八年级数学期中考试试卷
八年级数学试卷期中带答案
考试时间:90分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 已知a=2,b=-3,则a²+b²的值为()A. 1B. 5C. 13D. 93. 如果x²-4x+4=0,那么x的值为()A. 2B. -2C. 4D. -44. 在直角坐标系中,点P(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 非等腰梯形6. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 28cmC. 30cmD. 32cm7. 已知a、b、c是三角形的三边,且a+b>c,b+c>a,a+c>b,那么下列结论正确的是()A. a=b=cB. a、b、c构成直角三角形C. a、b、c构成等腰三角形D. a、b、c构成等边三角形8. 在一次数学竞赛中,甲、乙、丙三名同学的成绩分别为90分、85分、88分,那么他们的平均成绩是()A. 87分B. 89分C. 90分D. 91分9. 一个等腰直角三角形的斜边长为5cm,那么这个三角形的面积是()A. 6.25cm²B. 12.5cm²C. 25cm²D. 10cm²10. 下列函数中,y与x成一次函数关系的是()A. y=x²+1B. y=2x-3C. y=√xD. y=x³+2二、填空题(每题5分,共50分)11. 若|a|=5,则a=______。
12. 在直角坐标系中,点A(-3,4)关于x轴的对称点是______。
13. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是______cm。
人教版八年级上册数学期中考试试卷带答案
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
八年级期中试卷数学及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。
12. 绝对值小于2的有理数有______。
13. 若|a| = 5,则a的值为______。
14. 已知a、b是实数,且a - b = 3,则a + b的值为______。
15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。
16. 若|a| = |b|,则a和b的关系是______。
17. 若a^2 = b^2,则a和b的关系是______。
18. 若a、b是实数,且a + b = 0,则a和b互为______。
19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。
20. 若|a| > |b|,则a和b的关系是______。
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
八年级下册数学期中测试卷
学校:班级:姓名:密封线广州市英东中学2023—2024学年第二学期期中考试题八年级数学试卷满分:120分,时间:120分钟一、选择题:(每题3分,共30分)1.下列二次根式中,属于最简二次根式的是()A .21B .8.0C .4D .52.有意义的条件是二次根式3 x ()A.x>3 B.x>-3 C.x ≥-3 D.x ≥33.正方形面积为36,则对角线的长为()A.6B.C.9D.4.矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.55.在直角三角形中,若斜边的长为13,一条直角边长为5,则这个三角形的斜边上的高的长是()A.5 B.12 C.1360 D.60136.下列条件中能判断四边形是平行四边形的是()A.对角线互相垂直 B.对角线相等C.对角线互相垂直且相等 D.对角线互相平分7.在□ABCD 中,已知AD =5cm,A B =3cm,AE 平分∠BAD 交BC 边于点E ,则EC 等于()A.1cm B.2cm C.3cm D .4cm 8.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是()A.12B.16C.20D.249.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为().A.6B.8C.10D.1210.如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF =()A.45°B.30°C.60°D.55°(第8题)(第9题)(第10题)A B C D F D ’二、填空:(每题3分,共18分)11.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.12.计算:(1+3)(1-3)=.13.已知菱形的两条对角线长为8cm和6cm,那么这个菱形的面积是.14.已知直角三角形两边的长为4和5,则此三角形的周长为__________.15.平行四边形ABCD,加一个条件__________________,它就是矩形.=请你找出其中规律,并将第n(n≥1)个等式写出来.三、解答题:(共72分)17.(本题满分4分)计算3)(32223(-2+327)2(2-8-+318.(本题满分4分)若△ABC的三边长a,b,c满足等式(a-5)²+b−12+c-13=0,求△ABC的面积.19.(本题满分6分)如图,在△ABC中,AD⊥BC,垂足为D,AD=4,AB=6,AC=8,求BC的长.20.(本题满分6分)如图,四边形BFCE是平行四边形,点A,B,C,D在同一条直线上,且AB=CD,连接A E,DF.求证:AE=DF.21.(本题满分8分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB 的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.求证:四边形AEBD是矩形.22.(本题满分10分),在△ABC中,∠ACB=90°,D是AB的中点,E是AC 的中点,过点D作DE⊥AC于点E,延长DE到点F,使得EF=DE,连接AF,CF.求证:四边形ADCF是菱形;23.(本题满分10分)四边形ABCD、DEFG都是正方形,连接AE、CG.求证:AE⊥CG。
人教版数学八年级上册期中考试题附答案
人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。
3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。
若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。
10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。
11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。
运城中学2023-2024学年八年级上学期期中考试数学试卷(含解析)
2023-2024学年山西省运城中学八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列根式是最简二次根式的是( )A.B.C.D.解析:解:A、,故此选项不符合题意;B、是最简二次根式,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选:B.2.(3分)下列说法中正确的是( )A.带根号的数都是无理数B.绝对值最小的实数是0C.算术平方根等于本身的数只有1D.负数没有立方根解析:解:=2,它是有理数,则A不符合题意;绝对值最小的实数是0,则B符合题意;算术平方根等于本身的数是0和1,则C不符合题意;任意实数都有立方根,则D不符合题意;故选:B.3.(3分)信息课上,小文同学利用计算机软件绘制了美丽的蝴蝶,如图,在绘图过程中,小文建立平面直角坐标系,先画出一半图形,利用对称性画出另一半.若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为( )A.(3,2)B.(2,3)C.(3,﹣2)D.(﹣3,﹣2)解析:解:若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为(3,2).故选:A.4.(3分)已知△ABC的三边为a,b,c,下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.b2=(a+c)(a﹣c)C.∠A﹣∠B=∠C D.解析:解:A、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴最大角∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;B、∵b2=(a+c)(a﹣c),∴b2=(a+c)(a﹣c)=a2﹣c2,即b2+c2=a2,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A﹣∠B=∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、∵,设a=x>0,则,,即有b2+a2=c2,∴此三角形是直角三角形,故本选项不符合题意;故选:A.5.(3分)如图,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点B,若该圆柱体的底面周长是8厘米,高是3厘米,则蚂蚁爬行的最短距离为( )A.6厘米B.厘米C.厘米D.5厘米解析:解:圆柱体的侧面展开图如图所示,连接AB,∵圆柱体的底面周长是8厘米,高是3厘米,∴AC=3cm,BC=8=4(cm),∴蚂蚁爬行的最短距离AB==5(cm).故选:D.6.(3分)假期小敏一家自驾游山西,爸爸开车到加油站加油,小敏发现加油机上的数据显示牌(如图)金额随着数量的变化而变化,则下列判断正确的是( )A.金额是自变量B.单价是自变量C.168.8和20是常量D.金额是数量的函数解析:解:单价是常量,金额和数量是变量,金额是数量的函数,故选项D符合题意.故选:D.7.(3分)下列四个选项中,符合直线y=﹣x+2的性质的选项是( )A.经过第一、三、四象限B.y随x的增大而增大C.函数图象必经过点(1,1)D.与y轴交于点(0,﹣2)解析:解:∵直线解析式为y=﹣x+2,﹣1<0,2>0,∴直线经过第一、二、四选项,y随x增大而减小,故A、B不符合题意;当x=1时,y=﹣1+2=1,即函数经过点(1,1),故C符合题意;当x=0时,y=2,即直线与y轴交于点(0,2),故D不符合题意;故选:C.8.(3分)按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.B.C.2D.3解析:解:由所给的程序可知,当输入64时,=8,∵8是有理数,∴取其立方根可得到,=2,∵2是有理数,∴取其算术平方根可得到,∵是无理数,∴y=.故选:A.9.(3分)如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以点B为圆心,AB的长为半径画弧,交数轴于点D,则点D表示的数是( )A.B.C.D.解析:解:在△ABC中,∠ACB=90°,BC=2,AC=1,则AB===,由题意得BD=AB=,∴CD=﹣2,∵点C表示的数是0,∴点D表示的数是﹣(﹣2),即2﹣,10.(3分)清徐葡萄驰名华夏,是山西的著名传统水果之一.店庆来临之际,某超市对清徐葡萄采取促销方式,购买数量超过5千克后,超过的部分给予优惠,水果的购买数量x(kg)与所需金额y(元)的函数关系如图所示.小丽用120元去购买该种水果,则她购买的数量为( )A.20kg B.21kg C.22kg D.23kg解析:解:设超过部分的函数解析式为y=kx+b,将点(5,30),(15,80)代入得:,解得:,∴超过部分的函数解析式为y=5x+5,当y=120时,即5x+5=120,解得:x=23,∴小丽购买的数量为23kg,故选:D.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)要使代数式有意义,则x可以取的最小整数是 3 .解析:解:要使代数式有意义,那么x﹣3≥0,则x≥3,故x可以取的最小整数是3,故答案为:3.12.(3分)P1(﹣1,y1),P2(3,y2)是一次函数y=2x﹣3图象上的两点,则y1 < y2.(填“>.“=”或“<”)解析:解:∵k=2>0,∴y随x的增大而增大,∴y1<y2.故答案为:<.13.(3分)一个立方体的体积是4,则它的棱长是 .解析:解:设立方体的棱长为a,则a3=4,∴a=,故答案为:.14.(3分)如图,直线y=2x与y=kx+b相交于点P(1,2),则关于x的方程kx+b=2x的解是 x=1 .解析:解:∵直线y=2x与y=kx+b相交于点P(1,2),∴方程kx+b=2x的解,即为直线y=2x与y=kx+b的交点的横坐标的值,∴方程kx+b=2x的解为x=1,故答案为:x=1.15.(3分)如图,在长方形ABCD中,AB=5,BC=4,F是BC边上的一点,将△CDF沿着DF翻折,点C恰好落在AB边上的点E处,则阴影部分的面积为 .