO=AC,Rt△ABC中,tan∠OAD=tan∠ACD==.【点评】此题是四边形的综合题,考查了平行四边形的判定与性质以及菱形的判定与性质.注意证得四边形ADCE 是平行四边形是关键.24.(14分)如图,已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).(1)求出抛物线的解析式;(2)写出抛物线的对称轴方程及顶点坐标;(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 的坐标;(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.【分析】(1)把把A点和B点坐标代入y=ax2﹣4x+c得关于a和c的方程组,然后解方程求出a和c即可得到抛物线解析式;(2)把(1)中的解析式配成顶点式即可得到抛物线的对称轴方程和顶点坐标;(3)把P(m,m)代入y=x2﹣4x﹣6得m的一元二次方程,解方程求出m得到P点坐标,然后利用对称性确定Q点坐标;(4)连结AP交直线x=2于点M,如图,利用两点之间线段最短可判断此时MQ+MA最小,则△QMA的周长最小,再利用待定系数法求出直线AP的解析式,然后计算自变量为2的函数值即可得到满足条件的M点坐标.【解答】解:(1)把A(0,﹣6),B(3,﹣9)代入y=ax2﹣4x+c得,解得,所以抛物线解析式为y=x2﹣4x﹣6;(2)因为y=x2﹣4x﹣6=(x﹣2)2﹣10,所以抛物线的对称轴方程为x=2,抛物线的顶点坐标为(2,﹣10);(3)把P(m,m)代入y=x2﹣4x﹣6得m2﹣4m﹣6=m,整理得m2﹣5m﹣6=0,解得m1=﹣1(舍去),m2=6,则P点坐标为(6,6),点P(6,6)关于直线x=2的对称点为(﹣2,6),即点Q的坐标为(﹣2,6);(4)连结AP交直线x=2于点M,如图,∵P点和Q点关于抛物线的对称轴对称,∵MA=MP,∴MQ+MA=MP+MP=AP,∴此时MQ+MA最小,则△QMA的周长最小,设AP的解析式为y=kx+b,把A(0,﹣6),P(6,6)代入得,解得,∴直线AP的解析式为y=2x﹣6,当x=2时,y=2x﹣6=﹣2,∴当M(2,﹣2)时,△QMA的周长最小.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用待定系数法求一次函数和二次函数的解析式;会利用两点之间线段最短解决最短路径问题;理解坐标与图形的性质.。
海南省2019年中考数学模拟试卷(一)(含解析)

2019年海南省中考数学模拟试卷(一)一.选择题(满分42分,每小题3分)1.﹣2018的绝对值的倒数是()A.﹣B.2018 C.D.﹣20182.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a5 C.(2a2)3=6a6 D.a6÷a2=a33.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定4.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,57.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .8.一个两位数,个位上的数字是a ,十位上的数字比个位的数字小1,则这个两位数可以表示为( )A .a (a ﹣1)B .(a+1)aC .10(a ﹣1)+aD .10a+(a ﹣1)9.已知点(3,﹣4)在反比例函数y =的图象上,则下列各点也在该反比例函数图象上的是( )A .(3,4)B .(﹣3,﹣4)C .(﹣2,6)D .(2,6)10.如图,已知AB ∥DE ,∠AB C =75°,∠CDE =145°,则∠BCD 的值为( )A .20°B .30°C .40°D .70°11.如图,把一张长方形的纸片沿着EF 折叠,点C.D 分别落在M 、N 的位置,且∠MFB =∠MFE .则∠MFB =( )A .30°B .36°C .45°D .72°12.在平面直角坐标系中,点P (﹣2,﹣3)向右移动3个单位长度后的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(1,0)D .(﹣2,0)13.如图,BM 与⊙O 相切于点B ,若∠MBA =140°,则∠ACB 的度数为( )A .40°B .50°C .60°D .70°14.如图,正方形ABCD 中,AB =4cm ,点E.F 同时从C 点出发,以1cm/s 的速度分别沿CB﹣BA.CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二.填空题(满分16分,每小题4分)15.若a+b=4,ab=1,则a2b+ab2=______.16.已知关于x的方程的解大于1,则实数m的取值范围是________-.17.如图,平面直角坐标系中,⊙P与x轴分别交于A.B两点,点P的坐标为(3,﹣1),AB=2.若将⊙P向上平移,则⊙P与x轴相切时点P的坐标为__________.18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(﹣10,0),对角线AC和OB相交于点D且AC•OB=160.若反比例函数y=(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE:S△OAB=_________.三.解答题(共6小题,满分62分)19.(10分)(1)计算:(﹣)0+(﹣)﹣1×+;(2)解不等式:2x﹣5≥5x﹣4.20.(8分)某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?21.(8分)某超市对今年“元旦”期间销售A.B.C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售______个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是_______度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?22.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)23.(13分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD.BC于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x (0<x<3).(1)填空:PC=_____,FC=_________;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.24.(15分)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A.B.C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A.B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.参考答案一.选择题1.解:﹣2018的绝对值是2018,2018的倒数是.故选:C.2.解:A.a3+a2,无法计算,故此选项错误;B.a3•a2=a5,正确;C.(2a2)3=8a6,故此选项错误;D.a6÷a2=a4,故此选项错误;故选:B.3.解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.故选:C.4.解:∵530060是6位数,∴10的指数应是5,故选:B.5.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.6.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10.11个数据的平均数,即中位数为=6,故选:B.7.解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是=,故选:B.8.解:∵个位上的数字是a,十位上的数字比个位的数字小1,∴十位上的数字为a﹣1,∴这个两位数可表示为10(a﹣1)+a,故选:C.9.解:∵点(3,﹣4)在反比例函数y=的图象上,∴k=3×(﹣4)=﹣12,而3×4=﹣3×(﹣4)=2×6=12,﹣2×6=﹣12,∴点(﹣2,6)在该反比例函数图象上.故选:C.10.解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.11.解:由折叠的性质可得:∠MFE=∠EFC,∵∠MFB=∠MFE,设∠MFB=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠MFB=36°.故选:B.12.解:平移后点P的横坐标为﹣2+3=1,纵坐标不变为﹣3;所以点P(﹣2,﹣3)向右平移3个单位长度后的坐标为(1,﹣3).故选:B.13.解:如图,连接OA.OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.14.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选:D.二.填空题(共4小题,满分16分,每小题4分)15.解:∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.16.解:方程两边乘x﹣2得:x+m=2﹣x,移项得:2x=2﹣m,系数化为1得:x=,∵方程的解大于1,∴>1,且≠2,解得m<0,且m≠﹣2.故答案为:m<0,且m≠﹣2.17.解:∵过点P作PC⊥AB于点C,连接PA,∵AB=2,∴AC=AB=,∵点P的坐标为(3,﹣1),∴PC=1,∴PA==2,∵将⊙P向上平移,且⊙P与x轴相切,∴⊙P与x轴相切时点P的坐标为:(3,2).故答案为:(3,2).18.解:作CG⊥AO于点G,作BH⊥x轴于点H,∵AC•OB=160,∴S菱形OABC=•AC•OB=80,∴S△OAC=S菱形OABC=40,即AO•CG=40,∵A(﹣10,0),即OA=10,∴CG=8,在Rt△OGC中,∵OC=OA=10,∴OG=6,则C(﹣6,8),∵△BAH≌△COG,∴BH=CG=8.AH=OG=6,∴B(﹣16,8),∵D为BO的中点,∴D(﹣8,4),∵D在反比例函数图象上,∴k=﹣8×4=﹣32,即反比例函数解析式为y=﹣,当y=8时,x=﹣4,则点E(﹣4,8),∴CE=2,∵S△OCE=•CE•CG=×2×8=8,S△AOB=•AO•BH=×10×8=40,∴S△OCE:S△OAB=1:5故答案为:1:5.三.解答题(共6小题,满分62分)19.解:(1)原式=1﹣3×+2﹣=1﹣2+2﹣=3﹣3;(2)2x﹣5x≥5﹣4,(2﹣5)x≥1,所以x≤,即x≤﹣2﹣5.20.解:设该水果店购进苹果x千克,购进提子y千克,根据题意得:,解得:.答:该水果店购进苹果50千克,购进提子10千克.21.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.22.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.23.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.24.解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).令y=0,则0=﹣x2﹣2x+3,解得,x=﹣3或x=l,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+M N)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,∴矩形的周长最大时,m=﹣2.∵A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,∴解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),∴EM=1,AM=1,∴S=AM×EM=.(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4),∴DQ=DC=.∵FG=2DQ,∴FG=4.设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方且FG=4,∴(n+3)﹣(﹣n2﹣2n+3)=4.解得n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).。
【2019年中考数学】海南省重点中学2019中考模拟考试数学试题及答案

