(作业指导书)土壤质量 铜、锌的测定 火焰原子吸收分光光度法测定 GBT 17138-1997

合集下载

火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬

火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬

火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬摘要:采用微波消解法消解待测土壤,用火焰原子吸收分光光度法测定消解液中的铜、锌、铅、镍、铬5种重金属,测定结果的相对偏差分别为0.59%,0.94%,0.53%,0.30%,1.7%,标准样品的相对误差在0-8.6%之间,均在标准值可接受范围内。

关键字:火焰原子吸收分光光度法、土壤铜、锌、铅、镍、铬随着社会工业的高速发展,土壤污染问题越来越严重,土壤污染物主要分为无机污染物和有机污染物两大类。

无机污染物主要包括Cu、Hg、Zn、Pb、Ni、Cr等重金属污染,这些重金属在土壤中不易被微生物分解,易与有机质发生螯合作用而稳定存在于土壤中,难于清除[1]。

根据《土壤环境质量农用地土壤污染风险管控标准》,土壤中的Cu、Hg、Zn、Pb、Ni、Cr等重金属元素的含量应符合污染物的控制标准值。

本文探讨了火焰原子吸收分光光度法测定土壤中Cu、Zn、Pb、Ni、Cr等元素。

采用微波消解法消解土壤,与电热板消解法相比,该方法具有操作简便,用酸量少,空白值低等优点,且测定结果准确,可靠[2]。

1 实验部分1.1主要仪器与试剂(1)火焰原子吸收光谱仪:iCE 3300,赛默飞世尔科技有限公司;(2)密闭微波消解仪:WX-8000,上海屹尧仪器科技发展有限公司;(3)万分之一电子天平:GL224-1SCN,赛多利斯科学仪器(北京)有限公司;(4)乙炔:纯度99.9%,广西瑞达化工科技有限公司。

(5)标准溶液:坛墨质检科技股份有限公司,浓度100mg/L。

(6)土壤标准样品:GBW07407:中国地质科学院地球物理地球化学勘查研究所;GBW07407a:中国地质科学院地球物理地球化学勘查研究所;RMU037:东莞龙昌智能技术研究院;ERM-S-510203:生态环境部标准样品研究所;ERM-S-510204:生态环境部标准样品研究所。