解析:解:∵四边形ABCD是矩形,AB=5,BC=4,∴AD=BC=4,CD=AB=5,∠A=∠B=∠C=90°,由折叠得ED=CD=5,EF=CF=4﹣BF,∴AE===3,∴BE=AB﹣AE=5﹣3=2,∵BE2+BF2=EF2,∴22+BF2=(4﹣BF)2,解得BF=,S阴影=S△AED+S△BEF=×4×3+××2=,故答案为:.三、解答题16.(10分)计算:(1);(2).解析:解:(1)=2﹣3﹣=;(2)=3=9+5﹣1=13.17.(7分)定义一种新运算,分别用[x]和(x)表示实数x的整数部分和小数部分.例如:[3.5]=3,(3.5)=0.5;,﹣1.(1)= 3 ,= ﹣3 .(2)如果,,求a+b﹣的平方根.解析:解:(1)∵9<10<16,∴34,∴[]=3,()=﹣3,故答案为:3,﹣3;(2)∵2,6,∴a=()=,b=[]=6,∴a+b﹣==4,∴a+b﹣的平方根是±2.18.(9分)如图,这是某学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(3,a),实验楼的坐标为(b,﹣1).(1)请在图中画出平面直角坐标系.(2)a= 1 ,b= ﹣2 .(3)若图书馆的坐标为(2,3),请在(1)中所画的平面直角坐标系中标出图书馆的位置.解析:解:(1)坐标系如图;(2)艺术楼的坐标为(3,1),实验楼的坐标为(﹣1,﹣1).故答案为:1,﹣1;(3)图书馆的位置如图所示.19.(9分)为进一步改善校园环境和面貌,消除校园安全隐患,提升校园环境品质,完善基础设施建设,某学校利用暑假全力做好教学条件提升改造工程.如图,某教室外部墙面MN上有破损处(看作点A),现维修师傅需借助梯子DE完成维修工作.梯子的长度为4.5m,将其斜靠在这面墙上,测得梯子底部E离墙角N处2.7m,维修师傅爬到梯子顶部使用仪器测量,此时的梯于顶部D面最损处A相距1m.(1)求教室外墙面破损处A距离地面NE的高度.(2)为了方便施工,需要将梯子底部向内移动至离墙角处,求此时梯子顶部距离墙面破损处A 的高度.解析:解:(1)由题意知,DE=4.5m,EN=2.7m,∴DN==3.6(m),∴AN=AD+DN=1+3.6=4.6(m),即教室外墙面破损处A距离地面NE的高度为4.6m;(2)如图,由题意可知,BN=,BD'=DE=4.5m,∴D'N==1.6(m),∴D'D=1.6﹣1=0.6(m),即此时梯子顶部距离墙面破损处A的高度为0.6m.20.(8分)在平面直角坐标系中,已知点M(m﹣2,2m﹣5),点N(5,1).(1)若MN∥x轴,求MN的长.(2)若点M到x轴的距离等于3,求点M的坐标.解析:解:(1)∵MN∥x轴,∴点M与点N的纵坐标相等,∴2m﹣5=1,∴m=3,∴M(﹣1,1),∵N(5,1),∴MN=6.(2)点M(m﹣2,2m﹣5),且点M到x轴的距离等于3,∴|2m﹣5|=3,解得:m=4或m=1,∴M点的坐标为(2,3)或(﹣1,﹣3).21.(7分)阅读与思考材料1:点A(x1,y1),B(x2,y2)的中点坐标为.例如:点(1,5),(3,﹣1)的中点坐标为,即(2,2).材料2:一次函数y=k1x+b1,y=k2x+b2的图象相互垂直,则k1•k2=﹣1.例如:直线l1:y=2x+3与直线l2:y=kx+2互相垂直,于是2k=﹣1,解得.如图,在等腰△AOB中,OB=AB,点A的坐标为(4,2),BC⊥OA,根据以上两则材料的结论,解答以下问题:(1)求点C的坐标.(2)求直线BC的表达式.解析:解:(1)在等腰△AOB中,OB=AB,BC⊥OA,∴OC=AC,∵点A的坐标为(4,2),∴C(2,1);(2)∵点A的坐标为(4,2),∴直线OA的解析式为y=,∵BC⊥OA,∴设直线BC的解析式为y=﹣2x+b,把点C(2,1)代入得,1=﹣4+b,∴b=5,∴直线BC的表达式为y=﹣2x+5.22.(12分)综合与实践勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.如图2,直角三角形的两条直角边分别为a,b,斜边为c.(1)如图3,以直角三角形的三边a,b,c为边,分别向外部作正方形,直接写出S1,S2,S3满足的关系: S1+S2=S3 .(2)如图4,以Rt△ABC的三边为直径,分别向外部作半圆,请判断S1,S2,S3的关系并证明.(3)如图5,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为80,OC=5,直接写出该飞镖状图案的面积.解析:解:(1)S1=a2,S2=b2,S3=c2,由勾股定理得,a2+b2=c2,∴S1+S2=S3,故答案为:S1+S2=S3;(2)S1=π()2=,S2=π()2=,S3=π()2=,由勾股定理得,a2+b2=c2,∴+=,∴S1+S2=S3;(3)由题意知,外围轮廓(实线)的周长为80,且四个直角三角形是全等的,∴AB+AC=20,∵OC=5,∴OB=OC=5,设AC为x,则AB=20﹣x,AO=x+5,在Rt△ABO中,由勾股定理可得,(x+5)2+52=(20﹣x)2,解得:x=7,∴AO=12,△ABO的面积=×5×12=30,∵该飞镖状图案的面积由四个直角三角形面积组成,∴该飞镖状图案的面积=30×4=120.23.(13分)综合与探究如图,直线与x轴,y轴分别相交于A,B两点.(1)点A的坐标为 (﹣8,0) ;点B的坐标为 (0,6) .(2)过点C(﹣3,0)作直线CD∥AB,交y轴于点D,连接BC,求△BCD的面积.(3)在x轴负半轴上是否存在一点P,使得△ABP是以AP为腰的等腰三角形?若存在,求出此时点P 的坐标;若不存在,请说明理由.解析:解:(1)令x=0,y=6,∴B(0,6),令y=0,,∴x=﹣8,∴A(﹣8,0).故答案为:(﹣8,0),(0,6);(2)如图,∵C(﹣3,0),A(﹣8,0),B(0,6);∴OC=3,OA=8,OB=6,∵CD∥AB,∴△OCD∽△OAB,∴,∴,∴OD=,∴BD=OB﹣OD=6﹣=,∴BD•OC==;(3)①P在A的左侧,∵AO=8,OB=6,∴AB==10,∵△ABP是以AP为腰的等腰三角形,∴AB=AP=10,∴PO=18,∴P(﹣18,0).②P在OA之间,AP=BP时,设P(m,0),BP=AP=m+8,在Rt△BOP中,由勾股定理得,OB2+OP2=BP2,即62+m2=(8+m)2,解得m=﹣,∴P点坐标为(﹣,0)综上所述P点坐标为(﹣,0)或(﹣18,0).。
人教版数学八年级下册期中考试试题附答案
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
江西省赣州市章贡区2023-2024学年八年级上学期期中考试数学试卷(含解析)
2023—2024学年第一学期期中考试八年级数学试题说明:1.本试题卷共有六个大题,23个小题,满分120分,考试时间为120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题6小题,每小题3分,共18分)1. 下列体育图标是轴对称图形的是( )A. B.C. D.答案:A解析:解:A、沿一条直线折叠,直线两旁的部分能够互相重合,故此选项是轴对称图形,符合题意;B、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;C、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;D、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;故选:A.2. 下列长度的三条线段,能组成三角形的是()A. 1,6,7B. 2,5,8C. 3,4,5D. 5,5,10答案:C解析:解:A、∵,∴不能构成三角形,不符合题意;B、∵,∴不能构成三角形,不符合题意;C、∵,∴能构成三角形,符合题意;D、∵,∴不能构成三角形,不符合题意;故选C.3. 要求画的边AB上的高.下列画法中,正确的是()A. B. C.D.答案:C解析:A中AD是边BC上面的高,故不符合题意;B中不符合三角形高的作图,故不符合题意;C中CD是AB边上的高,故符合题意;D中BD是AC边上的高,故不符合题意;故选C.4. 如图,在中,是高,是中线,若,,则的长为()A. 1B.C. 2D. 4答案:C解析:解:∵,,即,∴∵是中线,即点是的中点,∴,故选:C.5. 已知.下面是“作一个角等于已知角,即作”的尺规作图痕迹.该尺规作图的依据是()A. B. C. D.答案:B解析:解:由题意可知,“作一个角等于已知角,即作”的尺规作图的依据是,故选:B.6. 如图,C为线段上一动点(不与点A,E重合),在同侧分别作正三角形和正三角形,与交于点O,与交于点P,与交于点Q,连接.以下四个结论:①;②;③;④.其中正确的结论个数是()A. 1个B. 2个C. 3个D. 4个答案:D解析:解:①∵等边和和等边,∴,∴,在和中,,∴,∴;故①正确;③∵(已证),∴,∵(已证),∴,∴,在与中,,∴,∴;故③正确;②∵,∴,∴是等边三角形,∴,∴,∴;故②正确;④∵,∴,∵等边,∴,∴,∴,∴.故④正确;综上所述,正确的结论是①②③④.故选:D.二、填空题(本大题6小题,每小题3分,共18分)7. 在平面直角坐标系中,关于x轴对称的点的坐标为______.答案:解析:解:关于x轴对称的点的坐标为,故答案为:.8. 如图,一块三角形玻璃板破裂成①,②,③三块,现需要买另一块同样大小的一块三角形玻璃,为了方便,只需带第______块碎片比较好.答案:③解析:解:由图可知,带③去可以利用“角边角”得到与原三角形全等的三角形.故答案为:③.9. 正五边形的一个外角的大小为__________度.答案:72解析:解:正五边形的一个外角的度数为:,故答案为:72.10. 将一副直角三角板如图放置,使含角的三角板的短直角边和含角的三角板的一条直角边重合,则______度.答案:75解析:解:如图,,∴(对顶角相等),故答案为:75.11. 如图,在中,,是的平分线,于点E,.则的面积为______.答案:9解析:解:如图,过点D作于点F,∵是的平分线,,,∴,∴的面积为.故答案为:912. 若,,,D为坐标平面内不和C重合的一点,且与全等,则D 点坐标为______.答案:或或解析:解:如图,∵,与全等,∴关于x轴对称的点满足条件,∵,,∴D点坐标或也满足条件,故答案为:或或.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)一个多边形的内角和是它的外角和的3倍,求这个多边形的边数.(2)如图,,点B、F、C、E在同一条直线上,若,,求的长.答案:(1)8;(2)4解析:解:(1)设它的边数为n,,解得,答:它的边数为8.解:(2)∵,∴.∴,即.∵,,∴.∴.14. 已知a、b、c为△ABC三边长,且b、c满足+=0,a为方程|a﹣3|=2 的解,求△ABC 的周长.答案:17解析:(b-5)2+=0,∴,解得,∵a为方程|a-3|=2的解,∴a=5或1,当a=1,b=5,c=7时,1+5<7,不能组成三角形,故a=1不合题意;∴a=5,∴△ABC的周长=5+5+7=17,15. 如图,已知,.求证:.答案:证明见解析.解析:证明:在和中,,.16. 在中,,的垂直平分线交于点D,交于点E.(1)求证:是等腰三角形;(2)若,的周长为,求的周长.答案:(1)见解析(2)小问1解析:解:∵的垂直平分线交于点D,∴,∴是等腰三角形;小问2解析:解:∵的垂直平分线交于点D,,∴,∵的周长为,∴,∴的周长.17. 如图,三角形ABC与三角形DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.答案:详见解析.解析:图①中,过点A和BC,EF的交点作直线l;图②中,过BC,EF延长线的交点和AC,DF延长线的交点作直线l.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,在图中建立平面直角坐标系,使与关于y轴对称,点B的坐标为.(1)在图中画出平面直角坐标系;(2)①写出点B关于x轴的对称点的坐标;②画出关于x轴对称的图形,其中点A的对称点是,点C的对称点是.答案:(1)见解析(2)①.②见解析小问1解析:解:如图.小问2解析:解:①∵点B的坐标为∴;②如图.19. 如图,,于点E,于点F,.(1)求证:;(2)求证:.答案:(1)见解析(2)见解析小问1解析:∵,∴.即,∵,且,∴.小问2解析:∵,∴,∴.20. 如图,在.(1)求证:;(2)分别以点A,C为圆心,长为半径作弧,两弧交于点D(点D在的左侧),连接.求的面积.答案:(1)见解析(2)16小问1解析:在中,∵,∴.∵,∴.∴;小问2解析:过点D作的延长线于点E,由作图得,,∴为等边三角形,∴,∴,∴,在中,∵,,∴,∴的面积.五、解答题(本大题共2小题,每小题9分,共18分)21. 我们定义:如图1,在四边形中,如果,,对角线平分,我们称这种四边形为“分角对补四边形”.(1)特例感知:如图1,在“分角对补四边形” 中,当时,根据教材中一个重要性质直接可得,这个性质是______;(填序号)①垂线段最短:②垂直平分线的性质;③角平分线的性质;④三角形内角和定理(2)猜想论证:如图2,当为任意角时,猜想与的数量关系,并给予证明;(3)探究应用:如图3,在等腰中,,平分,求证:.