海南省XX 中学2019年中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明.一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2009年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a ⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y 中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x 的解,则a 的值为A .2B .-2C .21D . 21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 19 D. 24A .B .C .D .9. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy 6=的图象上,则x 1、x 2、x 3的大小关系是 A .x 2<x 1<x 3 B .x 1<x 2<x 3 C .x 2>x 1>x 3 D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B. 45° B. 50° D. 60°11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-xC. 2)1(2=-xD. 3)2(2=+x 13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地19千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .图2 ECBADAB OC图31 小时) 图4图516.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .19.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--.20.(本题满分9分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:假设销售每件服装奖励a 元,营业员月基本工资为b 元. 求a 、b 的值; 21. (9分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时 C.0.5~1小时 D .0.5小时以下图9.1、9.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图6 图9图9.1 图9.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间 在0.5小时以下.22.(9分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O轴上一点,过点B 作BC ∥x 轴交抛物线于点C 行四边形.(1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;图11A C D EGFM12图10图9(3)经过点M 的直线把□ OACB 的面积分为1:3两部分,求这条直线的函数关系式.海南省XX 中学2019中考模拟考试(一)数学科试题答题卡以下为非选择题答题区,必须用黑色字迹的签字笔或钢笔在指定的区域内作答,否则答案效。
2019年海南省中考数学模拟试题及参考答案

2019年海南省中考模拟试题数学试卷第Ⅰ卷(选择题)一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与D.+(﹣0.01)与﹣(﹣)2.(3分)若代数式2x﹣y的值是5,则代数式2y﹣4x+5的值为()A.﹣15 B.﹣5 C.5 D.153.(3分)下列计算中,正确的是()A.x3•x3=x6B.x3+x3=x6C.(x3)2=x9D.x6÷x2=x34.(3分)由4个相同的小正方体搭建了一个积木,从三个方向看积木,所得到的图形如图所示,则这个积木可能是()A .B .C .D .5.(3分)如图,直线MN∥PQ.点O在PQ上.射线OA⊥OB,分别交MN于点C和点D.∠BOQ=30°.若将射线OB绕点O逆时针旋转30°,则图中60°的角共有()A.4个 B.5个 C.6个 D.7个6.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将图形向下平移一个单位7.(3分)2016年3月5日,李克强总理在第十二届全国人大第四次会议上作政府工作报告,报告中谈到2015年我国GDP达到67.67万亿元,排名世界第二.数据67.67万亿用学记数法可表示为6.767×10n,则n等于()A.5 B.9 C.13 D.158.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.29.(3分)已知一组数据:12,5,9,5,14,下列说法正确的是()A.平均数是5 B.中位数是9 C.众数是14 D.以上都不对10.(3分)春节联欢会前,文艺委员征集文艺节目,有唱歌、跳舞、曲艺,连续两位同学报名表演唱歌的机会为()A .B .C .D .11.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°12.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.1213.(3分)如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个 B.6个 C.4个 D.3个14.(3分)若,,则x的取值范围()A .B .或C .或D.以上答案都不对二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)已知关于x的不等式(2a﹣b)x≥a﹣2b的解是x ≥,则关于x的不等式ax+b<0的解为.16.(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为.17.(4分)如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则sin∠AFE的值为.18.(4分)如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算(1)1002×998(2)x3y2•(xy)2÷(﹣x3y)(3)(2a+b)(2a﹣b)﹣4a(a﹣b)(4)()﹣2×(﹣2)0+|﹣5|×(﹣1)3.20.(8分)某种水果的价格如表: 购买的质量(千克) 不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?21.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a= ,b= ;并补全条形统计图; (2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数. (3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.(8分)一水库大坝的横断面为梯形ABCD ,坝顶宽6.2米,坝高23.5米,斜坡AB 的坡度i AB =1:3,斜坡CD 的坡角是21°,求: (1)斜坡AB 与坝底AD 的长度(精确到0.1米); (2)斜坡AB 的坡角α和斜坡CD 的坡度(精确到1°).23.(12分)如图1,在正方形ABCD中,AB=4,M,N分别是AD、CD上一点.(1)若DN=1,∠AMB=90°,求AM的长;(2)若N是CD的中点,且∠NMB=∠MBC,①求tan∠ABM的值;②在图2中,请仅用无刻度的直尺作出点M的位置,并说明确定M位置的理由.(要求:写出作法,并保留作图痕迹)24.(16分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与D.+(﹣0.01)与﹣(﹣)【解答】解:A、∵﹣(+7)=﹣7,+(﹣7)=﹣7∴﹣(+7)和+(﹣7)不互为相反数,故本选项错误;B、∵﹣(+0.5)=﹣0.5,∴﹣0.5和﹣(+0.5)不互为相反数,故本选项错误;C 、∵=0.8,∴﹣1.25和不互为相反数,故本选项错误;D、∵+(﹣0.01)=﹣0.01,﹣(﹣)=0.01,∴+(﹣0.01)与﹣(﹣)互为相反数,故本选项错误正确.故选:D.2.(3分)若代数式2x﹣y的值是5,则代数式2y﹣4x+5的值为()A.﹣15 B.﹣5 C.5 D.15【解答】解:由2x﹣y的值是5,得y﹣2x=﹣5.2y﹣4x+5=2(y﹣2x)+5=2×(﹣5)+5=﹣5,故选:B.3.(3分)下列计算中,正确的是()A.x3•x3=x6B.x3+x3=x6C.(x3)2=x9D.x6÷x2=x3【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、合并同类项系数相加字母及指数不变,故B错误;C、幂的乘方底数不变指数相乘,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:A.4.(3分)由4个相同的小正方体搭建了一个积木,从三个方向看积木,所得到的图形如图所示,则这个积木可能是()A .B .C .D .【解答】解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成.故选:B.5.(3分)如图,直线MN∥PQ.点O在PQ上.射线OA⊥OB,分别交MN于点C和点D.∠BOQ=30°.若将射线OB绕点O逆时针旋转30°,则图中60°的角共有()A.4个 B.5个 C.6个 D.7个【解答】解:旋转后的图形如图,∵OA⊥OB,∠BOQ=30°,∴∠AOP=60°,∵MN∥PQ,∴∠OCD=∠AOP=60°,即∠ACM=∠OCD=60°,∵OA⊥OB,且OB逆时针旋转30°,∴∠AOB=60°,∠BOQ=60°,在△COD中,则∠ODC=60°,即∠BDN=60°.∴题中等于60°的角共有7个.故选D.6.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将图形向下平移一个单位【解答】解:横坐标都乘以﹣1,即横坐标变为相反数,纵坐标不变,符合关于y 轴对称,故选B.7.(3分)2016年3月5日,李克强总理在第十二届全国人大第四次会议上作政府工作报告,报告中谈到2015年我国GDP达到67.67万亿元,排名世界第二.数据67.67万亿用学记数法可表示为6.767×10n,则n等于()A.5 B.9 C.13 D.15【解答】解:∵67.67万亿=6.767×1013=6.767×10n,∴n=13,故选C.8.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.9.(3分)已知一组数据:12,5,9,5,14,下列说法正确的是()A.平均数是5 B.中位数是9 C.众数是14 D.以上都不对【解答】解:数据由小到大排列为5,5,9,12,14,它的平均数为=9,数据的中位数为9,众数为5,故选B10.(3分)春节联欢会前,文艺委员征集文艺节目,有唱歌、跳舞、曲艺,连续两位同学报名表演唱歌的机会为()A .B .C .D .【解答】解:设唱歌为A,跳舞为B,曲艺为C.列树状图得:共有9种情况,连续两位同学报名表演唱歌的情况有1种,所以概率为,故答案为D.11.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.12.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【解答】解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.13.(3分)如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个 B.6个 C.4个 D.3个【解答】解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5即为第三个顶点的位置,作线段AB的垂直平分线,垂直平分线所经过的格点C6、C7即第三个顶点的位置.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选(A)14.(3分)若,,则x的取值范围()A .B .或C .或D.以上答案都不对【解答】解:作出函数y=与y=2、y=﹣3的图象,由图象可知交点为(,2),(﹣,﹣3),∴当或时,有,.故选C.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)已知关于x的不等式(2a﹣b)x≥a﹣2b的解是x ≥,则关于x的不等式ax+b<0的解为x>﹣8.【解答】解:不等式(2a﹣b)x≥a﹣2b系数化1得,x ≥,∵该不等式的解集为是x ≥,∴=,∴b=8a;将b=8a代入不等式ax+b<0得,ax+8a<0,移项得,ax<﹣8a,又∵(2a﹣b)x≥a﹣2b系数化1得,x ≥,∴2a﹣b>0,即2a﹣8a>0,即﹣6a>0,∴a<0;∴不等式ax+b<0的解集为:x>﹣8.16.