好氧活性污泥培养综合实验-东华大学环境学院大三实验报告
活性污泥法实验
活性污泥实验一、 实验目的1、观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响;2、加深对活性污泥生化反应动力学基本概念的理解;3、掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。
二、 实验原理活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。
整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括:(1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系;(2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系;(3)有机底物降解与氧需。
1、底物降解动力学方程Monod 方程:SKs S V dt dS +=-max (1) Vmax-------有机底物最大比降解速度,Ks-----------饱和常数,在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡:0)(=++-+dtdS VSe Q R Q Se Q R Q So (2) 整理后,得dtdS V Se So Q -=-)( (3) 于是有SKs S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F XtSe So XV Se So Q /)(=-=-,F/M 为污泥负荷。
完全混合曝气池中S=Se ,所以(4)式整理后可得max11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se 1为横坐标,Xt Se So -(污泥负荷)为纵坐标,直线的斜率为max V Ks ,截距为max1V ,可分别求得max V 、Ks 。
又因为在低底物浓度条件下,Se<<Ks ,所以有Se K KsSe V Se Ks Se V dt dS ==+=-max max (6) 即 K S e XtSe So =- (7) 以Se 为横坐标,Xt Se So -(污泥负荷)为纵坐标,可求得直线斜率K 。
好氧活性污泥培养综合实验-东华大学环境学院大三实验报告
《环工综合实验(2)》(好氧活性污泥培养综合实验)实验报告专业环境工程班级环工1301姓名指导教师余阳成绩东华大学环境科学与工程学院实验中心二0一六年5月高碑店污水处理厂的工艺流程图四、实验步骤1、活性污泥指标的测定:取城市生活污水处理厂曝气池的活性污泥,测定MLSS,SV30,SVI并镜检;2、小型间歇式活性污泥反应器的准备:3L反应器1个,曝气系统一套,葡萄糖或乙酸钠模拟废水(自配);3、接种:向反应器中加入适量的活性污泥菌种(MLSS为3g/L);4、培养:配制污泥培养营养液,COD值自选,加入到活性污泥菌种中,反应器中加水至体积为3L。
计算负荷,溶解氧值自定(第一天);5、测定活性污泥指标及有机物去除率,沉淀,排水1.5L(或排泥维持MLSS稳定),加入营养液1.5L (COD值自选),曝气,溶解氧自定(第二天);6、测定活性污泥指标及有机物去除率(第三天);要求:维持MLSS稳定(3g/L),不发生污泥膨胀,测定实际污泥增长量,计算污泥泥龄;五、实验记录及原始数据取样体积为100ml第一天原水(添加营养液后)COD(经测定)为406.7mg/L烘干滤纸的质量为0.504g 污泥及滤纸的总重量1.03g时间 1 3 5 10 15 20 30V 98.0 72.4 62.9 49.3 41.5 38.0 31.5坩埚14.3325g 坩埚及残余物14.5318g污泥均匀分散视野范围内,污泥之间相互粘结,呈现菌胶团状,活性污泥在菌胶团之间摆动鞭毛游动,游动之时吃有机物,游动速度较快,体积变大,改变观察区域,不同形状的微生物都在进食。
第二天烘干滤纸的质量为0.49g 污泥及滤纸的总重量0.76g硫酸亚铁铵浓度测定序号 1 2 3 平均值用量(硫酸亚铁铵)18.68 18.65 18.70 18.677C硫酸亚铁铵=0.0535MCOD的测定项目空白空白水样水样用量18.53 18.70 17.70 17.30时间 1 3 5 10 15 20 30V 85.6 39.8 31.2 24.9 21.5 19.9 18.7原水(经过一天碳化)为95.87mg/L原水(添加营养液后)COD (经测定)为432.3mg/L第三天烘干滤纸的质量为0.49g 污泥及滤纸的总重量0.78gC 硫酸亚铁铵=0.0578M COD 的测定项目 空白 空白 水样 水样 用量 17.2517.316.716.7所以空白用量为17.28ml;水样16.7ml累枝虫(第三天) 盖纤虫(第三天)时间 1 3 5 10 15 20 30 V78.047.538.529.024.521.518.5微生物在菌胶团之间游动,但是上图左边的微生物体积巨大,体内的两个核(形如液泡)也在运动,前进进食六、数据处理及结论第一天MLSS和MLVSS代表的是污泥浓度的宏观指标,不能完全代表污泥中具有活性的微生物的浓度;但其测定方便,且可以满足评价污泥量的工程要求,作为设计参数。
污泥培养实验报告
一、实验目的1. 了解污泥培养的基本原理和操作步骤。
2. 掌握污泥活化和驯化的方法。