(8)试剂:硝酸、盐酸、氢氟酸:优级纯,国药集团化学试剂有限公司。

土壤中重金属的测定——火焰原子吸收光谱法

土壤中重金属的测定——火焰原子吸收光谱法

土壤中重金属的测定——火焰原子吸收光谱法简介本文档介绍了一种土壤中重金属元素测定的方法,即火焰原子吸收光谱法。

火焰原子吸收光谱法是一种常用的分析方法,可用于快速、准确地测定土壤中重金属元素的含量。

方法步骤1. 样品处理:将土壤样品收集并干燥,然后通过适当的方法,如酸溶解法,将样品转化为溶液。

2. 仪器调试:根据具体仪器的操作说明,进行仪器的调试和校准工作,确保仪器的准确性和稳定性。

3. 标准曲线制备:准备一系列标准溶液,其重金属元素浓度范围应涵盖样品中重金属元素含量的预期范围。

使用这些标准溶液制备一条标准曲线。

4. 样品测定:将经过处理的土壤样品溶液转移至火焰原子吸收光谱仪中,设置合适的工作条件,如波长和火焰强度等,然后测定土壤样品中重金属元素的吸收峰高度。

5. 数据分析:根据标准曲线上的吸收峰高度和相应的重金属元素浓度,计算出土壤样品中重金属元素的含量。

优点- 火焰原子吸收光谱法具有分析快速,结果准确可靠的优点。

- 该方法无需复杂的仪器设备和昂贵的试剂,成本较低。

- 火焰原子吸收光谱法在土壤分析领域得到广泛应用,有强大的实践基础和验证。

注意事项- 进行土壤样品处理时,需注意避免污染和样品损失。

- 在仪器调试和校准过程中,应按照仪器操作说明进行操作。

- 制备标准曲线时,应确保所选浓度范围合适,并进行重复测定以验证曲线的准确性。

- 在样品测定时,应注意操作流程和仪器维护,以确保结果可靠。

结论火焰原子吸收光谱法是一种可行的方法,适用于土壤中重金属元素的测定。

通过正确使用和操作火焰原子吸收光谱仪,结合合适的样品处理和标准曲线制备,可以得到准确、可靠的重金属元素含量结果。

这一方法在环境监测、土壤污染评估等领域具有广泛的应用前景。

实验方案

实验方案

土壤检测实验方案
(注:各指标测定意义另附于文件夹“指标意义”中,各测定方法另附于文件夹“指标测定方法中”)
注:10 目(筛孔直径2.00mm),100 目(筛孔直径0.149mm)
附录
1.称量(皿重、湿重)
2.烘干(105°C,24h)
3.称量(干重):计算含水率
4.研磨
5.过筛(120目)
6.四酸消解
(1)主要试剂:
浓盐酸(HCl),密度1.19g/mL,优级纯
浓硝酸(HNO3)密度1.42g/mL优级纯
硝酸溶液,1硝酸+5超纯水(体积),用1.2配制
氢氟酸(HF),密度1.49g/mL
高氯酸(HClO4),密度1.68g/mL优级纯
主要仪器:
一般实验仪器(试管、烧杯、容量瓶等)
塑料小瓶;聚四氟乙烯坩埚
电热板(可温控)
实验用水(电导率不低于18.3)
7.测定指标
(1)总铜(《GBT 17138-1997 土壤质量铜、锌的测定火焰原子吸收分光光度法》)
(2)总铅、隔(《GB_T_17141-1997_土壤质量_铅、镉的测定_石墨炉原子吸收分光光度法》)(3)总汞(《GBT 22105.1-2008 土壤质量总汞、总砷、总铅的测定原子荧光法(第1部分):土壤中总汞的测定》)
(4)总砷(《GBT 22105.1-2008 土壤质量_总汞、总砷、总铅的测定_原子荧光法(第2部分):土壤中总砷的测定》)
(5)总铬(HJ491-2009《土壤_总铬的测定_火焰原子吸收分光光度》)。

土壤质量 铜、锌的测定 火焰原子吸收分光光度法

土壤质量 铜、锌的测定 火焰原子吸收分光光度法

土壤质量铜、锌的测定火焰原子吸收分光光度法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言土壤中微量元素的含量是评价土壤质量的重要指标之一。

水质铜、锌、铅、镉作业指导书

水质铜、锌、铅、镉作业指导书

水质铜、锌、铅、镉作业指导书页码序号第1页/共5页标题水质铜、锌、铅、镉的测定实施日期2014-1.目的和适用范围本标准规定了测定水中铜、锌、铅、镉的原子吸收光谱法。

适用于测定地下水、地面水和废水中的铜、锌、铅、镉。

测定浓度范围与仪器的特性有关,表1列出一般仪器的测定范围。

表12.方法原理将样品或消解处理过的样品直接吸入火焰,在火焰中形成的原子对特征电磁辐射产生吸收,将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测定元素的浓度。

3.干扰及消除地下水和地面水中的共存离子和化合物在常见浓度下不干扰测定。

但当钙的浓度高于1000mg/L时,抑制镉的吸收,浓度为2000mg/L 时,信号抑制达19%。

铁的含量超过100mg/L 时,抑制锌的吸收。

当样品中含盐量很高时,特征谱线波长又低于350nm时,可能出现非特征吸收。

如高浓度的钙,因产生背景吸收,使铅的结果偏高。

3.1验证实验验证实验是为了检验是否存在基体干扰或背景吸收。

一般通过测定加标回收率判断基体干扰的程度。

通过测定特征谱线附近1nm内的一条非特征吸收谱线处的吸收可判断背景吸收的大小。

根据表2选择与谱线对应的非特征吸收谱线。

表2页码序号第2页/共5页标题水质铜、锌、铅、镉的测定实施日期2014-3.2去干扰实验根据验证实验(3.1)的结果,如果存在基体干扰,用标准加入法测定并计算结果。

如果存在背景吸收,用自动背景校正装置或邻近非特征吸收谱线法进行校正,后一种方法是从特征谱线处测得的吸收值中扣除邻近非特征吸收谱线处的吸收值,得到被测元素原子的真正吸收。