(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为2﹣2.【解答】解:如图所示,∵∠POA+∠POB=90°,∠PBO=∠POA,∴∠PBO+∠POB=90°,∴∠BPO=90°,即BP垂直于直线y=kx(k>0),∴点P的运动轨迹为y轴右侧以BO为直径的半圆,∵一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,∴A(4,0),B(0,4),∴圆心C(0,2),即AO=4,CO=2,连接CP,AC,则CP=CO=2,AC==2,∵AP+CP≥AC,∴当点C、P、A三点共线时,AP有最小值,此时,AP=AC﹣CP=2﹣2,故答案为:2﹣2.17.(4分)如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则sin∠AFE的值为.【解答】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴sin∠AFE=sin∠DCF==.故答案为:.18.(4分)如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN 长的最大值是5.【解答】解:∵点M,N 分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图所示,∵∠ACB=∠D=45°,AB=10,∠ABD=90°,∴AD=AB=10,∴MN=AD=5,故答案为:5.三、解答题(本大题共62分)19.(10分)计算(1)1002×998(2)x3y2•(xy)2÷(﹣x3y)(3)(2a+b)(2a﹣b)﹣4a(a﹣b)(4)()﹣2×(﹣2)0+|﹣5|×(﹣1)3.【解答】解:(1)原式=(1000+2)×(1000﹣2)=1000000﹣4=999996;(2)原式=x3y2•x2y2÷(﹣x3y)=﹣x2y3;(3)原式=4a2﹣b2﹣4a2+4ab=﹣b2+4ab;(4)原式=9﹣5=4.20.(8分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?【解答】解:设张欣第一次、第二次购买了这种水果的量分别为x千克、y千克,因为第二次购买多于第一次,则x<12.5<y.①当x≤10时,,解得;②当10<x<12.5时,,此方程组无解.答:张欣第一次、第二次购买了这种水果的量分别为7千克、18千克.21.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.22.(8分)一水库大坝的横断面为梯形ABCD,坝顶宽6.2米,坝高23.5米,斜坡AB的坡度i AB=1:3,斜坡CD的坡角是21°,求:(1)斜坡AB与坝底AD的长度(精确到0.1米);(2)斜坡AB的坡角α和斜坡CD的坡度(精确到1°).【解答】解:(1)∵斜坡AB的坡度i AB=1:3,BE=23.5米,∴AE=70.5米,则AB=≈74.3米,∵斜坡CD的坡角是21°,∴tan21°=,∴FD≈62.7米,∴AD=70.5+6.2+62.7=139.4米;(2)tanα=,α≈18°,斜坡CD的坡度=tan21°=1:2.7.23.(12分)如图1,在正方形ABCD中,AB=4,M,N分别是AD、CD上一点.(1)若DN=1,∠AMB=90°,求AM的长;(2)若N是CD的中点,且∠NMB=∠MBC,①求tan∠ABM的值;②在图2中,请仅用无刻度的直尺作出点M的位置,并说明确定M位置的理由.(要求:写出作法,并保留作图痕迹)【解答】解:(1)∵四边形ABCD是正方形,∴∠A=90°,又∵∠AMB+∠A+∠ABM=180°,∠AMB=90°,∴∠ABM=0°,即点M与点A重合,∴AM=0;(2)①设AM=x,∵AD=4,∴DM=4﹣x,延长MN交BC于P,∵N为CD中点,∴DN=CN,在△DMN和△CPN中,∵,∴△DMN≌△CPN(ASA),∴MN=NP=,又∵BP=4+4﹣x=8﹣x,∴8﹣x=,解得:x=4或x=,∴tan ==或tan∠ABM===1;②当AM=4时,即∠ABM=45°,如图2,连接BD,则AB=AD=4,此时∠ABM=45°,AM=AD=4;当AM=时,即点M为AD的三等分点,如图3,过点N作NP⊥AB于点P,连接AC交PD于点O,过点O作OM⊥AD于点D,∵AP∥CD ,且=,∴△APO∽△CDO,∴=,又∵OM⊥AD,∴OM∥AP,∴△DMO∽△DAP,∴==,即AM=AD,故点M即为所求点.24.(16分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M(1,0),N (﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x ﹣)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。
2019年海南省中考数学试卷(含解析)完美打印版

2019年海南省中考数学试卷一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3分)如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元2.(3分)当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.23.(3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a44.(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣25.(3分)海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×1096.(3分)如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.7.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>28.(3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)9.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°10.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.11.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.2112.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.二、填空题(本大题满分16分,每小题4分)13.(4分)因式分解:ab﹣a=.14.(4分)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.15.(4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.16.(4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是,这2019个数的和是.三、解答题(本大题满分68分)17.(12分)(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.18.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?19.(8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.表1 知识竞赛成绩分组统计表20.(10分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC 为10海里.(1)填空:∠BAC=度,∠C=度;(2)求观测站B到AC的距离BP(结果保留根号).21.(13分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D 不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.22.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2019年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3分)如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元【分析】根据正数与负数的意义,支出即为负数;【解答】解:收入100元+100元,支出100元为﹣100元,故选:A.2.(3分)当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.2【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.3.(3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.4.(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据分式方程的求解方法解题,注意检验根的情况;【解答】解:=1,两侧同时乘以(x+2),可得x+2=1,解得x=﹣1;经检验x=﹣1是原方程的根;故选:B.5.(3分)海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<10)即可求解;【解答】解:由科学记数法可得3710000000=3.71×109,故选:D.6.(3分)如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.7.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2【分析】反比例函数y=图象在一、三象限,可得k>0.【解答】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a﹣2>0,∴a>2.故选:D.8.(3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.9.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.10.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.11.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.21【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.【解答】解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.12.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB =QD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=,故选:B.二、填空题(本大题满分16分,每小题4分)13.(4分)因式分解:ab﹣a=a(b﹣1).【分析】提公因式a即可.【解答】解:ab﹣a=a(b﹣1).故答案为:a(b﹣1).14.(4分)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.15.(4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.【分析】由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.【解答】解:由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°∴∠EAF=90°∴EF==故答案为:16.(4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2019个数的和是2.【分析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.【解答】解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2019÷6=336…3,∴这2019个数的和是:0×336+(0+1+1)=2,故答案为:0,2.三、解答题(本大题满分68分)17.(12分)(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.【分析】(1)先计算负整数指数幂、乘方及算术平方根,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=9×﹣1﹣2=1﹣1﹣2=﹣2;(2)解不等式x+1>0,得:x>﹣1,解不等式x+4>3x,得:x<2,则不等式组的解集为﹣1<x<2,所以不等式组的整数解为0、1.18.