答案:(1)③(2),见解析(3)见解析小问1解析:解:∵平分,,,∴,∴根据角平分线的性质定理可知,故答案为:③;小问2解析:解:,理由如下:如图2中,作交延长线于点E,于点F,∵平分,,,∴,∵,,∴,∵,∴,∴;小问3解析:证明:如图3,在上截取,连接,∵,,∴,∵平分,∴,∵,∴,即,由(2)结论得,∵,∴,∴,∴,∴.22. 如图,是经过顶点C的一条直线,,E,F分别是直线上两点,且.(1)若直线经过的内部,且E,F在射线CD上.①如图1,若,证明②如图2,若,请添加一个关于α与关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线经过的外部,,请提出关于,三条线段数量关系的合理猜想,并简述理由.答案:(1)①见解析;②时,①中的结论仍然成立,理由见解析(2),理由见解析小问1解析:①∵,∴,∴,在和中,∴,∴;②时,①中的结论仍然成立,理由如下:,∴,∴,在和中∴,∴;小问2解析:解:,证明:∵,∴,∴,在和中,∴,∴,∵,∴.六、解答题(本大题共12分)23. 课本再现:我们知道:三角形三个内角的和等于,利用它我们可以推出结论:三角形的外角等于与它不相邻的两个内角的和.定理证明:(1)为证明此定理,小红同学画好了图形(如图1),写好了“已知”和“求证”,请你完成证明过程经,已知:如图1,是的一个外角.求证:.知识应用:(2)如图2,在中,,点D在BC边上,交AC于点F,,求的度数.(3)如图3,直线与直线相交于点O,夹角为锐角,点B在直线上且在点O右侧,点C在直线上且在直线上方,点A在直线上且在点O左侧运动,点E在射线CO上运动(不与点C、O重合).当时,平分,平分交直线于点G,求的度数.答案:(1)见解析;(2);(3)或解析:解:定理证明:(1)如图1中,∵,,∴.知识应用:(2)如图2中,∵,∴,∵,∴;(3)①当点E在点O的上方时,如图3-1:∵,∴,∵平分,平分,∴,,由三角形外角的性质可得:,,∴,∴,即.②当点E在点O的下方时,如图3-2:由题意知,,,,,,综上所述,或.。
八年级数学上册期中考试试卷(带答案)
八年级数学上册期中考试试卷(带答案)(考试时间:150分钟;试卷满分:120分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的平方根是()A.3B.±3C.√3D.-32.下列实数中,是无理数的是()B.0.35C.π﹣3.14D.-√9A.763.如图是济南市地图简图的一部分,图中"济南西站"、"雪野湖"所在区域分别是()A.E4,E6B.D5,F5C.D6,F6D.D5,F64.在同一平面直角坐标系内,已知点A(4,2)、B(-2,2),下列结论正确的是()A.线段AB=2B.直线AB // x 轴C.点A与点B关于y轴对称D.线段AB 的中点坐标为(2,2)5.在平面直角坐标系中,点P (-1,-2)在( )A.第一象限B.第二象限C.第三象限D.第四象限6.下列函数图像中,能表示函数图象的是( )7.下列运算正确的是( )A .2√2-√2=1 B.√6+√3=√9 C.√6÷√3=2 D.√2x√8=48.如图,今年的冰雪灾害中,一棵大树在离地面9米处折断,树的顶端落在离树杆底部12米处,那么这棵树折断之前的高度是( )9.直线y1= mx + n 和y2= nmx - n 在同一平面直角坐标系中的大致图象可能是()10.如图,在长方形纸片ABCD 中,AB =8cm,AD =4cm.把纸片沿对角线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则重叠部分△ACF的面积为()A .5cm2B .10cm2C .15cm2D .20cm2二.填空题(每小题4分,共20分)11.在平面直角坐标系中,点4(3,4),B (a,b)关于x 轴对称,则a + b 的值为。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
人教版八年级下册数学期中考试试题及答案
人教版八年级下册数学期中考试试卷一、单选题1.下列式子中,属于最简二次根式的是()AB CD 2.下列运算正确的是()A .=B=C2=-D 2÷=3)A .﹣3B C .﹣3D 4.如图,将长方形纸片折叠,使A 点落在边BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分展开是一个正方形,其数学原理是()A .有一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形5.如图,在Rt ABC △中,1AB BC ==,90ABC ∠=︒,点A ,B 在数轴上对应的数分别为1,2,以点A 为圆心,AC 长为半径画弧,交数轴负半轴于点D ,则与点D 对应的数是()A 1B .1C D .6.有下列四个命题:其中正确的为()A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是菱形;C .两条对角线互相垂直的四边形是正方形;D .两条对角线相等且互相垂直的四边形是正方形.7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠= ,CFD 40∠= ,则E ∠为()A .102B .112C .122D .928.已知四个三角形分别满足下列条件:①三角形的三边之比为1:12;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有()个A .4B .3C .2D .19.如图是一圆柱形玻璃杯,从内部测得底面直径为12cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .25273cm-10.如图,在矩形ABCD 中,5AB =,3AD =,动点Р满足3PAB ABCD S S = 矩形,则点Р到A 、B 两点距离之和PA PB +的最小值为()A 29B 34C .52D 41二、填空题11在实数范围内有意义,则x的取值范围是_________12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD =________.13.如图,M 是ABC 的边BC 的中点,AN 平分BAC ∠,BN AN ⊥于点N ,延长BN 交AC 于点D ,已知10AB =,15BC =,3MN =,则ABC 的周长为______.14.勾股定理a 2+b 2=c 2本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,c )通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为_____.15.如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE 沿DE 所在直线翻折得到DC E ' ,当点C '恰好落在直线MN 上时,CE 的长为______.三、解答题16.计算:(1)23-(2)22111244a a a a a ---÷+++其中1a =17.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD 是矩形.18.如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若菱形BNDM 的周长为52,10MN =,求菱形BNDM 的面积.19.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B 处,在沿海城市A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A 城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?20.如图,已知正方形ABCD连接AC ,BD 交于点O ,CE 平分ACD ∠交BD 于点E .(1)求DE 的长;(2)过点E 作EF CE ⊥,交AB 于点F ,求证:BF DE =.21.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:ABM DCM △≌△;(2)四边形MENF 是__________;(3)当:AB AD =______时,四边形MENF 是正方形.22.在菱形ABCD 中,60ABC ∠=︒,点P 是射线DB 上一动点,以CP 为边向左侧作等边CPE △.点E 的位置随着点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接AE ,则DP 与AE 的数量关系是______,AE 与CB 的位置关系是______;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否成立?若成立,请选择图2或图3中的一种情况予以证明;若不成立,请说明理由.(3)如图4,当点P 在线段DB 的延长线上时,连接DE ,若AB =DE =出四边形CBPE 的面积.23.阅读材料,回答问题:1()中国古代数学著作图1《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”.上述记载表明了:在Rt ABC 中,如果C 90∠=︒,BC a =,AC b =,AB c =,那么a ,b ,c 三者之间的数量关系是:______.2()对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图2,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:ABC 1S ab 2= ,2ABCD S c =正方形,MNPQ S =正方形______.又 ______=______,221(a b)4ab c 2∴+=⨯+,整理得222a 2ab b 2ab c ++=+,∴______.3()如图3,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB 4=,BC 8=,求BE 的长.参考答案1.A【解析】最简二次根式要满足两个条件:被平方数中不含有开得尽方的因数或因式;被开方数中不含分母.依据这两条判断即可.【详解】A 、是最简二次根式,故符合题意;B 、8中有因数4可以开方,故不符合题意;C 、被开方数中含有分母,故不符合题意;D 、被开方数中有开得尽方的因式,故不符合题意;故选:A .【点睛】本题考查了最简二次根式的含义,关键把握最简二次根式的两个条件.2.D【解析】根据二次根式的运算及性质即可完成.【详解】A、被平方数不相同的两个最简二次根式不能相加,故错误;B≠C2=,故错误;D÷===,故正确;2故选:D.【点睛】本题考查了二次根式的加法和除法运算、二次根式的性质,掌握运算法则及性质是关键,同时在二次根式的学习中避免犯类似错误.3.C【解析】【详解】试题解析:原式=.故选C.考点:二次根式的乘除法.4.A【解析】【分析】将长方形纸片折叠,使A点落BC上的F处,可得到BA=BF,折痕为BE,沿EF剪下,故四边形ABFE为矩形,且有一组邻边相等,故四边形ABFE为正方形.【详解】解:∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选;A.【点睛】本题考查了正方形的判定定理,关键是根据邻边相等的矩形是正方形和翻折变换解答.5.B【解析】【分析】由勾股定理可得AC的长,从而得AD=AC,则由点A表示的数示得点D表示的数.【详解】在Rt△ABC中,AB=BC=1,则由勾股定理得:AC==∵以点A为圆心,AC长为半径画弧,交数轴负半轴于点D∴∴D点表示的实数为:1故选:B.【点睛】本题考查了实数与数轴、勾股定理等知识,熟知实数与数轴上的点一一对应关系是解答此题的关键.6.A【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A.两条对角线互相平分的四边形是平行四边形,正确;B.两条对角线互相垂直平分的四边形是菱形,故错误;C.两条对角线互相垂直平分且相等的四边形是正方形,故错误;D.两条对角线相等且互相垂直平分的四边形是正方形,故错误.故选:A.【点睛】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.7.B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠=== ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠= ,DBC BDF ADB 20∠∠∠∴=== ,又ABD 48∠= ,ABD ∴ 中,A 1802048112∠=--= ,E A 112∠∠∴== ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.8.A【解析】【详解】①设三角形三边分别为x 、x ,则x 2+x 2=x )2,∴此三角形是直角三角形;②92+402=412,∴此三角形是直角三角形;③设三角形三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30,3x=90,所以此三角形是直角三角形;④如图,∵CD=AD=BD ,∴∠A=∠ACD ,∠B=∠BCD ,∴∠ACD+∠BCD=90°,∴△ABC 是直角三角形.