此外,也可使用螯合萃取法或样品稀释法降低或排除产生基体干扰或背景吸收的组分。

4.试剂和材料本标准所用试剂除非另有说明,分析时均使用符合国家标准或专业标准的分析纯化学试剂;实验用水为新制备的去离子水。

4.1硝酸(HNO3):ρ=1.42g/ml,优级纯。

4.2硝酸(HNO3):ρ=1.42g/ml,分析纯。

土壤质量铜、锌的测定火焰原子吸收分光光度法

土壤质量铜、锌的测定火焰原子吸收分光光度法

土壤质量铜、锌的测定火焰原子吸收分光光度法1 主题内容与适用范围 1.1 本标准规定了测定土壤中铜、锌的火焰原子汲取分光光度法。

1.2 本标准的检出限《按称取0.5g试样消解定容至50mL计算》为:铜1mg/kg,锌0.5mg/kg。

1.3 当土壤消解液中铁含量大于100mg/L时,抑制锌的汲取,加入可消退共存成分的干扰。

含盐类高时,往往浮现非特征汲取,此时可用背景校正加以克服。

2 原理采纳盐酸-硝酸--全分解的办法,彻底破坏土壤的矿物晶格,使试样中的待测元素所有进入试液中。

然后,将土壤消解液喷入空气-乙炔火焰中。

在火焰的高温下,铜、锌化合物离解为基态原子,该基态原子蒸气对相应的空心阴极灯放射的特征谱线产生挑选性汲取。

在挑选的最佳测定条件下,测定铜、锌的吸光度。

3 试剂本标准所用法的试剂除另有解释外,均用法符合国家标准的分析纯试剂和去离子水或同等纯度的水。

3.1 盐酸(HC1):ρ= 1.198/mL,优级纯。

3.2 硝酸(HNO3):ρ=1.428/mL,优级纯。

3.3 硝酸溶液,1+1:用(3.2)配制。

3.4 硝酸溶液,体积分数为0.2%:用3.2配制。

3.5 (HF):ρ=1.498/mL。

3.6 (HC1O4):ρ=1.688/mL,优级纯。

3.7 [La(NO3)3·6H2O]水溶液,质量分数为5%。

3.8 铜标准储备液,1.000mg/mL:称取1.0000g(精确至0.0002g)光谱纯金属铜于50mL烧杯中,加入硝酸溶液(3.3)20mL,温热,待彻低溶解后,转至1000mL容量瓶中,用水定容至标线,摇匀。

3.9 锌标准储备液,1.000mg/mL:称取1.0000g(精确至0.0002g)光谱纯金属锌粒于50mL烧杯中,用20mL硝酸溶液(3~3)溶解后,转移至1000mL容量瓶中,用水定容至标线,摇匀。

3.10 铜、锌混合标准用法液,铜20.0mg/L,锌10.0mg/L:用硝酸溶液(3.4)逐级稀释铜、锌标准储备液(3.8),(3.9)配制。

土壤铜、锌的检测方法作业指导书

土壤铜、锌的检测方法作业指导书

土壤铜、锌的检测方法作业指导书(火原子原子吸收分光光度法)一、实验目的:1.掌握原子吸收分光光度法的基本原理2.了解原子吸收分光光度计的主要结构及操作方法3.学会土样的消解及重金属的测定方法。

二、仪器和仪器:1.仪器:100mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板novAA400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯2.试剂:(1)盐酸,优级纯(2)硝酸,优级纯;(3)去离子水;(4)氢氟酸,ρ=1.49g/ml;(5)高氯酸,ρ=1.68g/ml。

(6)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。

(7)2%(v/v)硝酸溶液:移取20ml浓硝酸(优级纯)于980ml去离子水中。

(8)国际标准样品-铜-单元素标准溶液,1000mg/L。

(9)国家标准样品-锌-单元素标准溶液,1000mg/L。

(10)铜、锌混合标准使用液:铜20mg/L,锌120mg/L;用硝酸溶液(2)逐级稀释铜、锌标准储备液(9)(10)待用。

四、实验原理:采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素部进入试液中。

然后,将土壤消解液喷入空气-乙炔火焰中。

在火焰的高温下,铜、锌化合离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。

在择的最佳测定条件下,测定铜、锌的吸光度。

五、操作方法1.土壤样品的处理:将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。

然后用有机玻璃棒或木棒将土样碾碎,过2mm尼龙筛,去掉2mm以上的砂砾和植物残体。

将上述风干细土反复按四法弃取,最后约留下100g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。

取20~30g土样,在105℃下烘4~5h,恒重。

2.土样的消解:准确称取0.2—0.5g(精确至0.0002g)试样于50mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。

火焰原子吸收法连续测定土壤样品中的铜、铅、锌、钴、镍

火焰原子吸收法连续测定土壤样品中的铜、铅、锌、钴、镍

Z n
G0
Ni
结 果发 现两 种体 系 中 c 、b z 、0 N 的测 定 结果 u P 、n c 、 i
13 实验方 法 .
与推荐值相符 , 结果令人满意。但是 H 1 H O ~ C一 N
收稿 日期 :0 8—1 20 2—1 7 作者简介 : 微 (9 1 ) 女 , 王 1 8一 , 硕士研究生 , 助理工程师 , 主要从事分析检测工作 。
火焰原子吸收法连续测定土壤样品中的铜、 锌、 镍 铅、 钴、
王 微
( 辽宁有色地质测试 中心 , 辽宁 沈阳 10 2 ) 1 11

要: 采用王水溶解土壤样品 , 用火焰原 子吸收法连续测定铜 、 、 、 、 铅 锌 钴 镍五种元 素 , 比了两 对 种消解体系 , 化了盐酸复溶 体系 , 优 优化 了仪 器的使 用条件 , 法检 出限为 C .4l 方 u11 g・ a
中 图分 类 号 :13 S5 文献 标 识 码 : A
随着 地质 调查 工 作 的进 一 步 深 入 , 对地 质实 验 室 的分析 测试 技术也 相应 的提 出 了更 准 、 快 、 方 更 更 便 的要求 。 目前检 测铜铅 锌钴镍 一般 采用 微波 消解
1 3 1 样 品 的 前 处 理 ..
移 去表 面 皿 , 发 至 干 。取 下 冷 却 , 入 浓 盐 酸 5 蒸 加 mL 用水 冲洗杯 壁 , , 加热 至 沸腾 , 冷却 后 移 入 5 0mL
l 实验部分
1 1 仪器 与试 剂 .
Hale Waihona Puke 容量瓶中, 用水稀释到刻度 , 摇匀 , 澄清后与原子荧
光 同时测 定 。
将土壤样品风干、 粉碎 , 10目筛。称取经过 过 0