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.19.(8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了50个参赛学生的成绩;(2)表1中a=8;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是C;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.表1 知识竞赛成绩分组统计表【分析】(1)本次调查一共随机抽取学生:18÷36%=50(人);(2)a=50﹣18﹣14﹣10=8;(3)本次调查一共随机抽取50名学生,中位数落在C组;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人).【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.20.(10分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC 为10海里.(1)填空:∠BAC=30度,∠C=45度;(2)求观测站B到AC的距离BP(结果保留根号).【分析】(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,由三角形内角和定理即可得出∠C的度数;(2)证出△BCP是等腰直角三角形,得出BP=PC,求出P A=BP,由题意得出BP+BP=10,解得BP=5﹣5即可.【解答】解:(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,∴∠C=180°﹣∠BAC﹣∠ABC=45°;故答案为:30,45;(2)∵BP⊥AC,∴∠BP A=∠BPC=90°,∵∠C=45°,∴△BCP是等腰直角三角形,∴BP=PC,∵∠BAC=30°,∴P A=BP,∵P A+PC=AC,∴BP+BP=10,解得:BP=5﹣5,答:观测站B到AC的距离BP为(5﹣5)海里.21.(13分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D 不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE=CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△P AB中AF=PF=BF知∠APF=∠P AF,从而得∠P AF=∠EPD,据此即可证得PE∥AF,从而得证;②设PD=x,则AP=1﹣x,由(1)知△PDE≌△QCE,据此得CQ=PD=x,BQ=BC+CQ=1+x,由EF是△PBQ的中位线知EF=BQ=,根据AP=EF求得x=,从而得出PD=,AP=,再求出PE==即可作出判断.【解答】解:(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,∵E是CD的中点,∴DE=CE,又∵∠DEP=∠CEQ,∴△PDE≌△QCE(ASA);(2)①∵PB=PQ,∴∠PBQ=∠Q,∵AD∥BC,∴∠APB=∠PBQ=∠Q=∠EPD,∵△PDE≌△QCE,∴PE=QE,∵EF∥BQ,∴PF=BF,∴在Rt△P AB中,AF=PF=BF,∴∠APF=∠P AF,∴∠P AF=∠EPD,∴PE∥AF,∵EF∥BQ∥AD,∴四边形AFEP是平行四边形;②四边形AFEP不是菱形,理由如下:设PD=x,则AP=1﹣x,由(1)可得△PDE≌△QCE,∴CQ=PD=x,∴BQ=BC+CQ=1+x,∵点E、F分别是PQ、PB的中点,∴EF是△PBQ的中位线,∴EF=BQ=,由①知AP=EF,即1﹣x=,解得x=,∴PD=,AP=,在Rt△PDE中,DE=,∴PE==,∴AP≠PE,∴四边形AFEP不是菱形.22.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)①S△PBC=PG(x C﹣x B),即可求解;②分点P在直线BC下方、上方两种情况,分别求解即可.【解答】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).。
2019年海南省中考数学模拟试题附答案

2019年海南省中考数学试题一、迭择题相反数是()A.-§B.2C. -2D.§2.下列计算正确的是()A. B. x* *x*=x,J C. <-3x)s=9^ D. 2x-t^=3x'3.据统计,中国水笑源总重约为27600亿立方米,居世界第六位,琪中数据27600亿用科学记数法表示为< >A. 2.75X10,B. 2.75X1。
"C.27. 5耳1。
“D.O. 275x IO154.为了节约水谓源,某市准飾按照居民家庭年用水里实行阶梯水伯,水伯分档递増.计划使第一档、第二档和第三档的水伯分别順盖全市居民家庭的80%,1読和6%.为合理确定各档之间的界限,随机抽查了该市6万户居民家庭上一年的年用水里〈単位:m s>.绘制了统计图,如囹所示.16W*';1.41.21.0QSQ6下面有四个推断:&年用水里不超过180 m'的该市居民家底技第一档水伯交离;②年用水更超过240 m'的该市居民家庭技第三档水伯交羞;©该市居民家庭年用水里的中位数在150-180之间;©该市居民家庭年用水里的平均数不超辿180.其中合理的是< >A•①⑤ B. C.②⑤ D. ®®5.有五个相冋的小正方体堆成的物体如囲所示,它的主視囲是()"L Hzl B R~n c tH。
•土6.如图,在平面自角坐标系中,三角形AB2的顶点都在方格紙的格点上,如果将三角形心先向右平移4个单位长度,冉向下平移1个単位长度,得到三角形ABC,那么点A的对应点A,的坐标为()A. (4, 3)B. (2. 4)C. (3. 1)D. (2,5)7. 如圈AAK 中,AD 为△AB :的角平分线,BE 为△瓯 的高,ZC=70° , ZAB0480 ,那么匕3是A ±3 B. 3C. ~3D.无法确定10. 有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正 方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出 一张,抽出的卡片正面囹案既是中心对称囹形,又是轴对称囹形的概率是()11. 已知点M2, yj 、B(4,免)都在反比例函数戶兰(k<0)的囹象上,则y^y :的大小关系为|()A.y :>y :B.y^y ;C.y.=y :D.无法确定12. 如囹所示,一场暴雨过后,蚕直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经删里AB=2米,则树高为( )A.诉米B.方米C.(V5+D 米13.已知° AKD 的周长为32, AB=4,贝i]BO ()14. 如囹,在正方形AKD 中,E 、F 分别是边BC 、CD 上的点,ZEAF=45°,AECF 的周长为8, 则正方形AKD 的面积为()D.220A. 0.2B.0.4C.O. 6D.O. 8A.4B. 12C.24D.28D.3米A.9 C. 20 D.259.关于x 的方程土=牛土无解,则k 的值为(X 。
2019年海南省中考数学试卷(附答案.解析)

2019年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)12 13 14 15 16人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A .B .C .D .11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A .14B .16C .18D .2012.(3分)如图,点A 、B 、C 在⊙O 上,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( )A .25°B .50°C .60°D .80°13.(3分)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3 B .4C .5D .614.(3分)如图,△ABC 的三个顶点分别为A (1,2),B (4,2),C (4,4).若反比例函数y=在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤16二、填空题(本大题共4小题,每小题4分,共16分) 15.(4分)不等式2x+1>0的解集是 .16.(4分)在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 y 2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A 和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2019年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)12 13 14 15 16人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤16【分析】由于△ABC 是直角三角形,所以当反比例函数y=经过点A 时k 最小,经过点C 时k 最大,据此可得出结论. 【解答】解:∵△ABC 是直角三角形,∴当反比例函数y=经过点A 时k 最小,经过点C 时k 最大, ∴k 最小=1×2=2,k 最大=4×4=16, ∴2≤k ≤16. 故选C .【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是 x >﹣ .【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集. 【解答】解:原不等式移项得, 2x >﹣1, 系数化为1,得, x >﹣.故答案为x >﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 < y 2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD 沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠A FB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,=.∴MN最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P (t ,t 2﹣t+3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N ,∴M (t ,0),N (t ,t+3),∴PN=t+3﹣(t 2﹣t+3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或,∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PN•CE +PN•DF=PN=[﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为; ②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2019年海南省中考数学模拟试卷(一)(解析版)

12. (3 分)如图,在⊙O 中,弦 BC=1,点 A 是圆上一点,且∠BAC=30°,则 ( )
A.π
B.
C.
D.
13. (3 分)如图,在矩形 ABCD 中,AB=5,BC=7,点 E 为 BC 上一动点,把△ABE 沿 AE 折叠, 当点 B 的对应点 B′落在∠ADC 的角平分线上时, 则点 B′到 BC 的距离为 (
第 4 页(共 13 页)
24. (15 分)如图甲,抛物线 y=ax +bx﹣1 经过 A(﹣1,0) ,B(2,0)两点,交 y 轴于点 C. (1)求抛物线的表达式和直线 BC 的表达式. (2)如图乙,点 P 为在第四象限内抛物线上的一个动点,过点 P 作 x 轴的垂线 PE 交直 线 BC 于点 D. ①在点 P 运动过程中, 四边形 ACPB 的面积是否存在最大值?若存在, 求出这个最大值; 若不存在,说明理由. ②是否存在点 P 使得以点 O,C,D 为顶点的三角形是等腰三角形?若存在,求出满足 条件的点 P 的坐标;若不存在,说明理由.
2 2
) B.y=(x﹣5) ﹣3 D.y=(x+1) ﹣3
2 2
16. (4 分)已知在反比例函数 y= 一个符合条件的 k 的值 .
图象的任一分支上,y 都随 x 的增大而增大,请写出
17. (4 分)如图,AB 是⊙O 的直径,点 P 是⊙O 上的一动点,当△AOP 与△APB 相似时, ∠BAP 等于 .
18. (4 分)如图,在正方形 ABCD 中,E、F 分别是边 BC、CD 上的点,∠EAF=45°,△ ECF 的周长为 4,则正方形 ABCD 的边长为 .