故选A.9.B【解析】【分析】吸管露出杯口外的长度最小,则在杯内的长度最长,此时若沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,然后用勾股定理即可解决.【详解】如图,沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,22121620+=(cm)所以吸管露出杯口外的长度最少为25-20=5(cm)故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,关键是构造直角三角形,利用勾股定理解答.10.D【解析】【分析】由3PAB ABCD S S = 矩形,可得△PAB 的AB 边上的高h=2,表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2;延长FC 到G ,使FC=CG ,连接AG 交EF 于点H ,则点P 与H 重合时,PA+PB 最小,在Rt △GBA 中,由勾股定理即可求得AG 的长,从而求得PA+PB 的最小值.【详解】设△PAB 的AB 边上的高为h∵3PAB ABCDS S = 矩形∴132AB h AB AD ⨯= ∴h=2表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2,如图所示∴BF=2∵四边形ABCD 为矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延长FC 到G ,使CG=FC=1,连接AG 交EF 于点H∴BF=FG=2∵EF ∥AB∴∠EFG=∠ABC=90゜∴EF 是线段BG 的垂直平分线∴PG=PB∵PA+PB=PA+PG≥AG∴当点P 与点H 重合时,PA+PB 取得最小值AG在Rt △GBA 中,AB=5,BG=2BF=4,由勾股定理得:AG ===即PA+PB 故选:D .【点睛】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P 运动的路径,路径确定后就是典型的将军饮马问题.11.x≤5.【解析】【详解】解:由题意得:50x -≥,解得5x ≤,故答案为5x ≤.考点:二次根式有意义的条件.12.70°【解析】【分析】根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD ,求出∠BCD=∠B 即可.【详解】解:在Rt △ABC 中,∵∠A=20°,∴∠B=90°-∠A=70°,∵CD 是斜边AB 上的中线,∴BD=CD ,∴∠BCD=∠B=70°,故答案为70°.【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD 和∠B 的度数是解此题的关键.13.41【解析】【分析】证明△ABN ≌△ADN ,得到AD =AB =10,BN =DN ,根据三角形中位线定理求出CD ,计算即可.【详解】解:∵AN 平分BAC ∠,∴∠BAN=∠DAN在△ABN 和△ADN 中,BAN DAN AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN ,∴AD =AB =10,BN =DN ,∵M 是△ABC 的边BC 的中点,BN =DN ,∴CD =2MN =6,∴△ABC 的周长=AB+BC+CA =41,故答案为:41.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(11,60,61)【解析】【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第5组勾股数中间的数为:5×(11+1)=60,进而得出(11,60,61).【详解】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61).故答案为(11,60,61).【点睛】本题主要考查了勾股数,关键是找出数据之间的关系,掌握勾股定理.15.52或10【解析】【分析】分两种情况:E 点在BC 上;点E 在CB 的延长线上.分别由折叠性质勾股定理,矩形的性质进行解答.【详解】解:设CE=x,则C′E=x,当E点在线段BC上时,如图1,∵矩形ABCD中,AB=5,∴CD=AB=5,AD=BC=6,AD∥BC,∵点M,N分别在AD,BC上,且3AM=AD,3BN=BC,∴DM=CN=4,∴四边形CDMN为平行四边形,∵∠NCD=90°,∴四边形MNCD是矩形,∴∠DMN=∠MNC=90°,MN=CD=5由折叠知,C′D=CD=5,===,∴MC′3∴C′N=5﹣3=2,∵EN=CN﹣CE=4﹣x,∴C′E2﹣NE2=C′N2,∴x2﹣(4﹣x)2=22,解得,x=2.5,即CE=2.5;当E点在CB的延长线上时,如图2,∵矩形ABCD 中,AB =5,∴CD =AB =5,AD =BC =6,AD ∥BC ,∵点M ,N 分别在AD ,BC 上,且3AM =AD ,3BN =BC ,∴DM =CN =4,∴四边形CDMN 为平行四边形,∵∠NCD =90°,∴四边形MNCD 是矩形,∴∠DMN =∠MNC =90°,MN =CD =5由折叠知,C′D =CD =5,∴MC′2222'543C D MD =-=-=,∴C′N =5+3=8,∵EN =CE ﹣CN =x ﹣4,C′E 2﹣NE 2=C′N 2,∴x 2﹣(x ﹣4)2=82,解得,x =10,即CE =10;综上,CE =2.5或10.故答案为:2.5或10.【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,关键是分情况讨论.16.(1)1132;(2)11a -+,22.【解析】【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】(1)原式==(2)原式21(1)(1)12(2)a a a a a -+-=-÷++21(2)12(1)(1)a a a a a -+=-⋅+-+211a a +=-+1211a a a a ++=-++11a =-+当1a =时,原式2=-.【点睛】本题考查了二次根式的加减混合运算以及分式的化简求值,熟知运算的法则是解答此题的关键.17.证明见解析【解析】【分析】根据已知条件易推知四边形BECD 是平行四边形.结合等腰△ABC“三线合一”的性质证得BD ⊥AC ,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD 是矩形.【详解】证明:∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC ,AD=CD .∵四边形ABED 是平行四边形,∴BE ∥AD ,BE=AD ,∴四边形BECD 是平行四边形.∵BD ⊥AC ,∴∠BDC=90°,∴▱BECD 是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.18.(1)见解析;(2)120【解析】【分析】(1)证△MOD ≌△NOB (AAS ),得出OM=ON ,由OB=OD ,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的周长得到菱形的边长BM=13,由菱形的性质及MN=10得到OM=5,在Rt BOM △中由勾股定理得到OB 的长,进而得到BD 的长,利用菱形的面积公式即可求得BNDM 的面积【详解】(1)证明:∵//AD BC ,∴DMO BNO ∠=∠.∵直线MN 是对角线BD 的垂直平分线,∴OB OD =,MN BD ⊥.在MOD 和NOB 中,DMO BNO MOD NOB OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)MOD NOB ≌△△,∴OM ON =,∵OB OD =,∴四边形BNDM 是平行四边形,∵MN BD ⊥,∴四边形BNDM 是菱形;(2)∵菱形BNDM 的周长为52,∴13BN ND DM MB ====,∴12OM ON MN ==,又10MN =,∴5OM =在Rt BOM △中,由勾股定理得12OB ===,故24BD =,故菱形BNDM 面积11202MN BD =⨯⨯=.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.19.(1)该城市会受到这次台风的影响;(2)16;(3)7.2.【解析】【详解】试题分析:(1)过A 作AD ⊥BC 于D ,利用30°角所对边是斜边一半,求得AD,与200比较.(2)以A 为圆心,200为半径作⊙A 交BC 于E 、F,勾股定理计算弦长EF.(3)AD 距台风中心最近,计算风力级别.试题解析:(1)该城市会受到这次台风的影响.理由是:如图,过A 作AD ⊥BC 于D .在Rt △ABD 中,∵∠ABD=30°,AB=240,∴AD=12AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200,∵120<200,∴该城市会受到这次台风的影响.(2)如图以A 为圆心,200为半径作⊙A 交BC 于E 、F,则AE=AF=200,∴台风影响该市持续的路程为:EF=2DE=2∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).20.(1)22(2)见解析【解析】【分析】(1)根据正方形的性质,CE 平分ACD ∠,可得122.52ACE DCE ACD ∠=∠=∠=︒,从而67.5∠=︒BCE ,根据三角形的内角和定理可得BEC BCE ∠=∠,从而2BE BC =利用勾股定理求出2BD =,即可求解;(2)根据EF CE ⊥,可得∠=∠FEB DCE ,又有45FBE CDE ∠=∠=︒,BE BC CD ==,可证≌FEB ECD △△,即可求证.【详解】解:(1)∵四边形ABCD 是正方形,∴90ABC ADC BCD ∠=∠=∠=︒,45DBC BCA ACD ABD CDB ∠=∠=∠=∠=∠=︒.∵CE 平分DCA ∠,∴122.52ACE DCE ACD ∠=∠=∠=︒,∴4522.567.5BCE BCA ACE ∠=∠+∠=︒+︒=︒,∵45DBC ∠=︒,∴18067.54567.5BEC BCE ∠=︒-︒-︒=︒=∠,∴2BE BC ==在Rt BCD 中,由勾股定理得()()22222BD =+=,∴22DE BD BE =-=(2)∵EF CE ⊥,∴90CEF ∠=︒,∴9067.522.5FEB CEF CEB DCE ∠=∠-∠=︒-︒=︒=∠,∵45FBE CDE ∠=∠=︒,BE BC CD ==,∴(ASA)FEB ECD ≌△△,∴BF DE =.【点睛】本题主要考查了正方形的性质,三角全等的判定和性质,等腰三角形的判定,三角形内角定理,勾股定理等知识,证明三角形全等是解题的关键.21.(1)见解析;(2)菱形;(3)当:1:2AB AD =时,四边形MENF 是正方形.【解析】【分析】(1)在矩形ABCD 中,可得AB DC =,90A D ∠=∠=︒,再根据M 为AD 中点,得AM DM =,即可求证;(2)由(1)ABM DCM △≌△,得BM CM =,再由E ,F 分别是线段BM ,CM 的中点,可得EM FM =,然后N 分别是边BC 的中点,根据三角形中位线定理可得EN MF =,FN EM =,得到四边形MENF 是平行四边形,即证;(3)当:1:2AB AD =时,有12AB AD =,可得45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,可得90EMF ︒∠=,即可求解.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB DC =,90A D ∠=∠=︒,∵M 为AD 中点,∴AM DM =,在ABM 和DCM △,AM DM =,A D ∠=∠,AB CD =,∴()SAS ABM DCM ≌△△;(2)由(1)ABM DCM △≌△,∴BM CM =,∵E ,F 分别是线段BM ,CM 的中点,∴12BE EM BM ==,12CF MF MC ==,∴EM FM =,∵N 分别是边BC 的中点,∴12EN MC =,12FN BM =,∴EN MF =,FN EM =,∴四边形MENF 是平行四边形,∵EM FM =,∴四边形MENF 是菱形;(3)解:当:1:2AB AD =时,四边形MENF 是正方形;理由如下:当:1:2AB AD =时,有12AB AD =,∵M 为AD 中点,∴AB AM =,∴ABM AMB ∠=∠,∵90A ︒∠=,∴45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,∴180180454590EMF AMB DMC ︒︒︒︒︒∠=-∠-∠=--=,由(2)四边形MENF 是菱形,∴四边形MENF 是正方形,∴当:1:2AB AD =时,四边形MENF 是正方形.