土壤和沉积物中铜、锌、铅、镍和铬的火焰原子吸收分光光度法

土壤和沉积物中铜、锌、铅、镍和铬的火焰原子吸收分光光度法

PART 04
结果与分析
结果表示:当测定结果小于 100 mg/kg 时,结果
保留至整数位;当测定结果大于或等于 100 mg/kg 时,结果保留三位有效数字
质控措施:1.每批样品至少做 2 个实验室空白,空白中
锌的测定结果应低于测定下限,其余元素的 测定结果应低于方法检出限。 2 .每次分析应建立标准曲线,其相关系数应≥0.999。 3 .每 20 个样品或每批次(少于 20 个样品/批)分析结束后, 需进行标准系列零浓度点和中间浓度点核查。零浓度点测 定结果应低于方法检出限,中间浓度测定值与标准值的相 对误差应在±10%以内。 4 .每 20 个样品或每批次(少于 20 个样品/批)应分析一个 平行样,平行样测定结果相对偏差应≤20%。 5. 每 20 个样品或每批次(少于 20 个样品/批)应同时测定 1 个有证标准样品,其测定结果与保证值的相对误差应在 ±15%以内;或每 20 个样品或每批次(少于 20 个样品/批) 应分析一个基体加标样品,加标回收率应在 80%~120%之 间。
土壤和沉积物 铜、锌、铅、镍、铬的测定
目录
01 适用范围及


02 样品和实验


03 注 意 事 项
04 结果与分析
PART 01
适用范围及原 理
本标准规定了测定土壤和沉积物中铜、锌、铅、镍和铬的火焰原子吸 收分光光度法。
本标准适用于土壤和沉积物中铜、锌、铅、镍和铬 的测定。
当取样量为 0.2 g、消解后定容体积为 25 ml 时, 铜、锌、铅、镍和铬的方法检出限分别为 1 mg/kg、 1 mg/kg、10 mg/kg、3 mg/kg 和 4 mg/kg,测 定下限分别为 4 mg/kg、4 mg/kg、40 mg/kg、

(作业指导书)土壤质量 铅、镉的测定炉原子吸收分光光度法 GBT 17141-1997

(作业指导书)土壤质量  铅、镉的测定炉原子吸收分光光度法  GBT 17141-1997

作业指导书土壤质量铅、镉的测定炉原子吸收分光光度法 GB/T 17141-19971.试剂1.1 盐酸,优级纯;1.2 硝酸。

优级纯;1.3 硝酸溶液1+5,用1.2配制;1.4 硝酸溶液,体积分数为0.2%,用1.2配制;1.5 氢氟酸,p1.49g/ml1.6 高氯酸,优级纯1.7 磷酸氢二铵;优级纯水溶液,重量分数为5%。

1.8 铅标准储备液,购买。

1.9 镉.标准储备液,购买。

1.10 铅、镉混合标准使用液,铅250微克每毫升、镉50微克每毫升;临用前将铅、镉标准储备液用硝酸溶液(1.4经逐级稀释配制)。

2 仪器2.1一般实验仪器2.2 石墨炉原子吸收分光光度计2.3 铅、镉空心阴极灯2.4 氩气气瓶2.5 10微升手动进样器。

3 样品将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至约100g。

缩分后的土样经风干(自然风干或冷冻干燥)后,除去土样中石子和动植物残体等异物,用木棒(或)玛瑙棒研压,通过2mm尼龙筛(除去2mm以上的沙砾),混匀。

用玛瑙研钵将通过2mm尼龙筛的土样研磨至全部通过100g尼龙筛,混匀后备用。

4分析步骤(1)试液的制备准确称取0.1~0.3g(精确至0.0002g)制备好的试样于50mL聚四氟乙烯坩埚中,用水润湿后加入5mL盐酸(1.1),于通风橱内的电热板上低温加热,使样品初步分解,当蒸发至约2~3mL时,取下稍冷,然后加入5mL硝酸(1.2)、4mL氢氟酸)(1.5)、2mL高氯酸(1.6),加盖后于电热板上中温加热1h左右,然后开盖,继续加热除硅,当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物充分分解。

待坩埚上的黑色有机物消失后,开盖、驱赶白烟并蒸至内容物呈黏稠状。

视消解情况,可加入2mL硝酸(1.2)、2mL,氢氟酸(1.5)、1mL高氯酸1.6),重复上述消解过程。

当白烟再次基本冒尽且内容物呈黏稠状时,取下稍冷,用水冲洗坩埚盖及内壁,并加入1mL(1+5)的硝酸溶液(1.3)温热溶解残渣。

火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定

火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定

火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定发布时间:2023-03-10T02:56:23.532Z 来源:《科技潮》2022年35期作者:张仰华[导读] 本文主要研究火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定。