三、解答题(本大题满分 62 分) 19. (10 分) (1)计算:4×(﹣ ) +3
2019年海南省中考数学试卷及答案【新编】

2019年海南省中考数学试卷一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3分)如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元2.(3分)当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.23.(3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a44.(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣25.(3分)海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×1096.(3分)如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.7.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>28.(3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A 落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)9.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°10.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.11.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.2112.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P 作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.二、填空题(本大题满分16分,每小题4分)13.(4分)因式分解:ab﹣a=.14.(4分)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.15.(4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.16.(4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是,这2019个数的和是.三、解答题(本大题满分68分)17.(12分)(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.18.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?19.(8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<1001820.(10分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC=度,∠C=度;(2)求观测站B到AC的距离BP(结果保留根号).21.(13分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.22.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3分)如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元【分析】根据正数与负数的意义,支出即为负数;【解答】解:收入100元+100元,支出100元为﹣100元,故选:A.【点评】本题考查正数与负数的意义;能够理解正数与负数的实际意义是解题的关键.2.(3分)当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.2【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【点评】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.3.(3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【点评】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.4.(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据分式方程的求解方法解题,注意检验根的情况;【解答】解:=1,两侧同时乘以(x+2),可得x+2=1,解得x=﹣1;经检验x=﹣1是原方程的根;故选:B.【点评】本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.5.(3分)海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.6.(3分)如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2【分析】反比例函数y=图象在一、三象限,可得k>0.【解答】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a﹣2>0,∴a>2.故选:D.【点评】本题运用了反比例函数y=图象的性质,关键要知道k的决定性作用.8.(3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【点评】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.9.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.10.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.11.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.21【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE的周长为6×3=18.【解答】解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.【点评】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P 作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=,故选:B.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题(本大题满分16分,每小题4分)13.(4分)因式分解:ab﹣a=a(b﹣1).【分析】提公因式a即可.【解答】解:ab﹣a=a(b﹣1).故答案为:a(b﹣1).【点评】本题考查了提取公因式法因式分解.关键是求出多项式里各项的公因式,提公因式.14.(4分)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.15.(4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.【分析】由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.【解答】解:由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°∴∠EAF=90°∴EF==故答案为:【点评】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.16.(4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2019个数的和是2.【分析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.【解答】解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2019÷6=336…3,∴这2019个数的和是:0×336+(0+1+1)=2,故答案为:0,2.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.三、解答题(本大题满分68分)17.(12分)(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.【分析】(1)先计算负整数指数幂、乘方及算术平方根,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=9×﹣1﹣2=3﹣1﹣2=0;(2)解不等式x+1>0,得:x>﹣1,解不等式x+4>3x,得:x<2,则不等式组的解集为﹣1<x<2,所以不等式组的整数解为0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.19.(8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了50个参赛学生的成绩;(2)表1中a=8;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是C;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018【分析】(1)本次调查一共随机抽取学生:18÷36%=50(人);(2)a=50﹣18﹣14﹣10=8;(3)本次调查一共随机抽取50名学生,中位数落在C组;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人).【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(10分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC=30度,∠C=45度;(2)求观测站B到AC的距离BP(结果保留根号).【分析】(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,由三角形内角和定理即可得出∠C的度数;(2)证出△BCP是等腰直角三角形,得出BP=PC,求出P A=BP,由题意得出BP+BP =10,解得BP=5﹣5即可.【解答】解:(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,∴∠C=180°﹣∠BAC﹣∠ABC=45°;故答案为:30,45;(2)∵BP⊥AC,∴∠BP A=∠BPC=90°,∵∠C=45°,∴△BCP是等腰直角三角形,∴BP=PC,∵∠BAC=30°,∴P A=BP,∵P A+PC=AC,∴BP+BP=10,解得:BP=5﹣5,答:观测站B到AC的距离BP为(5﹣5)海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.21.(13分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE=CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE ≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△P AB中AF=PF=BF知∠APF=∠P AF,从而得∠P AF=∠EPD,据此即可证得PE∥AF,从而得证;②设PD=x,则AP=1﹣x,由(1)知△PDE≌△QCE,据此得CQ=PD=x,BQ=BC+CQ=1+x,由EF是△PBQ的中位线知EF=BQ=,根据AP=EF求得x=,从而得出PD=,AP=,再求出PE==即可作出判断.【解答】解:(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,∵E是CD的中点,∴DE=CE,又∵∠DEP=∠CEQ,∴△PDE≌△QCE(ASA);(2)①∵PB=PQ,∴∠PBQ=∠Q,∵AD∥BC,∴∠APB=∠PBQ=∠Q=∠EPD,∵△PDE≌△QCE,∴PE=QE,∵EF∥BQ,∴PF=BF,∴在Rt△P AB中,AF=PF=BF,∴∠APF=∠P AF,∴∠P AF=∠EPD,∴PE∥AF,∵EF∥BQ∥AD,∴四边形AFEP是平行四边形;②四边形AFEP不是菱形,理由如下:设PD=x,则AP=1﹣x,由(1)可得△PDE≌△QCE,∴CQ=PD=x,∴BQ=BC+CQ=1+x,∵点E、F分别是PQ、PB的中点,∴EF是△PBQ的中位线,∴EF=BQ=,由①知AP=EF,即1﹣x=,解得x=,∴PD=,AP=,在Rt△PDE中,DE=,∴PE==,∴AP≠PE,∴四边形AFEP不是菱形.【点评】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、直角三角形的性质、平行四边形与菱形的判定、性质等知识点.22.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)①S△PBC=PG(x C﹣x B),即可求解;②分点P在直线BC下方、上方两种情况,分别求解即可.【解答】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏.。
-2019年初中数学海南中考考试模拟试卷含答案考点及解

-2019年初中数学海南中考考试模拟试卷含答案考点及解2022年-2022年初中数学海南中考考试模拟试卷含答案考点及解析班级:___________ 姓名:___________ 分数:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7B.8C.9D.10B试题分析:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选;B.考点:中位数2.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1 到6的点数,掷得面朝上的点数小于3的概率为()A.B.C.D.D.试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵六个面上数小于3的有1,2两个,∴掷得面朝上的点数小于3的概率为.故选D.考点:概率.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°C试题分析:根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角)计算出角度即可.该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.故选C.考点:本题考查了图形的旋转变化点评:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.4.的绝对值是A.B.C.D.2D解:的绝对值是,故选D.5.数据1,1,2,2,3,3,3的极差是A.1B.2C.3D.6B极差=最大值-最小值=3-1=2,故选B6.-2的绝对值是A.-B.-2C.D.2D。
2019年中考一模数学试卷附答案