【点睛】本题主要考查了矩形的性质,三角形全等的判定和性质,菱形的判定,正方形的判定,三角形的中位线定理,熟练掌握相关性质定理,判定定理是解题的关键.22.(1)①DP AE =,②AE CB ⊥;(2)(1)中的结论仍然成立,理由见解析;(3)四边形CBPE 【解析】【分析】(1)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(2)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(3)连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,利用菱形的性质和勾股定理可求得7==DP AE ,3BO =,从而1PB PD BD =-=,4PO =,利用勾股定理求得PE PC ==EM =,即可得到四边形CBPE 的面积等于CPE PBC S S + ,即可求解.【详解】(1)①DP AE =②AE CB ⊥理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,1302CDP ADC ︒∠=∠=,∴ADC 、ABC 是等边三角形,∴AC CD =,60ACD ∠=︒,60BAC ︒∠=.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴∠-∠=∠-∠ACD ACP PCE ACP ,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,30︒∠=∠=CAE CDP ,∴30BAE CAE ︒∠=∠=,即AE 平分BAC ∠,∴AE CB ⊥;(2)(1)中的结论仍然成立,理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,∴ADC 是等边三角形,∴AC CD =,60ACD ∠=︒.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴ACD ACP PCE ACP ∠+∠=∠+∠,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,CAE CDP ∠=∠.∵在菱形ABCD 中,1302CDP ADC ∠=∠=︒,60ACB ∠=︒,∴30CAE CDP ∠=∠=︒,∴90DAE ∠=︒,即AE AD ⊥,∵//AD BC ,∴AE CB ⊥.(3)如图,连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,在菱形ABCD 中,AC BD ⊥,23AB BC AD ===,12AO CO AC ==,12BO BD =,∵DE =,∴7AE ===,∴7==DP AE ,∵60ABC ∠=︒,∴ABC 是等边三角形,∴1302ABO ABC ︒∠=∠=,AC AB ==,∴12AO CO AC ===3BO ==,∴6BD =,∴1PB PD BD =-=,4PO =,∴PC ===,∴2PM =,PE PC ==∴2EM ==,∴四边形CBPE 的面积是11111222224CPE PBC S S PC EM PB CO +=⋅+⋅=⨯⨯+⨯⨯= .【点睛】本题主要考查了菱形的性质,等边三角形的性质和判定,全等三角形的判定与性质,勾股定理,解题的关键是找到全等三角形,利用全等三角形的性质解答问题.23.(1)222+=a b c ;(2)()2a b +,正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,222+=a b c ;(3)3.【解析】【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(3)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在Rt ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,由勾股定理得,222+=a b c ,故答案为:222+=a b c ;(2)12ABC S ab ∆= ,2ABCD S c =正方形,2()MNPQ S a b =+正方形;又 正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,221()42a b ab c ∴+=⨯+,整理得,22222a ab b ab c ++=+,222a b c ∴+=,故答案为:2()a b +;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;222+=a b c ;(3)设BE x =,则8EC x =-,由折叠的性质可知,8AE EC x ==-,在Rt ABE △中,222AE AB BE =+,则222(8)4x x -=+,解得,3x =,则BE 的长为3.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
人教版八年级上册数学期中考试试卷附答案
人教版八年级上册数学期中考试试题一、单选题1.下列各选项中的两个图形属于全等图形的是()A .B .C .D .2.如图,ABC 中,65,50A B ∠=︒∠=︒,点D 在BC 延长线上,则ACD ∠的度数是()A .65B .105C .115D .1253.要使如图所示的五边形木架不变形,至少要再钉上几根木条()A .1根B .2根C .3根D .4根4.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A .SASB .ASAC .AASD .SSS5.如图,∠A =∠D ,BC =EF ,要得到△ABC ≌△DEF ,可以添加()A .DE//AB B .EF//BC C .AB =DED .AC =DF6.将一副直角三角板按如图所示的方式叠放在一起,则图中α∠的度数是()A.15°B.30°C.65°D.75°7.如图,在△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC边于点D.若CD=3,则△ABD的面积为()A.15B.30C.10D.208.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=110°,∠C=36°,则∠2的度数为()°A.35B.36C.37D.389.如图,AE是△ABC的角平分线,AD是△AEC的角平分线,若∠BAC=80°,则∠EAD =()A.30°B.45°C.20°D.60°10.如图所示,AC和BD相交于O,AO=DO,AB⊥AC,CD⊥BD,那么AB与CD的关系是()A.一定相等B.可能相等也可能不相等C.一定不相等D.增加条件后,它们相等二、填空题11.一个正多边形的每个外角都等于72°,则它的边数是________.12.若等腰三角形的两边长为3和7,则该等腰三角形的周长为__________.13.一个七边形的内角和等于________°.14.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的有___.①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④AF=FB.15.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C =_____.16.如图,△ABC是直角三角形,∠BAC=90°,AD,AE分别是△ABC的高和中线,AB =6cm,AC=8cm,则△AEC的面积为_____.三、解答题17.(1)利用直尺和圆规作∠BAC的平分线AD交BC于点D(保留作图痕迹,不用写作法);(2)若AB=AC,求证:BD=CD.18.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=40°,∠C=72°,求∠AEC和∠DAE的度数.19.如图,在平面直角坐标系中,已知∠DAO=∠CBO=90°,DO⊥CO于点O,CO平分∠BCD.(1)求证:DO平分∠ADC;(2)若点A的坐标是(﹣3,0),求点B的坐标.20.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA 于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.21.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:HC平分∠AHE;(3)求∠CHE的度数(用含α的式子表示).22.如图,已知四边形ABCD和直线l,求作四边形ABCD以直线l为对称轴的对称图形A1B1C1D1.23.如图,∠ABD=125°,∠A=50°,求∠ACE的度数.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.B【解析】【分析】利用全等图形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意;B、两个图形能够完全重合,是全等图形,符合题意;C、两个图形不能完全重合,不是全等图形,不符合题意;D、两个图形不能完全重合,不是全等图形,不符合题意;故选:B.【点睛】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.2.C【解析】【分析】先利用三角形内角和定理求出∠ACB的度数,然后根据补角的定义求出∠ACD即可.【详解】解:∵∠A=65°,∠B=50°∴∠ACB=180°-∠A-∠B=65°∵∠ACB+∠ACD=180°∴∠ACD=115°故选C.【点睛】本题主要考查了三角形内角和定理和补角的定义,解题的关键在于能够熟练掌握相关知识进行求解.3.B【解析】【分析】三角形具有稳定性,钉上木条后,使五边形变为三角形的组合即可解题.【详解】AC CE,使五边形变为三个三角形,解:如图,钉上木条,根据三角形具有稳定性,可知这样的五边形不变形,故选:B.【点睛】本题考查三角形的稳定性,是基础考点,难度较易,掌握相关知识是解题关键.4.D【解析】【分析】根据作图过程,可知,OA OB CE EF BA CF ====,进而即可得判定图中两三角形全等的条件.【详解】如图,由作图可知,OA OB CE EF BA CF====在AOB 与CEF △中AO CE OB EF AB CF =⎧⎪=⎨⎪=⎩∴AOB ≌CEF △(SSS )故选D【点睛】本题考查了作一个角等于已知角,三角形全等的判定,掌握三角形全等的判定定理是解题的关键.5.B【解析】【分析】根据三角形全等的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:A 、∵DE//AB ,∴∠A =∠D ,又∵BC =EF ,只有两组相等的条件,∴不能判定△ABC ≌△DEF ,不符合题意;B 、∵EF//BC ,∴∠EFC=∠BCF ,又∵∠A =∠D ,BC =EF ,∴△ABC ≌△DEF(AAS),∴可以证明△ABC ≌△DEF ,符合题意;C 、∵AB =DE ,又∵∠A =∠D ,BC =EF ,两边及其一边的对角对应相等不能证明两个三角形全等,∴不能证明△ABC ≌△DEF ,不符合题意;D 、∵AC =DF ,又∵∠A =∠D ,BC =EF ,两边及其一边的对角对应相等不能证明两个三角形全等,∴不能证明△ABC ≌△DEF ,不符合题意.故选:B .6.D【解析】根据三角形内角和定理求出即可.【详解】解:如图,∵ABC ∆和DEF ∆都是直角三角形,且30,45B E ∠=︒∠=︒∴45,60EFD ACB ∠=︒∠=︒∵++180EFD ACB FAC ∠∠∠=︒∴180456075FAC ∠=︒-︒-︒=︒,即75α=︒故选:D.【点睛】此题主要考查了三角形的内角和,熟练掌握三角形内角和定理是解答此题的关键.7.A【解析】【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴△ABD的面积=12AB•DE=12×10×3=15.故选:A.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并求出AB边上的高是解题的关键.8.D【解析】【分析】根据折叠性质得出∠C′=∠C=35°,根据三角形外角性质得出∠DOC=∠1-∠C=74°,∠2=∠DOC-∠C′=38°.【详解】解:如图,设C′D与AC交于点O,∵∠C=36°,∴∠C′=∠C=36°,∵∠1=∠DOC+∠C,∠1=110°,∴∠DOC=∠1-∠C=110°-36°=74°,∵∠DOC=∠2+∠C′,∴∠2=∠DOC-∠C′=74°-36°=38°.故选:D.【点睛】本题考查了多边形的内角与外角,熟记多边形的内角和定理及三角形的外角定理是解题的关键.9.C【解析】【分析】根据角平分线的性质即可求解.【详解】∵∠BAC=80°,AE是△ABC的角平分线,∴∠EAC=12∠BAC=40°,∵AD是△AEC的角平分线,∴∠EAD=12∠EAC=20°.