西部黄金克拉玛依哈图金矿有限责任公司新疆克拉玛依 834025摘要:本文主要研究火焰原子吸收分光光度法对土壤中铜、锌、铅、镍、铬的测定。

研究过程中,针对火焰原子吸收分光光度法原理和优势进行探讨。

并且实践研究了该方法在土壤中铜、锌、铅、镍、铬中的具体测定步骤,分析了测定过程中的注意事项,旨在推广该方法应用。

关键词:火焰原子吸收分光光度法;土壤;铜、锌、铅、镍、铬土壤中铜、锌、铅、镍、铬测定时土壤金属测定的主要内容,也是现代土壤污染测定的关键。

测定结果的精确度,对于确认土壤是否污染,土壤保护都有重要意义。

因此,当前土壤污染检测工作实施过程中,要求采用更多新技术进行土壤金属污染检测。

如,火焰原子吸收分光光度法就是当前能够对土壤污染实施精准检测,高效检测的有效方法,并且已经得到推广验证,证明该方法在检测中行之有效。

1.火焰原子吸收分光光度法的简要分析火焰原子吸收分光光度法是现代检测工作中常用的检测方法。

该方法适合应用于金属和部分非金属的检测。

在检测过程中,待测元素灯发出的特征谱线通过供试品经原子化产生的原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。

该检测方法在实施的过程中,也已经开始实施多项检测技术。

该检测技术也具有良好的检测优势,以下是本文研究后对该检测方法的应用优势进行分析:①检测灵敏度比较高,适合应用于精细化检测工作。

研究发现,火焰原子吸收分光光度法在检测中应用,能够对绝大部分金属元素的检测达到ppm级别,检测工作实施的过程中,利用特殊手段也可以使检测灵敏度达到ppb级别。

②检测实施过程中,精度也非常高。

如,研究发现,利用火焰原子吸收分光光度法进行检测,具有高精度特点,检测精度在1%-3%左右,最低精度也能够控制在1%以下。

土壤有效态铜、锌、铁、锰的测定

土壤有效态铜、锌、铁、锰的测定

土壤有效态铜、锌、铁、锰的测定(DTPA浸提---原子吸收分光光度法或ICP法)方法提要:用pH7.3的DTPA-TEA-CaCl2缓冲溶液作为浸提剂,螯合浸提出土壤中有效态锌、锰、铜、铁,用原子吸收分光光度法测定。

其中DTPA为螯合剂,氯化钙能防止石灰性土壤中游离碳酸钙的溶解,避免因碳酸钙所包蔽的锌、铁等元素释放而产生的影响。

三乙醇胺作为缓冲剂,能使溶液pH保持7.3左右,对碳酸钙溶解也有抑制作用。

适用范围:本方法适用于pH大于6的土壤有效态铜、锌、、铁、锰的测定。

试剂和溶液:DTPA浸提剂[c(DTPA)=0.005mol/L,c(CaCl2)=0.01mol/L,c(TEA)=0.1mol/L,Ph7.30]:称取1.967g二乙三胺五乙酸(DTPA),溶于14.92g(约13.3mL)三乙醇胺(TEA)和少量水中;再将1.47g氯化钙(CaCl2·2H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用1:1盐酸溶液(约8.5mL)或1:1氨水调节pH至7.3,用水定容,贮于塑料瓶中。

此溶液可保存几个月,但用前需校准pH。

铜标准贮备液[p(Cu)=1000u g/mL]:称取1.000g金属铜(优级纯),溶解于20mL1:1硝酸溶液(加热溶解),移入1L容量瓶中,用水定容。

或用硫酸铜配制:称取3.928g硫酸铜(CuSO4·5H2O,未风化),溶于水中,移入1L容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀。

铜标准溶液[p(Cu)=100u g/mL]:吸取铜标准贮备液10.00mL于100mL容量瓶中,用水定容。

锌标准贮备液[p(Zn)=1000u g/mL]:称取1.000g金属锌(优级纯),溶解于30mL1:1盐酸溶液(加热溶解),移入1L容量瓶中,用水定容。

或用硫酸锌配制:称取4.398g硫酸锌(ZnSO4·7H2O,未风化),溶于水中,移入1L容量瓶中,加5mL 1:5硫酸溶液,稀释至刻度,混匀。

火焰原子吸收分光光度法测定土壤和沉积物中的锌

火焰原子吸收分光光度法测定土壤和沉积物中的锌

广东化工2021年第10期· 226· 第48卷总第444期火焰原子吸收分光光度法测定土壤和沉积物中的锌邓秋云(佛山市环境监测中心站,广东佛山528000)[摘要]本文采用微波消解法和石墨电热消解法消解土壤和沉积物样品,用火焰原子吸收分光光度法分别测定土壤和沉积物中的锌。

分析了土壤标准物质(GSS-12、GSS-16、GSS-5)和沉积物标准物质(GSS-9、GSS-28、GSD-15),其测定值均在标准物质的理论值范围内,6次平行测定的相对标准偏差为0.6 %~2.7 %,其检出限、精密度和准确度均满足土壤和沉积物分析方法的要求。