2019年中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列说法正确的是()A.立方根是它本身的数只能是0和1B.如果一个数有立方根,那么这个数也一定有平方根C.16的平方根是4D.﹣2是4的一个平方根2.下列因式分解正确的是()A.6x+9y+3=3(2x+3y)B.x2+2x+1=(x+1)2C.x2﹣2xy﹣y2=(x﹣y)2D.x2+4=(x+2)23.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦6.在平面直角坐标系中,已知A(,1),O(0,0),C(,0)三点,AE平分∠OAC,交OC于E,则直线AE对应的函数表达式是()A.y=x﹣B.y=x﹣2C.y=x﹣1D.y=x﹣27.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°8.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.9.若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是()A.a,b B.a,b+2C.a+2,b D.a+2,b+210.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.6二.填空题(共8小题,满分24分,每小题3分)11.﹣3的绝对值的倒数的相反数是.12.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=.13.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.14.如图,▱OABC中顶点A在x轴负半轴上,B、C在第二象限,对角线交于点D,若C、D两点在反比例函数的图象上,且▱OABC的面积等于12,则k的值是.15.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为度.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为,当x时,kx+b<0.17.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.18.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.三.解答题(共8小题)19.(1)计算:()﹣1+2(π﹣3.14)0﹣2sin60°﹣+|1﹣3|;(2)解方程:=1﹣.20.如图,AB=AC=AD.(1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;(2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.21.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.22.某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?23.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?24.如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O 的切线.25.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.26.已知AM是⊙O直径,弦BC⊥AM,垂足为点N,弦CD交AM于点E,连按AB和BE.(1)如图1,若CD⊥AB,垂足为点F,求证:∠BED=2∠BAM;(2)如图2,在(1)的条件下,连接BD,若∠ABE=∠BDC,求证:AE=2CN;(3)如图3,AB=CD,BE:CD=4:7,AE=11,求EM的长.2019年中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据立方根和平方根的定义分别判断后即可确定正确的选项.【解答】解:A、立方根是它本身的数有﹣1、0和1,故错误,不符合题意;B、负数有立方根但没有平方根,故错误,不符合题意;C、16的平方根是±4,故错误,不符合题意;D、﹣2是4的一个平方根,正确,符合题意,故选:D.【点评】本题考查了平方根和立方根的知识,解题的关键是了解有关的定义,难度不大.2.【分析】根据因式分解的方法即可求出答案.【解答】解:(A)原式=3(2x+3y+1),故A错误;(C)x2﹣2xy﹣y2不是完全平方式,不能因式分解,故C错误;(D)x2+4不能因式分解,故D错误;故选:B.【点评】本题考查因式分解的方法,涉及提取公因式,完全平方公式,平方差公式,解题的关键会判断多项式是否满足完全平方式以及平方差公式.3.【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.4.【分析】直接利用概率的意义分析得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.5.【分析】把数据1.82×107写成原数,就是把1.82的小数点向右移动7位.【解答】解:把数据1.82×107中1.82的小数点向右移动7位就可以得到,为18 200 000.故选C.【点评】用科学记数法a×10n表示的数还原成原数时,n是几,小数点就向后移几位.6.【分析】先求E点坐标,再求直线解析式.【解答】解:∵A(,1),O(0,0),C(,0),∴OA=2,AC=1,OC=.∠AOC=∠OAE=∠EAC=30°.∴2EC=AE,CE=,OE=﹣=,即点E(,0).设直线AE对应的函数表达式是y=kx+b,把点E、A的坐标代入解得,k=,b=﹣2,即y=x﹣2.故选:B.【点评】主要考查了待定系数法求函数解析式和点的坐标的意义以及与图形相结合的具体运用.要把点的坐标有机的和图形结合起来求解.7.【分析】先求出∠B,根据相似三角形对应角相等就可以得到.【解答】解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C .【点评】本题考查相似三角形的性质的运用,全等三角形的对应角相等,是基础知识要熟练掌握.8.【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x 个零件,则实际每小时生产(x +10)个零件.根据等量关系列方程得:12(x +10)=13x +60.故选:B .【点评】列方程解应用题的关键是找出题目中的相等关系.9.【分析】根据数据x 1,x 2,…,x n 的众数为a ,方差为b ,可知数据x 1+2,x 2+2,…,x n +2与原来数据相比都增加2,则众数相应的加2,平均数都加2,则方差不变.【解答】解:∵数据x 1,x 2,…,x n 的众数为a ,方差为b ,∴数据x 1+2,x 2+2,…,x n +2的众数为a +2,这组数据的方差是b ,故选:C .【点评】本题考查方差和众数,解答本题的关键是明确题意,利用众数和方差的定义解答. 10.【分析】作OE ⊥AD 于E ,连接OD ,在Rt △ADE 中,根据垂径定理和勾股定理即可求解.【解答】解:作OE ⊥AD 于E ,连接OD ,则AE =DE =3,OE =3.在Rt △ADE 中,OD ==3.故选:B .【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二.填空题(共8小题,满分24分,每小题3分)11.【分析】根据绝对值、倒数、相反数,即可解答.【解答】解:﹣3的绝对值是3,3的倒数是,的相反数是﹣,故答案为:﹣.【点评】本题考查了绝对值、倒数、相反数,解决本题的关键是熟记绝对值、倒数、相反数.12.【分析】根据根与系数的关系可知a+b=﹣2,又知a是方程的根,所以可得a2+2a﹣7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.【解答】解:∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2,∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5,故答案为:5.【点评】本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b的形式,结合根与系数的关系以及一元二次方程的解即可解答.13.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°.故答案为:36°.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.14.【分析】根据平行四边形的性质的性质及反比例函数k的几何意义,判断出OE=EF,再由△AOC的面积,可得关于k的方程,解出即可.【解答】解:如图所示:∵▱OABC的面积等于12,∴△AOC的面积为6,∵点D是线段AC的中点,CE∥DF,∴DF 是△ACE 的中位线,∴CE =2DF ,AF =EF ,又∵S △OCE =S △ODF =,∴OF =2OE ,S △ADF =,S △ACE =|k |,∴S △ACE +S △OCE =S △AOC =6,即=6, 又∵k <0(反比例函数在第二象限),∴k =﹣4.故答案为:﹣4.【点评】本题考查了平行四边形的性质及反比例函数k 的几何意义,涉及的知识点较多,注意理清解题思路,分步求解.15.【分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.【点评】本题考查的是扇形统计图的综合运用,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.16.【分析】于x 的方程kx +b =0的解其实就是求当函数值为0时,x 的值,kx +b <0就是求函数值小于0时,x 的取值范围.【解答】解:从图象上可知则关于x 的方程kx +b =0的解为的解是x =﹣3,当x <﹣3时,kx +b <0.故答案为:x =﹣3,x <﹣3.【点评】本题主要考查了一次函数与一元一次方程的关系,一次函数与一元一次不等式的关系,关键是知道通过图象怎么求方程的解和不等式的取值范围.17.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k 可得k =﹣2m 2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m ,﹣2m )在双曲线(k ≠0)上, ∴m •(﹣2m )=k ,解得:k =﹣2m 2,∵﹣2m 2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【解答】解:∵在Rt△ABC中,AB=AC=,∴∠B=∠C=45°,BC=,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC∴DE=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=,则第n个内接正方形的边长为:2×,∴则第2014个内接正方形的边长为2×=2×=.故答案为:.【点评】此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.三.解答题(共8小题)19.【分析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,二次根式性质,以及绝对值的代数意义化简,计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2016+2﹣﹣2+3﹣1=2017;(2)去分母得:3=2x+2﹣2,解得:x=1.5,经检验x=1.5是分式方程的解.【点评】此题考查了解分式方程,以及实数的运算,涉及的知识有:零指数幂、负整数指数幂,特殊角的三角函数值,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.20.【分析】(1)∠C=2∠D.由于AD∥BC,利用平行线性质可得∠D=∠DBC,又AB=AD,可得∠D=∠ABD,易求∠ABC=2∠D,又AB=AC,可知∠ABC=∠C,等量代换可得∠C=2∠D;(2)AD∥BC.由于AB=AC,可得∠ABC=∠C=2∠D,而AB=AD,那么有∠ABD=∠D,从而有∠DBC=∠D,那么易证AD∥BC.【解答】解:(1)∠C=2∠D,证明:∵AD∥BC,∴∠D=∠DBC,又∵AB=AD,∴∠D=∠ABD,∴∠ABC=2∠D,∵AB=AC,∴∠C=∠ABC=2∠D;(2)AD∥BC,(6分)证明:∵AB=AC,∴∠ABC=∠C=2∠D,又∵AB=AD,∴∠ABD=∠D,∴∠DBC=∠D,∴AD∥BC.【点评】本题考查了平行线的性质、判定、等腰三角形的性质.21.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.【解答】解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.22.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以360°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以1500,计算即可得解.【解答】解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【分析】(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据单价=总价÷数量结合第二次购进茶叶每千克比第一次购进的贵10元,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设每千克茶叶售价y元,根据利润=销售收入﹣成本,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据题意得:﹣=10,解得:x=200,经检验,x=200是原方程的根,且符合题意,∴2x+x=2×200+200=600.答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克.(2)设每千克茶叶售价y元,根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200.答:每千克茶叶的售价至少是200元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量之间的关系,找出关于y的一元一次不等式.24.【分析】要想证DE是⊙O的切线,只要连接OD,AD,求证∠ODE=90°即可.【解答】证明:连接AD、DO;∵AB是⊙O的直径,∴∠ADB=∠ADC=90°.∵E是AC的中点,∴DE=AE(直角三角形中斜边中线等于斜边一半),∴∠EAD=∠EDA.∵OA=OD,∴∠DAO=∠ADO,∴∠EDO=∠EDA+∠ADO=∠EAD+∠DAO=∠CAB=90°.∴OD⊥DE.DE是⊙O的切线.【点评】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.25.【分析】求证四边形AECF是平行四边形.只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证.依据△AOE≌△COF即可证明OA=OC.【解答】证明:∵平行四边形ABCD中AB∥CD,∴∠OAE=∠OCF,又∵OA=OC,∠COF=∠AOE,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AECF是平行四边形.【点评】本题主要考查了平行四边形的判定,正确求证OE=OF是证明的关键.26.【分析】(1)根据垂径定理可得BN=CN,根据垂直平分线的性质可得EB=EC,从而可得∠BED=2∠BCD,只需证明∠BAM=∠BCD即可;(2)连接AC,如图2,易得BC=2CN,要证AE=2CN,只需证AE=BC,只需证△ABE≌△CDB,只需证BE=BD即可;(3)过点O作OP⊥AB于P,作OH⊥BE于H,作OQ⊥CD于Q,连接OC,如图3,由AB=CD可推出OP=OQ,易证∠BEA=∠CEA,根据角平分线的性质可得OH=OQ,即可得到OP=OH,则有===,从而可得==.由AE=11可求出AO、EO,就可求出AM、EM.【解答】解:(1)∵BC⊥AM,CD⊥AB,∴∠ENC=∠EFA=90°.∵∠AEF=∠CEN,∴∠BAM=∠BCD.∵AM是⊙O直径,弦BC⊥AM,∴BN=CN,∴EB=EC,∴∠EBC=∠BCD,∴∠BED=2∠BCD=2∠BAM;(2)连接AC,如图2,∵AM是⊙O直径,弦BC⊥AM,∴=,∴∠BAM=∠CAM,∴∠BDC=∠BAC=2∠BAM=∠BED,∴BD=BE.在△ABE和△CDB中,,∴△ABE≌△CDB,∴AE=CB.∵BN=CN,∴AE=CB=2CN;(3)过点O作OP⊥AB于P,作OH⊥BE于H,作OQ⊥CD于Q,连接OC,如图3,则有AP=BP=AB,CQ=DQ=CD.∵AB=CD,∴AP=CQ,∴OP===OQ.∵AM垂直平分BC,∴EB=EC,∴∠BEA=∠CEA.∵OH⊥BE,OQ⊥CD,∴OH=OQ,∴OP=OQ=OH,∴====.又∵=,∴=.设AO=7k,则EO=4k,∴AE=AO+EO=11k=11,∴k=1,∴AO=7,EO=4,∴AM=2AO=14,∴EM=AM﹣AE=14﹣11=3.【点评】本题主要考查了垂径定理、圆周角定理、角平分线的性质、全等三角形的判定与性质、垂直平分线的性质、等腰三角形的性质、勾股定理、等角的余角相等、等高(或同高)三角形的面积比等于底的比等知识,证到BD=BE是解决第(2)小题的关键,证到OP=OH是解决第(3)小题的关键.。