故选C.【点睛】考查了三角形的角平分线.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.10.A【解析】根据已知条件证明△OAB ≌△ODC ,即可求解.【详解】∵AB ⊥AC ,CD ⊥BD ,∴∠A =∠D =90°,在△OAB 和△ODC 中,A D OA D AOB DOC O ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAB ≌△ODC (ASA ),∴AB =CD ,故选A .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知ASA 判定三角形全等.11.5【解析】【分析】多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.【详解】解:360÷72=5.故它的边数是5.故答案为:5.【点睛】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.12.17【解析】【分析】有两种情况:①腰长为3,底边长为7;②腰长为7,底边长为3,分别讨论计算即可.①腰长为3,底边长为7时,3+3<7,不能构成三角形,故舍去;②腰长为7,底边长为3时,周长=7+7+3=17.故答案为17.【点睛】本题考查等腰三角形的性质,当腰和底不明确的时候,需要分类讨论,并利用三边关系舍去不符合题意的情况.13.900【解析】【分析】根据多边形的内角和公式(2)180n -⋅︒进行计算即可.【详解】解:一个七边形的内角和等于(72)18=9000-︒⋅︒,故答案为:900.【点睛】本题考查了多边形的内角和公式,记住内角和公式是解题的关键.14.①②③【解析】【分析】根据三角形中线的性质可证明①;根据三角形的高线可得∠ABC=∠CAD ,利用三角形外角的性质结合角平分线的定义可求解∠AFC=∠AGF ,可判定②;根据角平分线的定义可求解③;根据已知条件无法判定④.【详解】解:∵BE 是△ABC 的中线,∴AE=CE ,∴△ABE 的面积等于△BCE 的面积,故①正确;∵AD 是△ABC 的高线,∴∠ADC=90°,∴∠ABC+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∴∠ABC=∠CAD,∵CF为△ABC的角平分线,∴∠ACF=∠BCF=12∠ACB,∵∠AFC=∠ABC+∠BCF,∠AGF=∠ACF+∠CAD,∴∠AFC=∠AGF=∠AFG,故②正确;∵∠BAD+∠CAD=∠ACB+∠CAD=90°,∴∠BAD=∠ACD,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;因为CF是∠ACB的角平分线,只有AC=BC时,才能得到AF=FB,由已知∠BAC=90°,则有AC<BC,所以AF≠FB根据已知条件无法证明AF=FB,故④错误,故答案为:①②③.【点睛】本题主要考查三角形的中线,高线,角平分线,灵活运用三角形的中线,高线,角平分线的性质是解题的关键.15.80°【解析】【分析】根据三角形的外角定理即可求解.【详解】由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故答案为80°【点睛】此题主要考查三角形的外角定理,解题的关键熟知三角形的外角性质.【解析】【分析】先求出△ABC 的面积,再利用中线的性质求出△AEC 的面积.【详解】△ABC 的面积=12×6×8=24,∵AE 是△ABC 和中线,∴△AEC 的面积=12×△ABC 的面积=12(cm 2),故答案为12cm 2.17.(1)见解析;(2)见解析【解析】(1)利用角平分线的作法得出AD 即可;(2)证明△ABD ≌△ACD 即可得到结论.【详解】解:(1)如图,AD即为所求;(2)∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB ACBAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),【点睛】此题主要考查了基本作图以及全等三角形的判定与性质,得出△ABD≌△ACD是解题关键.18.74°,16°【解析】【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义得到∠BAE=∠CAE=12∠BAC=34°,根据三角形的外角性质求出∠AEC,根据直角三角形的性质求出∠DAE.【详解】解:∵∠BAC+∠B+∠C=180°,∠B=40°,∠C=72°,∴∠BAC=68°,∵AE平分∠BAC,∴∠BAE=∠CAE=12∠BAC=34°,∴∠AEC=∠B+∠BAE=74°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°-∠AEC=16°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.19.(1)见解析;(2)(3,0)【解析】【分析】(1)根据角平分线的定义以及等角的余角相等得出∠5=∠6,即可得出结论;(2)过点O作OF⊥CD于F,根据全等三角形的判定和性质即可求解.【详解】解:(1)证明:∵CO平分∠BCD,∠1=∠2∵∠CBO=90°,∴∠2+∠3=90°,∵DO⊥CO,∴∠DOC=90°,∴∠3+∠4=90°,∠1+∠6=90°,∴∠2=∠4,∴∠1=∠2=∠4,∵∠DAO=90°,∴∠4+∠5=90°,∵∠1+∠6=90°,∠1=∠2=∠4,∴∠5=∠6,∴DO平分∠ADC;(2)解:过点O作OF⊥CD于F,∴∠DFO=90°,∵∠DAO=90°,∴∠DFO=∠DAO,在△DFO和△DAO中,56DAO DFO DO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFO ≌△DAO (AAS ),∴OA=OF ,同理可得:OF=OB ,∴OA=OB ,∵点A 的坐标是(-3,0),∴点B 的坐标是(3,0).【点睛】本题考查平分线的定义,全等三角形的判定和性质,坐标与图形性质,证明△DFO ≌△DAO 是解题的关键.20.(1)见解析;(2)3【解析】【分析】(1)证明△ACD ≌△AED (AAS ),即可得出结论;(2)在AB 上截取AM=AF ,连接MD ,证△FAD ≌△MAD (SAS ),得FD=MD ,∠ADF=∠ADM ,再证Rt △MDE ≌Rt △BDE (HL ),得ME=BE ,求出MB=AB-AM=6,即可求解.【详解】解:(1)证明:∵AD 平分∠BAC ,∴∠DAC=∠DAE ,∵DE ⊥BA ,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD 和△AED 中,C DEA DAC DAE AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AED (AAS ),(2)在AB 上截取AM=AF ,连接MD ,在△FAD 和△MAD 中,AF AM DAF DAM AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△MAD (SAS ),∴FD=MD ,∠ADF=∠ADM ,∵BD=DF ,∴BD=MD ,在Rt △MDE 和Rt △BDE 中,MD BD DE DE =⎧⎨=⎩,∴Rt △MDE ≌Rt △BDE (HL ),∴ME=BE ,∵AF=AM ,且AF=1.4,∴AM=1.4,∵AB=7.4,∴MB=AB-AM=7.4-1.4=6,∴BE =12BM =3,即BE 的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD ≌△MAD 和Rt △MDE ≌Rt △BDE 是解题的关键.21.(1)见解析;(2)见解析;(3)90°-12α【分析】(1)由CA=CB ,CD=CE ,∠ACB=∠DCE=α,利用SAS ,即可判定:△ACD ≌△BCE ;(2)首先作CM ⊥AD 于M ,CN ⊥BE 于N ,由△ACD ≌△BCE ,可得CM=CN ,即可证得HC 平分∠AHE ;(3)由△ACD ≌△BCE ,可得∠CAD=∠CBE ,继而求得∠AHB=∠ACB=α,则可求得∠CHE 的度数.【详解】解:(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,CA CBACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(2)证明:过点C 作CM ⊥AD 于M ,CN ⊥BE 于N,∵△ACD ≌△BCE ,,AD BE ∴=∴CM=CN ,∴HC 平分∠AHE ;(3)∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,∴∠AHB=∠ACB=α,∴∠AHE=180°-α,∴∠CHE=12∠AHE=90°-12α.【点睛】此题考查了全等三角形的判定与性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22.见解析【解析】【分析】从四点向L引垂线并延长,分别找到四点的对称点,然后顺次连接即可.【详解】如图所示,四边形A1B1C1D1即为所求.【点睛】考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.23.105°【解析】【分析】根据平角的性质先求出∠ABC,再利用外角定理求出∠ACE的度数.【详解】∵∠ABD=125°,∴∠ABC=180°﹣125°=55°,∴∠ACE=∠ABC+∠A=55°+50°=105°【点睛】此题主要考查三角形的外角,解题的关键是熟知三角形的外角定理.24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)见解析;(2)成立,理由见解析【解析】【分析】(1)根据AAS证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;(2)同理证明△ADB≌△CEA,得到AE=BD,AD=CE,即可证明;【详解】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE ;(2)∵∠BDA =∠BAC =α,∴∠DBA+∠BAD =∠BAD+∠CAE =180°﹣α,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.。
人教版八年级上册数学期中考试试题及答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列结论正确的是()A .有两个锐角相等的两个直角三角形全等B .顶角和底边对应相等的两个等腰三角形全等C .一条斜边对应相等的两个直角三角形全等D .两个等边三角形全等.3.已知一个正多边形的内角是140︒,则这个正多边形的边数是()A .6B .7C .8D .94.如图,把长方形ABCD 沿EF 对折后使两部分重合,若∠AEF =110°,则∠1=()A .50°B .35°C .30°D .40°5.如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为()A .40°B .45°C .60°D .70°6.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对7.如图,在ABC 中,9035C BC BAC ∠=︒=∠,,的平分线AD 交BC 于点.D 若:2:5,DC DB =则点D 到AB 的距离是()A .10B .15C .25D .208.如图,在ABC 中,2,75,60AC BAC ACB =∠=︒∠=︒,高BE 与AD 相交于点从,则DH 的长为()A .4B .3C .2D .19.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为()A .15°B .225°C .30°D .45°10.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是A .CB CD=B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒二、填空题11.一木工师傅现有两根木条,木条的长分别为40cm 和30cm ,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm ,则x 的取值范围是_______.12.如图,在ABC 中,6, 4.5,AB AC BC ===分别以,A B 为圆心,4为半径画弧交于两点,过这两点的直线交AC 于点,连接BD ,则△BCD 的周长是__________.13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.14.如图,△ABC 中,AB=AC ,∠BAC=120°,AC 的垂直平分线交BC 于点D ,垂足为E ,若DE=2cm ,则BD 的长为_______.15.已知点P 的坐标为(-3,4),作出点P 关于x 轴对称的点P 1,称为第1次变换;再作出点P 1关于y 轴对称的点P 2,称为第2次变换;再作点P 2关于x 轴对称的点P 3,称为第3次变换,…,依次类推,则第2019次变换得到的点P 2019的坐标为____________.16.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠1=40°,∠2=110°,则∠A=_____.三、解答题17.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示)。