[关键词]微波消解法;石墨电热消解法;土壤;沉积物;火焰原子吸收分光光度法[中图分类号]TQ [文献标识码]A[文章编号]1007-1865(2021)10-0226-02Determination of Zinc in Soil and Sediment byFlame Atomic Absorption SpectrophotometryDeng Qiuyun(Environmental Protection Monitoring Center of Foshan City,Foshan 528000,China) Abstract: In this paper, soil and sediment samples were digested by microwave digestion and graphite electrothermal digestion, and zinc in soil and sediment was determined by flame atomic absorption spectrophotometry. Soil reference materials (GSS-12, GSS-16, GSS-5) and sediment reference materials (GSS-9, GSS-28, GSD-15) were analyzed,the measured values are in the range of the theoretical values of reference materials, the relative standard deviations of 6 parallel measurements ranged from 0.6% to 2.7%, The detection limit, precision and accuracy meet the requirements of soil and sediment analysis methods.Keywords: Microwave digestion method;Graphite electrothermal digestion;Soil;Sediment;Flame atomic absorption spectrophotometry1 监测方法[1]1.1 方法依据《土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法》(HJ 491-2019)。

火焰原子吸收分光光度法测定污染土壤中5种重金属

火焰原子吸收分光光度法测定污染土壤中5种重金属
5100
15100 20100 3100 4100 01961 11280 15100 20100 01936 11262 30100 40100 01371 01490 1150 2100 01752 11000 15100 20100 01084 01108
表4 标准曲线回归方程及 r 值
元素
中国土壤与肥料 2009 ( 1)
m— — — 称取土壤样品质量 , g 。
表5 土壤样品溶液中重金属含量测定结果
样品编号
m (g)
1 015000 11011 3114 01324 4143 01027 2112 01170 0129 01032 5173 015003 01982 3105 01318 4133 01028 2120 01155 0125 01032 5173 015000 01851 2164 01394 5158 01030 2137 01146 0124 01032 5173
0184 mm 尼龙筛 , 充分搅拌混匀 , 采用四分法取其
Zn Cu Pb Cd Cr
值如表 4 所示 。
表3 锌 、铜 、铅 、镉 、铬标准曲线测定结果
元素 ρ(mg/ L)
A ρ(mg/ L) A 0100 0100 0100 0100 0100 0100 2150 0150 2150 5100 0125 2150
2 015002 01905 2181 01400 5168 01029 2129 01142 0123 01033 5191 015009 11055 3128 01874 13152 01032 2153 01125 0119 01030 5136
3 015007 11011 3114 01861 13130 01033 2161 01127 0120 01031 5155 01000 01044 01086 01011 - 0175 01002 0107 01021 - 0102 01002 0127

hj 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法

hj 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法

hj 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法文章标题:深度解析hj 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法目录:1. 引言2. HJ 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法2.1 什么是HJ 491-2019标准?2.2 为什么要测定土壤和沉积物中的铜、锌、铅、镍、铬含量?2.3 火焰原子吸收分光光度法的原理及应用2.4 HJ 491-2019标准在环境监测中的作用3. 我对HJ 491-2019标准的个人观点和理解4. 总结和回顾---引言在环境保护和监测领域,对土壤和沉积物中的重金属元素含量进行准确测定至关重要。

HJ 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法正是为了解决这一问题而制定的标准。

本文将深入探讨该标准的内容和意义,以及火焰原子吸收分光光度法的原理及应用,希望能为读者提供全面、深刻的了解。

---HJ 491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法2.1 什么是HJ 491-2019标准?HJ 491-2019标准是由我国环境保护部发布的对土壤和沉积物中铜、锌、铅、镍、铬元素含量进行测定的规范。

该标准的发布旨在保护环境、维护生态平衡,确保土壤和沉积物中重金属元素的安全标准,为相关管理部门和企业提供科学依据。

2.2 为什么要测定土壤和沉积物中的铜、锌、铅、镍、铬含量?土壤和沉积物是地球上重要的自然资源,其中的重金属元素含量直接关系到生态环境和人类健康。

铜、锌、铅、镍、铬是常见的重金属元素,它们的过量积累会导致土壤污染、水体污染,甚至对植物和动物造成伤害。

及时准确地测定土壤和沉积物中的这些元素含量至关重要。

2.3 火焰原子吸收分光光度法的原理及应用火焰原子吸收分光光度法是一种常用的重金属元素分析方法,其原理是基于原子在特定波长下吸收光线的特性。

原子吸收分光光度法测定土壤中的铜

原子吸收分光光度法测定土壤中的铜

原子吸收分光光度法测定土壤中的铜一、实验目的:(一)学习测定铜的技术;(二)掌握原子吸收分光光度法的原理。

二、实验意义:土壤是植物生长的基地,是动物、人类赖以生存的物质基础,因此,土壤质量的优劣直接影响人类的生产、生活和发展。

但由于近些年人们不合理地施用农药、进行污水灌溉等致使各类污染物质通过多种渠道进入土壤。

当污染物进入土壤的数量超过土壤自净能力时,将导致土壤质量下降,甚至恶化,影响土壤的生产能力。

此外,通过地下渗漏、地表径流还将污染地下水和地表水。

我国土壤常规监测项目中,金属化合物有镉、铬、铜、汞、铅、铜;非金属无机化合物有砷、氰化物、氟化物、硫化物等;有机化合物有苯并(a)芘、三氯乙醛、油类、挥发酚、DDT、六六六等。