2019年海南省中考数学模拟试卷(一)含答案解析

的对应点 B′落在∠ ADC 的角平分线上时,则点 B′到 BC 的距离为(
)
A .1 或 2
B.2 或 3
C. 3 或 4
14.将抛物线 y= x2﹣4x﹣ 4 向左平移 3 个单位,再向上平移
D.4 或 5 5 个单位,得到抛物线的函数表达式
为( ) A . y=( x+1)2﹣ 13 C. y=( x﹣ 5)2﹣ 13
2019 年海南省中考数学模拟试卷(一)
一、选择题(本大题满分 1.2019 的相反数是(
42 分,每小题 3 分) )
A .2019
B .﹣ 2019
C.
D .﹣
2.方程 x+3=2 的解为(
)
A .1
B .﹣ 1
C. 5
D.﹣ 5
3.2018 年 6 月 3 日,海南宣布设立海南自贸区海口江东新区,总面积约
一、选择题(本大题满分 1.2019 的相反数是(
参考答案与试题解析
42 分,每小题 3 分) )
A .2019
B .﹣ 2019
298000000 平方米.数据
298000000 用科学记数法表示为(
)
6
A .298× 10
7
B . 29.8× 10
8
C. 2.98×10
4.某班 5 位学生参加中考体育测试的成绩(单位:分)分别是:
据的众数是(
)
9
D. 0.298×10 50、45、 36、 48、50.则这组数
A .36
B . 45
AB 的高度,小明分别在塔的对面一楼房 CD 的楼
底 C、楼顶 D 处,测得塔顶 A 的仰角为 45°和 30°,已知楼高 CD 为 10m,求塔的高
2019-2020海南中学中考数学一模试卷含答案

25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘 行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐 后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完 整的统计图.
(1)这次被调查的同学共有
人;
(2)补全条形统计图,并在图上标明相应的数据; (3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供 50 人食 用一餐.据此估算,该校 18000 名学生一餐浪费的食物可供多少人食用一餐.
8.D
解析:D 【解析】
【分析】 根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】 对角线互相垂直且平分的四边形是菱形,故 A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故 B 是假命题; 对角线相等且平分的四边形是矩形,故 C 是假命题; 对角线互相平分的四边形是平行四边形,故 D 是真命题. 故选 D. 【点睛】 本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的 真假关键是要熟悉课本中的性质定理.
【分析】
根据点在 x 轴上的特征,纵坐标为 0,可得 m+1=0,解得:m=-1,然后再代入 m+3,可求出横坐标. 【详解】
解:因为点 P(m + 3,m + 1)在 x 轴上,
所以 m+1=0,解得:m=-1, 所以 m+3=2, 所以 P 点坐标为(2,0). 故选 D.
【点睛】
本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.
6.C
解析:C 【解析】 【分析】 按照题中所述,进行实际操作,答案就会很直观地呈现. 【详解】 解:将图形 按三次对折的方式展开,依次为:
2019年海南省中考数学试卷(含答案解析版)

年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)(海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)(海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A 的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°8.(3.00分)(海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)(海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)(海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)(海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)(海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)(海南)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)(海南)五边形的内角和的度数是.17.(4.00分)(海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)(海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)(海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)(海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)(海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)(海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG 的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)(海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)(海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【考点】46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)(海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】W5:众数.【专题】1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)(海南)下列四个几何体中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)(海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A 的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)(海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【考点】JA:平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】1 :常规题型;524:一元一次不等式(组)及应用.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程及应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)(海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)(海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【考点】KQ:勾股定理;R2:旋转的性质;T7:解直角三角形.【专题】55:几何图形.【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)(海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【考点】KX:三角形中位线定理;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)(海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【考点】L7:平行四边形的判定与性质;LB:矩形的性质;LE:正方形的性质;PC:图形的剪拼.【专题】556:矩形菱形正方形.【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)(海南)比较实数的大小:3>(填“>”、“<”或“=”).【考点】2A:实数大小比较.【专题】11 :计算题.【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)(海南)五边形的内角和的度数是540°.【考点】L3:多边形内角与外角.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【考点】F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN 是解本题的关键.18.(4.00分)(海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB 是平行四边形,则点C的坐标为(2,6).【考点】KQ:勾股定理;L5:平行四边形的性质;M2:垂径定理.【专题】1 :常规题型.【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)(海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【考点】2C:实数的运算;36:去括号与添括号;4C:完全平方公式;6F:负整数指数幂.【专题】1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)(海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).【考点】VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)(海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG 的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)(海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【考点】HF:二次函数综合题.【专题】16 :压轴题;32 :分类讨论;41 :待定系数法;523:一元二次方程及应用;537:函数的综合应用;554:等腰三角形与直角三角形.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x 2+2x +3;(2)①∵y=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD=2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ=90°或∠AQD=90°,i .当∠ADQ=90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y=x +1,∴可设直线DQ 解析式为y=﹣x +b′,把D (2,3)代入可求得b′=5,∴直线DQ 解析式为y=﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD=90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y=k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y=k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年海南省中考数学试题(Word版,含解析)

2019年海南省中考数学试卷一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3分)如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元2.(3分)当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.23.(3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4 4.(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣25.(3分)海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109 6.(3分)如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.7.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>28.(3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)9.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°10.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.11.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.2112.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.二、填空题(本大题满分16分,每小题4分)13.(4分)因式分解:ab﹣a=.14.(4分)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.15.(4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.16.(4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是,这2019个数的和是.三、解答题(本大题满分68分)17.(12分)(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.18.