八年级数学期中考试试卷
八年级数学期中考试试卷一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的。
)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.333...2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 303. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 1/x4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是5. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π6. 一个多项式与2x^2 - 3x + 1的乘积是4x^3 - 6x^2 + 3x - 5,那么这个多项式是?A. 2x - 1B. 2x + 1C. -2x + 1D. -2x - 17. 下列哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x < 2x + 1D. 3x ≥ 2x + 18. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 109. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:810. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°二、填空题(本题共5小题,每小题4分,共20分。
)11. 一个数的立方根是2,那么这个数是______。
12. 如果一个角的补角是120°,那么这个角的度数是______。
13. 一个等差数列的首项是3,公差是2,那么它的第五项是______。
14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以表示为y = a(x - 1)^2 - 4,其中a的值是______。
2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(全解全析)
2024-2025学年八年级数学上学期期中模拟卷(重庆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第11~13章(三角形、全等三角形、轴对称)含七年级部分内容。
5.难度系数:0.69。
第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.学校为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是()A.B.C.D.【答案】C【解析】A、“爱”不是轴对称图形,故该选项不符合题意;B、“我”不是轴对称图形,故该选项不符合题意;C、“中”是轴对称图形,故该选项符合题意;D、“华”不是轴对称图形,故该选项不符合题意.故选C.V的高的图形是()2.下面四个图形中,线段BD是ABCA.B.C.D.【答案】D【解析】A.线段BD是BDA△的高,选项不符合题意;B.线段BD是BDA△的高,选项不符合题意;C.线段BD是BDA△的高,选项不符合题意;V的高,选项符合题意.D.线段BD是ABC故选D.3.下列长度的各组线段可以组成三角形的是()A.2,3,5B.5,7,4C.4,4,8D.2,4,64.已知多边形的内角和是1080°,则这个多边形是几边形?()A.六边形B.七边形C.八边形D.十边形【答案】C【解析】设这个多边形是n边形,则(n-2)•180°=1080°,解得:n=8,即这个多边形为八边形.故选C.5.下列说法,正确的是()A.等腰三角形的高、中线、角平分线互相重合B.到三角形二个顶点距离相等的点是三边垂直平分线的交点C.三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等【答案】B【解析】A 、等腰三角形底边上的高、中线、顶角的角平分线互相重合,错误;B 、到三角形二个顶点距离相等的点是三边垂直平分线的交点,正确;C 、三角形一边上的中线将三角形分成面积相等的两个三角形,错误;D 、若一个直角三角形的斜边和直角边与另一个直角三角形的两个直角边相等则这两个直角三角形不全等,错误;故选B .6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .547.如图,若31A Ð=°,那么A B C D E Ð+Ð+Ð+Ð+Ð=( )A .90°B .180°C .211°D .242°【答案】D【解析】根据题意,180AFG AGF A Ð+Ð=°-ÐQ ,180CFG AFG Ð+Ð=°,180EGF AGF Ð+Ð=°()()360360180180CFG EGF AFG AGF A A\Ð+Ð=°-Ð+Ð=°-°-Ð=°+Ð又CFG B C Ð=Ð+ÐQ ,EGF D E Ð=Ð+Ð,A B C D E\Ð+Ð+Ð+Ð+ÐA CFG EGF=Ð+Ð+Ð1802A =°+Ð180231=°+´°=242°故选D .8.如图,在ΔABC 中,AB AC =,6BC =,且ΔABC 面积是24,AC 的垂直平分线EF 分别交,AC AB 边于点,E F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM D 周长的最小值为( )A .9B .10C .11D .12BC 边的中点,9.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,在等腰直角ACB △中,90ACB Ð=°,点D 是ACB △内部一点,连接DC 并延长至点E ,连接AE 、,BE AD BE ^,垂足为点,G AG 交BC 于点Q ,延长AC 交BE 于点F ,连接DF ,EAC DAC Ð=Ð.给出以下结论:①CF CQ =;②DE 平分AEB Ð;③若点G 为BF 的中点,连接GC 并延长交AE 于点H ,则AH CH DG =+:④2ACE ADFE S S =四边形△.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【解析】∵90ACB Ð=°,AD BE ^,∴90FCB ACB AGB Ð=°=Ð=Ð,∵AQB ACQ CAQ AGB CBF Ð=Ð+Ð=Ð+Ð,∴CAQ CBF Ð=Ð,∵AC BC =,∴ACQ BCF V V ≌,∴CF CQ =,故①正确;∵CAQ CBF Ð=Ð,EAC DAC Ð=Ð,∴EAC EBC Ð=Ð,∵AC BC =,90ACB Ð=°,∴45CAB CBA Ð=Ð=°,∴EAC CAB EBC CBA Ð+а=Ð+Ð,∴EAB EBA Ð=Ð,∴AE EB =,又∵AC BC =,EC EC =,∴EAC EBC V V ≌,∴AEC BEC Ð=Ð,∴DE 平分AEB Ð;故②正确;∵点G 为BF 的中点,AG BF ⊥,∵AE BE =,EN 平分Ð∴EN AB ^,∵AC BC =,CN AB ^∴CN 平分ACB Ð,∴45ACN BCN Ð=Ð=°∵90,FCQ CF CQ Ð=°=,∴45FQC DCQ Ð=°=Ð,∴FQ ED ∥,∴CDF CDQ S S =V V ,∵CFM CDF CDM S S S =-V V V ,DMQ CDQ CDM S S S =-V V V ,∴CFM DMQ S S =V V ,∵ACQ BCF V V ≌,∴ACQ BCF S S =V V ,∵ACQ CMF DMQ ADF S S S S +-=V V V V ,∴ADF ACQ BCF S S S ==V V V ,∴ADF ECF BCF ECF BCE S S S S S +=+=V V V V V ,∵EAC EBC V V ≌,∴EAC EBC S S =V V ,∴2ACE ADF CEF ACE CEB ACE ADFE S S S S S S S =++=+=四边形△△△△△△;故④正确;综上:正确的有4个;故选D .第二部分(非选择题 共110分)二、填空题:本题共8小题,每小题4分,共32分。
江苏省南京市联合体2023-2024学年八年级下学期期中考试数学试题(原卷版)
2023-2024学年度第二学期期中学情分析样题八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1. 下列图形中,既是轴对称图形,又是中心对称图形是( )A. B. C. D.2. 下列调查中,适合普查的是( )A. 了解某班学生“米跑”的成绩B. 调查某批次汽车的抗撞击能力C. 了解公民保护环境的意识D. 检测折叠屏手机能承受的弯折次数3. 下列生活中的事件,属于不可能事件的是( )A. 3天内将下雨B. 打开电视,正在播新闻C. 买一张电影票,座位号是偶数D. 明天太阳从西方升起4. 在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P 的坐标为( )A. (3,-2)B. (2,-3)C. (-3,-2)D. (32)5. 在四边形ABCD 中,.如果再添加一个条件可证明四边形是正方形,那么这个条件可以是( )A. B. C. D. 6. 如图是甲、乙两公司2021年1-8月份的盈利情况图,根据图中提供的信息,下列说法错误的是( )的,5090A B C ∠=∠=∠=︒AB BC =AB CD =AC BD =90D Ð=°A. 两公司在8月份的利润相同B. 甲公司的利润逐月递减C. 甲公司的利润有4个月高于乙公司的利润D. 乙公司4月份的利润最高7. 若两个图形关于某点成中心对称,则以下结论:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点到对称中心的距离相等;④一定存在某条直线,使沿该直线折叠后的两个图形能互相重合.其中所有正确结论的序号是( )A. ①②B. ③④C. ①②③D. ①②③④8. 如图,在中,于点,于点,是的中点,连接,设,则()A. B. C. D. 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 为了解某市八年级学生的身高情况,从中抽测了名学生进行调查,在这次调查中,样本容量是____.10. 在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能的是__________.11. 一次数学测试后,某班40名学生按成绩分成4组,第组的频数分别为12、10、6、则第4组的频率为 ___________.12. 在中,若,则____.13. 在生活垃圾中,直接填埋的占,焚烧的占,回收利用的占.为描述上述信息,最合适的统计图是____.14. 如图,的对角线,相交于点,的周长为10,的周长为16,则的值为____.ABC AE BC ⊥E BD AC ⊥D F AB ,DF EF ,DFE x ACB y ∠=∠=︒︒1902y x =-+y x =2180y x =-+90y x =-+2500200.251~3ABCD Y 40A B ∠-∠=︒C ∠=︒23%73%4%ABCD Y AC BD O ABC BCD △OB OA -15. 如图,将矩形绕点A 顺时针旋转到矩形的位置,旋转角为若,则____.16. 如图,在矩形中,将沿对角线对折得到,交于点F .若,,则的长为____.17. 如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=_______.18. 如图,在中,,,,点P 为上一点,连接,以,为邻边作,连接,则的长的最小值为______.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字ABCD AB C D '''()090αα︒︒<<1114∠=︒α=︒ABCD BCD △BD BED BE AD 1AB =2BC =AF Rt ABC △90BAC ∠=︒3AB =4AC =BC PA PA PC PAQC Y PQ PQ说明、证明过程或演算步骤)19. 已知,如图,E 、F 是平行四边形的对角线上的两点,.求证:;20. 某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.转动转盘的次数1001502005008001000落在“洗衣粉”区域的次数68111136345564701落在“洗衣粉”区域的频率0.68a 0.680.69b 0.70(1) , ;(2)转动该转盘一次,获得洗衣粉概率的估计值是多少?21. 