地壳中铜的平均含量约为70mg/kg;全球土壤中铜的含量范围一般在2—100mg/kg之间,平均含量为20mg/kg;我国土壤中铜的含量在3—300mg/kg之间,平均含量为22mg/kg。

土壤的铜含量常常与其母质来源和抗风化能力有关,因此也与土壤质地间接相关。

土壤中的铜大部分来自含铜矿物——孔雀石、黄铜矿及含铜砂岩等。

一般情况下,基性岩发育的土壤,其含铜量多于酸性岩发育的土壤,沉积岩中以砂岩含铜最低。

各类土壤的含铜量按多少排列如下:砂姜黑土(25.49mg/kg)>潮土(22.48mg/kg)>褐土(22.18mg/kg)>盐碱土(18.78mg/kg)>棕壤(17.81mg/kg)>黄棕壤(15.58mg/kg)>风沙土(8.44mg/kg)。

我国土壤表层或耕层中铜含量的背景值范围为7.3—55.1mg/kg(不同地区有不同的背景值)。

土壤中铜的环境质量标准见表一,卫生标准见表二。

表一土壤中铜的环境质量标准值(GB15618—1995)单位:mg/kg级别一级二级三级土壤pH值自然背景<6.5 6.5~7.5 >7.5 >6.5农田等≤ 35 50 100 100 400果园≤ — 150 200 200 400表二土壤中铜的卫生标准(GB11728—89)土壤中铜的阳离子交换量(毫克当量/100g干土)<10 10—20 >20土壤中的最高容许浓度(mg/kg)50 150 300三、实验方法和原理:(一)方法土壤污染监测的常用方法有:重量法——适用于测定土壤水分;容量法——适用于浸出物中含量较高的成分如Ca2+、Mg2+、Cl-、SO42-等测定;气相色谱法——适用于有机氯、有机磷及有机汞等农药的测定;分光光度法(AAS、AES、AFS)——适用于重金属如Cu、Cd、Cr、Pb、Hg、Zn等组分的测定。

土壤中铜锌铅镉的测定原子吸收光谱法

土壤中铜锌铅镉的测定原子吸收光谱法

土壤中铜锌铅镉的测定原子吸收光谱法土壤中铜锌铅镉的测定-原子吸收光谱法001 方法(土壤中铜锌铅镉的测定|分析|检测方法)土壤样品常用消解方法有硝酸-氢氟酸-高氯酸分解法、王水-氢氟酸-高氯酸分解法和微波消解法等。

在实际操作中,对于微波消解方法,微波炉功率和时间选择不当,会导致土样消解不完全的情况出现。

要获得完全的消解必须对不同的样品的具体消解时间和功率进行实验确定,费时费力,而且消解液中存在的大量的酸必须赶尽,否则会对样品测定产生严重的干扰。

用硝酸.氢氟酸.高氯酸分解法即可得铜锌铅镉的全量分析。

但是,发现高氯酸的使用对石墨炉法测定铅、镉不利,对火焰原子吸收法测铜锌则无影响。

在进行了一系列实验和对比后发现,硝酸-氢氟酸-双氧水消解体系对用石墨炉原子吸收法测定土壤中的铅、镉更有利。

2实验主要仪器与试剂:(土壤中铜锌铅镉的测定|分析|检测方法)1、Q45微波消解仪2、火焰原子吸收分光光度计3、石墨炉原子吸收分光光度计 4、聚四氟乙烯烧杯(具盖),塑料容量杯(由于氢氟酸会严重腐蚀玻璃仪器,导致空白值失控,影响测定,所以在移取氢氟酸时不能使用玻璃仪器) 5、硝酸钯溶液(10 μg/mL) 6、浓硝酸(优级纯)、氢氟酸(优级纯)、双氧水(优级纯) 7、铅、镉标准储备液;铅、镉混合标准使用液 8、铅50μg/L、镉5μg/L 9、铜、锌标准使用液是用1 000 mg/L标准贮备液逐级稀释而成。

由仪器自动稀释进样并绘制标准曲线。

注:分析过程中全部用水均使用去离子水,均使用符合国家标准分析纯以上化学试剂。

所用玻璃仪器及聚四氟乙烯容器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。

仪器工作条件:PE-6OO原子吸收分光光度计工作参数见表1。

其程序升温参数见表2。

火焰原子吸收分光光度计的工作条件见表3。

微波最佳消解工作条件见表4。

配套仪器价格|资料|详细操作等咨询:021-******** 3样品处理及测定(土壤中铜锌铅镉的测定|分析|检测方法)3.1 微波消解:准确称取土壤样品0.200 0~0.250 0 g,置于微波消解罐中,加入硝酸8 mL,浸泡0.5 h去除有机质,加入氢氟酸2 mL,过氧化氢1 mL,加盖密封,放人微波消解装置中。