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?19.(8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<1001820.(10分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC=度,∠C=度;(2)求观测站B到AC的距离BP(结果保留根号).21.(13分)如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.22.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2019年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3分)如果收入100元记作+100元,那么支出100元记作()A.﹣100元B.+100元C.﹣200元D.+200元【分析】根据正数与负数的意义,支出即为负数;【解答】解:收入100元+100元,支出100元为﹣100元,故选:A.【点评】本题考查正数与负数的意义;能够理解正数与负数的实际意义是解题的关键.2.(3分)当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.2【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【点评】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.3.(3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【点评】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.4.(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据分式方程的求解方法解题,注意检验根的情况;【解答】解:=1,两侧同时乘以(x+2),可得x+2=1,解得x=﹣1;经检验x=﹣1是原方程的根;故选:B.【点评】本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.5.(3分)海口市首条越江隧道﹣﹣文明东越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为()A.371×107B.37.1×108C.3.71×108D.3.71×109【分析】根据科学记数法的表示方法a×10n(1≤a<9)即可求解;【解答】解:由科学记数法可得3710000000=3.17×109,故选:D.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.6.(3分)如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)如果反比例函数y=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2【分析】反比例函数y=图象在一、三象限,可得k>0.【解答】解:∵反比例函数y=(a是常数)的图象在第一、三象限,∴a﹣2>0,∴a>2.故选:D.【点评】本题运用了反比例函数y=图象的性质,关键要知道k的决定性作用.8.(3分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.【点评】本题运用了点的平移的坐标变化规律,关键是由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.9.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.10.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.11.(3分)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.21【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.【解答】解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.【点评】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=,故选:B.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题(本大题满分16分,每小题4分)13.(4分)因式分解:ab﹣a=a(b﹣1).【分析】提公因式a即可.【解答】解:ab﹣a=a(b﹣1).故答案为:a(b﹣1).【点评】本题考查了提取公因式法因式分解.关键是求出多项式里各项的公因式,提公因式.14.(4分)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为144度.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.15.(4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.【分析】由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.【解答】解:由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°∴∠EAF=90°∴EF==故答案为:【点评】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.16.(4分)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2019个数的和是2.【分析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.【解答】解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2019÷6=336…3,∴这2019个数的和是:0×336+(0+1+1)=2,故答案为:0,2.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.三、解答题(本大题满分68分)17.(12分)(1)计算:9×3﹣2+(﹣1)3﹣;(2)解不等式组,并求出它的整数解.【分析】(1)先计算负整数指数幂、乘方及算术平方根,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=9×﹣1﹣2=3﹣1﹣2=0;(2)解不等式x+1>0,得:x>﹣1,解不等式x+4>3x,得:x<2,则不等式组的解集为﹣1<x<2,所以不等式组的整数解为0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.19.(8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了50个参赛学生的成绩;(2)表1中a=8;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是C;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018【分析】(1)本次调查一共随机抽取学生:18÷36%=50(人);(2)a=50﹣18﹣14﹣10=8;(3)本次调查一共随机抽取50名学生,中位数落在C组;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人).【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(10分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC=30度,∠C=45度;(2)求观测站B到AC的距离BP(结果保留根号).【分析】(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,由三角形内角和定理即可得出∠C的度数;(2)证出△BCP是等腰直角三角形,得出BP=PC,求出P A=BP,由题意得出BP+BP=10,解得BP=5﹣5即可.【解答】解:(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,∴∠C=180°﹣∠BAC﹣∠ABC=45°;故答案为:30,45;(2)∵BP⊥AC,∴∠BP A=∠BPC=90°,∵∠C=45°,∴△BCP是等腰直角三角形,∴BP=PC,∵∠BAC=30°,∴P A=BP,∵P A+PC=AC,∴BP+BP=10,解得:BP=5﹣5,答:观测站B到AC的距离BP为(5﹣5)海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.21.(13分)如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE =CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△P AB中AF=PF=BF 知∠APF=∠P AF,从而得∠P AF=∠EPD,据此即可证得PE∥AF,从而得证;②设AP=x,则PD=1﹣x,若四边形AFEP是菱形,则PE=P A=x,由PD2+DE2=PE2得关于x的方程,解之求得x的值,从而得出四边形AFEP为菱形的情况.【解答】解:(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,∵E是CD的中点,∴DE=CE,又∵∠DEP=∠CEQ,∴△PDE≌△QCE(ASA);(2)①∵PB=PQ,∴∠PBQ=∠Q,∵AD∥BC,∴∠APB=∠PBQ=∠Q=∠EPD,∵△PDE≌△QCE,∴PE=QE,∵EF∥BQ,∴PF=BF,∴在Rt△P AB中,AF=PF=BF,∴∠APF=∠P AF,∴∠P AF=∠EPD,∴PE∥AF,∵EF∥BQ∥AD,∴四边形AFEP是平行四边形;②当AP=时,四边形AFEP是菱形.设AP=x,则PD=1﹣x,若四边形AFEP是菱形,则PE=P A=x,∵CD=1,E是CD中点,∴DE=,在Rt△PDE中,由PD2+DE2=PE2得(1﹣x)2+()2=x2,解得x=,即当AP=时,四边形AFEP是菱形.【点评】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、直角三角形的性质、平行四边形与菱形的判定、性质等知识点.22.(15分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)①S△PBC=PG(x C﹣x B),即可求解;②分点P在直线BC下方、上方两种情况,分别求解即可.【解答】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题
1. 下列立体图形中,主视图是三角形的是( )
A.
B.
C.
D.
2. 有一组数据:1,4,﹣3,3,4,这组数据的中位数为( ) A . ﹣3 B . 1 C . 3 D . 4 3. 如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是( )
面积共2200公顷,其中计划恢复湿地面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积. 18. 某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校
学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其 中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1) 求参加这次调查的学生人数,并补全条形统计图;
(2) 求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3) 若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?
19. 如图,反比例函数
的图象与一次函数y2=kx+b的图象交于A、B两点.已知A(2,n),B(-
,-2).
(1) 求反比例函数和一次函数的解析式; (2) 求△AOB的面积; (3) 请结合图象直接写出当y1≥y2时自变量x的取值范围. 20. 如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.
(1) 求证:△AFD≌△BFE; (2) 求证:四边形AEBD是菱形; (3) 若DC= ,tan∠DCB=3,求菱形AEBD的面积. 21. 已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方 抛物线上的一个动点.
(1) 求抛物线的解析式; (2) 当点P运动到什么位置时,△PAB的面积有最大值? (3) 过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△P DE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 参考答案 1. 2. 3. 4. 5. 6. 7. 8.
A . 3.5 B . 4 C . 7 D . 14 8. 从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A. B. C. D. 9. 如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )
A . 40° B . 50° C . 60° D . 70°
10. 方程
14. 如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而________.(填“增大”或“ 减小”)
15. 如图,在正方形ABCD中,点E为AD的中点,连接EC,过点E作EF⊥EC,交AB于点F,则tan∠ECF=________.
三、解答题 16. 计算: (1) (2) a(a﹣8)﹣(a﹣2)2 17. 保护和管理好湿地,对于维护一个城市生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的
的解为( )
A. B. C. D.
11. 如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.
已知FG=2,则线段AE的长度为( )
A . 6 B . 8 C . 10 D . 12 二、填空题
12. 因式分解:x2﹣4=________. 13. 如图,在△ABC中,DE是AC的垂直平分线且分别交BC , AC于点D和E , ∠B=60°,∠C=25°,则∠BAD的度 数为________.
A . (﹣1,6) B . (﹣9,6) C . (﹣1,2) D . (﹣9,2)
4. 若
在实数范围内有意义,则x的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
5. 如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上。如果∠2=44°,那么∠1的度数是( )
A . 14° B . 15° C . 16° D . 17° 6. 若点A(﹣2,3)在反比例函数y= 的图象上,则k的值是( ) A . ﹣6 B . ﹣2 C . 2 D . 6 7. 如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )
9. 10. 11. 12. 13. 14. 15. 16.
17.18.Βιβλιοθήκη 19. 20.21.