学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t 分钟,当0<t≤20时记为A 类,当20<t≤40时记为B 类,当40<t≤60时记为C 类,当t>60时记为D 类,收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了 名学生进行调查统计,扇形统计图中的D 类所对应的扇形圆心角为 °;(2)将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?22. 如图,在矩形ABCD 中,对角线BD 的垂直平分线EF 分别与AD ,BC 交于点E 、F ,与BD 交于点O ,连接BE ,DF .的ABCD AC AE CF =EB FD ==a b =(1)求证:四边形BEDF 是菱形;(2)若,,求菱形BEDF 的面积.23. 如图,在平面直角坐标系中,,,,线段与线段成中心对称.(1)对称中心的坐标是 ;(2)与的关系为 ;(3)若是线段上的点,则点关于点对称的点的坐标为 (用含,的式子表示).24. 已知菱形.(1)如图①,点E ,F ,G ,H 分别在上,且.求证:四边形是矩形;(2)如图②,点M 在上,用直尺和圆规作出两种不同的矩形,使得点N ,P ,Q分别在4AB =8AD =(4,1)A -(1,3)B -(2,1)A '-A B ''AB M A B ''AB (,)P a b AB P M a b ABCD AB BC CD DA ,,,AE AH CF CG ===EFGH BC MNPQ上(保留作图痕迹,写出必要的文字说明).25 在中,点,分别在,上.(1)如图①,若,求证:四边形为平行四边形;(2)如图②,为钝角,,求证:四边形是平行四边形.26. 如图,正方形和正方形,点是上动点.(1)连接,.①求证:;②求证:∠;(2)连接,若,则 ..的CD DA AB ,,ABCD Y E F AD BC BE DF ∥BFDE A ∠BE DF =BFDE ABCD AEFG F BC BE DG BE DG =45ADG =︒AF BF BE =BAF ∠=︒。
2024—2025学年北师大版八年级上册数学期中考试模拟试卷
2024—2025学年北师大版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作()A.﹣50元B.﹣70元C.+50元D.+70元2、下列四个数中,最小的数是()A.2B.0C.﹣2D.﹣3、地球静止轨道卫星的静止轨道与地面的高度约为35800千米.将35800用科学记数法表示为()A.3.58×104B.0.358×104C.3.58×105D.0.358×105 4、如果一个数到原点的距离等于3,那么这个数是()A.3B.﹣3C.3或﹣3D.65、下列各单项式中,与﹣2mn2是同类项的是()A.5mn B.﹣3m2n C.n2m D.﹣mn36、下列去括号正确的是()A.a﹣(2b+c)=a﹣2b+c B.3(x﹣y)=3x﹣3yC.﹣(a+b)=﹣a+b D.﹣3(x+6)=﹣3x﹣67、近似数2.0×104精确到哪一位()A.十分位B.千位C.百位D.万位8、如图,在有序号的小正方形中选出一个,它与图中五个有阴影的小正方形组合后,不能构成正方体的表面展开图的是()A.①B.②C.③D.④9、下列各选项中的图形绕虚线旋转一周后,得到的几何体是圆柱的是()A.B.C.D.10、观察下列图形:第1个图形有6根小棍,第2个图形有11根小棍,第3个图形有16根小棍…,则第n(n为正整数)个图形中小棍根数共有()A.5(n﹣1)B.6n C.5n+1D.6n﹣1二、填空题(每小题3分,满分18分)11、比较大小:(用“>或=或<”填空).12、数轴上与﹣1的距离等于3个单位长度的点所表示的数为.13、单项式的系数是14、喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示,这样捏合到第次后可拉出256根面条•15、如果x2﹣2x﹣1=0,那么代数式﹣3x2+6x+10的值是.16、多项式是关于x的二次三项式,则m的值是.2024—2025学年北师大版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算(1);(2).18、由7个相同的棱长为2的小立方块搭成的几何体如图所示.(1)请画出它从三个方向看到的形状图.(2)请计算几何体的表面积.19、已知有理数a,b,c,d,e,且a,b互为倒数,c,d互为相反数,m的绝对值为2,求式子的值.20、先化简,再求值.(1)3x2﹣(2x2+5x﹣1)﹣(3x+1),其中x=10;(2)2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1;.21、某检修小组从A地出发,在东西走向的公路上检修路灯线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米).第一次第二次第三次第四次第五次第六次第七次﹣6+8﹣7+5+4﹣5﹣2(1)收工时距A地的距离是多少千米?(2)若每千米耗油0.2升,问这七次共耗油多少升?22、如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.23、已知多项式A=4x2+my﹣12与多项式B=nx2﹣2y+1.(1)当m=1,n=5时,计算A+B的值;(2)如果A与2B的差中不含x和y,求mn的值.24、已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)填空:a+b=,=,a5+b5=;(2)若数轴上有一点P表示的数为﹣1,将点P向左移动2022个单位长度,再向右移动2022个单位长度到点Q,求点Q表示的数及P,Q两点间的距离;(3)化简:|a﹣c|﹣2|b+c|+|c|.25、如图,在数轴上点A表示数a,点B表示数b,点C表示数c.b是最小的正整数,且a、c满足|a+3|+(c﹣6)2=0(1)填空:a=b=c=;(2)点B静止不动,点A以每秒1个单位长度的速度在数轴上向左运动,同时点C以每秒3个单位长度的速度在数轴上向右运动.设t秒后,点A与点B 之间的距离表示为AB,点B与点C之间的距离表示为BC.①求BC的长.(用含t的代数式表示)②问|BC﹣3AB|的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,求出其值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰南区2018-2019学年第一学期期中质量检测
八年级数学试卷 (本试卷共三个大题,25个小题,时间90分钟,满分100分)
一、精心选一选(本大题共12小题,每小题2分,共24分)每小题
给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内.
1.下列交通标志图案是轴对称图形的是……………………………………………【 】
2. 下列长度四根木棒中,能与长为4,9的两根木棒围成一个三角形的是………【 】
A .4
B .5
C .9
D .14
3.在直角坐标系中,点A (2,-8)、B 关于y 轴对称,则点B 的坐标是………………【 】
A.(-2,-8)
B.(2,8)
C.(-2,8)
D.(8,2)
4.如图,已知∠A =∠D ,∠C =∠F ,若要判定△ABC ≌△DEF ,还需要条件………【 】
A .A
B =DF B .A
C =DE C .∠B =∠E
D .AC =DF
5.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于……………【 】
A .180°
B .150°
C .90°
D .210°
6.如图,桌面上有M 、N 两球,若要将M 球射向桌面的任意一边,使一次反弹后击中N 球,则4个点中,可以瞄准的是……………………………………………………………【 】
A .点A
B .点B
C .点C
D .点D
题号
一 二 三
总分 核分人 21 22 23 24 25
得分 得分 评卷人 第4题图 第5题图 第6题图
7.如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有…………………………………………………………………【 】
A .5个
B .4个
C .3个
D .2个
8.如图,在△ABC 中,∠B =∠C ,DE ⊥BC ,EF ⊥AC ,垂足分别为E ,F ,若∠ADE =158°,则∠FEC 的度数为………………………………………………………………………【 】
A.22°
B.32°
C.44°
D.58°
9.如图,△ABP 和△DCP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:
(1)∠PBC =15°;(2)AD ∥BC ;(3)直线PC 与AB 垂直;(4)四边形ABCD 是轴对称图形.其中正确结论的个数为…………………………………………………………………【 】
A.1个
B.2个
C.3个
D.4个
10.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为………………………………………………………【 】
A .13
B .14
C .15
D .16
11.如图,把两个含有45°角的直角三角板放置在桌面上,点E 在BC 上,AE 的延长线与CD 交于点F ,则∠AFD 的度数是……………………………………………………【 】
A.120°
B.60°
C. 90°
D. 80°
12.如图,在△ABC 中,AC =5,中线AD =7,则AB 边的取值范围是………………【 】
A .1<A
B <29
B .4<AB <24
C .9<AB <19
D .5<AB <19
第9题图
第7题图 第8题图 第10题图 第11题图 第12题图
二、细心填一填(本大题共8小题,每小题3分,共24分)把答案直接写在题中的横线上.
13.如果点P (﹣2,b )和点Q (a ,﹣3)关于x 轴对称,则a +b 的值是 . 14.已知等腰三角形的一个内角是70°,则它的底角为 .
15.如图,BE 平分∠ABC ,CE 平分△ABC 外角∠ACD ,若∠E =25°,则∠A 度数为 . 16.如图,∠1+∠2+∠3+∠4+∠5+∠6= .
17.如图,已知△ABC 的周长是20,BO ,CO 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D , 且OD =3,则△ABC 的面积是 .
18.已知C ,D 两点在线段AB 的垂直平分线上,且∠ACB =50°,∠ADB =80°, 则∠CAD = .
19.如图的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有 个.
20.如图,△ABC 中,IB ,IC 分别平分∠ABC ,∠ACB ,过I 点作DE ∥BC ,分别交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是等腰三角形;③AI 平分∠BAC ;④△ADE 周长等于AB +AC .其中正确的是 .(填序号)
得分 评卷人
得分 评卷人
第15题图 第16题图 第17题图
第19题图 第20题图
三、(本题满分52分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.
21. (每小题8分,本题满分16分)
(1)如图,在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°,求∠CAD
和∠AEC的度数.
(2)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
①求证:△ABF≌△DCE.
②试判断△OEF的形状(按边分类),并说明理由.
如图,BD是∠ABC的角平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是点M、N,求证:PM=PN。
23. (本题满分9分)
△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
(1)在图中作出△ABC关于y轴对称图形△A1B1C1.
(2)写出点A1、B1、C1的坐标.
(3)在x轴上求作一点P,使PA+PB1最短.(不写作法,写出结论)
如图,AC=AB,DC=DB,AD与BC相交于O.∠CAO=30°,CO=5cm
(1)求证:AD垂直平分BC.
(2)判断△ABC的形状并说明理由.
(3)求线段AB的长度.
25.(本题满分10分)
如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°. AC与BD相交于点P.
(1)求证:①AC=BD;②∠APB=50°;
(2)如图②,若∠AOB=∠COD=α,其它条件不变,则AC与BD间的数量关系为________,∠APB的大小为________.(只写结论即可)。