土壤中铜锌的测定

土壤中铜锌的测定
注:每批样品至少制备2个以上的空白溶液
➢ 标准溶液配制: 按照一定比例配制一系列铜锌标准溶液
➢ 样品测定: 每个样品做平行测定,结果取平均值
铜、锌标准曲线
Abs
0.30 0.25 0.20 0.15 0.10 0.05 0.00
0.000
0.500
1.000 mg/L
1.500
2.000
பைடு நூலகம்
Abs
0.20 0.15 0.10 0.05 0.00
解,至内容物粘稠; ➢ 5.加入HNO31mL微热溶解残渣,移入50mL容量瓶中,加入硝酸镧溶液定
容。
当消解液中铁含量大
注:制备土壤试液的同时进行全程序试剂空白实验于。100mg/L时,加入
硝酸镧可消除其干扰
注意事项
➢不同种类土壤所含物质差异较大,各种酸的用量可视消解情况的增减。
(含有机物过多的土壤,应增加硝酸量,使大部分有机物消化完全,再加高氯酸,否则 加高氯酸会发生强烈反应,致使瓶中内容物溅出,甚至发生爆炸,消解时务必小心)
土壤中铜锌的测定
参考:GB/T17138-1997
目录
➢土壤概述
➢ 《GB/T 17138-1997 土壤质量 铜、锌的测定》
标准讲解
土壤概述
土壤是地球陆地的疏松 表层,是岩石圈,水圈, 大气圈和生物圈相互进行 物质循环和能量交换的产 物,是在岩石及其风化物、 气候、生物、地形、时间 等因素相互作用下形成的 自然体
土壤环境质量国家标准 (GB 15618-1995)
*单位为mg/kg
注意事项
• 采样时的土壤标签与土壤样品始终放在一 起,严禁混错
• 制样所用的工具每处理一份样品后应擦洗 一次,严防交叉污染
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业指导书
土壤质量铜、锌的测定火焰原子吸收分光光度法测定 GB/T 17138-1997
一、实验目的:
1.掌握原子吸收分光光度法的基本原理
2.了解原子吸收分光光度计的主要结构及操作方法
3.学会土样的消解及重金属的测定方法。

二、仪器和仪器:
1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯
2.试剂:
(1)盐酸,优级纯
(2)硝酸,优级纯;
(3)去离子水;
(4)氢氟酸,ρ=1.49g/ml;
(6)高氯酸,ρ=1.68 g/ml。

(7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。

(8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。

(9)国际标准样品-铜-单元素标准溶液,1000 mg/L。

(10)国家标准样品-锌-单元素标准溶液,1000 mg/L。

(11)铜、锌混合标准使用液:铜20mg/L,锌120mg/L;用硝酸溶液(2)逐级稀释铜、锌标准储备液(9)(10)待用。

四、实验原理:
采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素部进入试液中。

然后,将土壤消解液喷入空气-乙炔火焰中。

在火焰的高温下,铜、锌化合离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。

在择的最佳测定条件下,测定铜、锌的吸光度。

五、操作方法
1.土壤样品的处理:
将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。

然后用有机玻璃棒或木棒将土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。

将上述风干细土反复按四法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。

取20~30 g土样,在105℃下烘4~5 h,恒重。

2.土样的消解:
准确称取0.2—0.5g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。

1h后,开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚,当加热浓厚白烟时,加盖,使黑色有机碳化合物分解。

待坩埚壁上的黑色有机物消失后,开盖赶高酸白烟并蒸至内容物呈粘稠状。

视消解情况可再加入3ml浓硝酸,3ml氢氟酸,1ml高氯酸,重复上述
消解过程。

当白烟再次基本冒尽且坩埚内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖和内壁,并加入1ml 2%硝酸溶液温热溶解残渣。

然后将溶液转移至50ml 容量瓶中,冷却后用2%硝酸定容至标线,摇匀,待测。

由于土壤种类较多,所以有机质差异较大,在消解时,要注意观察,各种酸的用量可视消解情况酌情增减。

土壤消解液应呈白色或淡黄(含铁量高的土壤),没有明显的沉积物存在。

注意:电热板温度不宜太高,否则会使聚四氟乙烯坩埚变形。

3.测定步骤:
(1)绘制工作曲线(铜锌标液浓度及样品含量按这次测定结果记录和处理)在50 ml容量瓶中,配制至少5个标准溶液的铜、锌混合标准工作液0.00 ml、0.50 ml、1.00 ml、2.00 ml、3.00 ml、5.00ml的工作点,用减去空白的吸光度与相应的元素含量(µg/L),绘制标准曲线。

4.结果表示;
七、结果表示
土壤样品中铜、锌的含量W(CuZn),mg/kg)按下式计算:
W=C×V/m(1-f)
式中:C——试液的吸光度减去空白试验的吸光度,然后在校准曲线方程计算的铜、锌含量(µg/L);
V——试液定容的体积,ml;
m——称取试样的重量,g;
f——试样中水分的含量,%。

相关文档
最新文档