3. 通过实验,观察污泥的生长情况,分析污泥处理效果。
二、实验材料与仪器1. 实验材料:- 干污泥- 清水或河水- 废水(可生化性能较好的废水或化工废水)- 营养物质(氮、磷、碳源)- pH试纸- 溶解氧仪- 烧杯- 玻璃棒- 电子天平- 恒温水浴箱- 酶联免疫检测仪2. 实验仪器:- 曝气池- 静置沉淀池- 离心机- 培养箱- 生物显微镜三、实验方法与步骤1. 污泥活化:- 将干污泥加入曝气池内,加入清水或河水,进行曝气,使污泥充分溶解。
- 继续曝气2-4小时,使污泥中的微生物充分活化。
- 静置2小时后,放掉上清液,重复此过程2-3次,直至上清液清澈透明。
2. 污泥驯化:- 使用有营养的水或低浓度的废水开始驯化污泥。
- 按照废水的水温和水质,确定生化培菌的周期。
- 对于可生化性能较好的废水,可以直接用废水驯化微生物。
- 对于化工废水或可生化性能比较差的废水,应采取分步培菌法。
3. 污泥增殖:- 将活化后的污泥加入曝气池,开始快速增殖。
- 在增殖过程中,注意控制好氧池溶解氧,一般保持在2-4之间。
- 持续增殖一段时间,使污泥在填料上生长。
4. 污泥处理效果检测:- 使用pH试纸检测污泥的pH值。
- 使用溶解氧仪检测污泥的溶解氧含量。
- 使用酶联免疫检测仪检测污泥的BOD、COD等指标。
- 使用生物显微镜观察污泥的微生物形态和数量。
四、实验结果与分析1. 污泥活化:- 经过活化后,污泥上清液清澈透明,无混浊,说明污泥中的微生物已充分活化。
2. 污泥驯化:- 经过驯化后,污泥对废水的处理效果良好,BOD、COD等指标明显下降。
3. 污泥增殖:- 经过增殖后,污泥在填料上生长良好,微生物数量增加,溶解氧含量稳定。
4. 污泥处理效果:- 通过检测,污泥的pH值、溶解氧含量、BOD、COD等指标均达到预期目标,说明污泥处理效果良好。
好氧活性污泥培养综合实验
《环工综合实验(2)》(好氧活性污泥培养综合实验)实验报告专业环境工程班级环工1301姓名指导教师余阳成绩东华大学环境科学与工程学院实验中心二0一六年5月三、实验原理活性污泥法就是利用悬浮在水中的活性污泥,在微生物生长有利的环境下和污水充分接触,对废水中的有机物、营养元素(N、P)和某些无机毒物产生吸附、氧化分解而使废水得到净化的方法。
污水好氧生物处理原理示意图高碑店污水处理厂的工艺流程图四、实验步骤1、活性污泥指标的测定:取城市生活污水处理厂曝气池的活性污泥,测定MLSS,SV30,SVI并镜检;2、小型间歇式活性污泥反应器的准备:3L反应器1个,曝气系统一套,葡萄糖或乙酸钠模拟废水(自配);3、接种:向反应器中加入适量的活性污泥菌种(MLSS为3g/L);4、培养:配制污泥培养营养液,COD值自选,加入到活性污泥菌种中,反应器中加水至体积为3L。
计算负荷,溶解氧值自定(第一天);5、测定活性污泥指标及有机物去除率,沉淀,排水1.5L(或排泥维持MLSS稳定),加入营养液1.5L (COD值自选),曝气,溶解氧自定(第二天);6、测定活性污泥指标及有机物去除率(第三天);要求:维持MLSS稳定(3g/L),不发生污泥膨胀,测定实际污泥增长量,计算污泥泥龄;五、实验记录及原始数据SV30mmm取样体积为100ml第一天原水(添加营养液后)COD (经测定)为406.7mg/L烘干滤纸的质量为0.504g 污泥及滤纸的总重量1.03g坩埚14.3325g 坩埚及残余物14.5318g污泥均匀分散视野范围内,污泥之间相互粘结,呈现菌胶团状,活性污泥在菌胶团之间摆动鞭毛游动,游动之时吃有机物,游动速度较快,体积变大,改变观察区域,不同形状的微生物都在进食。
第二天烘干滤纸的质量为0.49g 污泥及滤纸的总重量0.76g硫酸亚时间 1 3 5 10 15 20 30 V98.072.462.949.341.538.031.5时间 1 3 5 10 15 20 30 V85.639.831.224.921.519.918.7累枝虫(第三天) 盖纤虫(第三天)微生物在菌胶团之间游动,但是上图左边的微生物体积巨大,体内的两个核(形如液泡)也在运动,前进进食六、数据处理及结论第一天MLSS 和MLVSS 代表的是污泥浓度的宏观指标,不能完全代表污泥中具有活性的微生物的浓度;但其测定方便,且可以满足评价污泥量的工程要求,作为设计参数。
污泥培养方法_实验报告
一、实验目的1. 掌握污泥培养的基本原理和方法。
2. 了解不同污泥培养方法的特点及适用范围。
3. 分析污泥培养过程中的关键因素,为实际污水处理提供理论依据。
二、实验材料1. 原水:生活污水、工业废水等。
2. 污泥:好氧污泥、厌氧污泥等。
3. 培养设备:曝气池、沉淀池、污泥回流装置等。
4. 试剂:营养盐、消毒剂、pH调节剂等。
三、实验方法1. 自然培养法(1)将原水引入曝气池,开始闷曝(只曝气不进水),闷曝2-3天后,停止曝气,静置1-1.5小时。
(2)进入部分新鲜污水(水量约占池容的1/5),然后循环进行闷曝、静置和进水三个过程。
(3)当污水温度为15-20℃时,经过15天左右,可使曝气池中的污泥浓度超过1g/L,混合液的污泥沉降比达到15%~20%。
(4)停止闷曝,连续进水连续曝气,并开始污泥回流。
2. 接种培养法(1)采用附近污水处理厂的浓缩污泥或干污泥作为菌种。
(2)将菌种投入曝气池,开始闷曝,闷曝时间根据实际情况调整。
(3)闷曝结束后,进入正常培养菌种阶段,控制好氧池溶解氧在2-4之间。
(4)根据实际情况,调整营养盐、消毒剂和pH调节剂的投加量。
3. 连续培养法(1)污水直接通过活性污泥系统的曝气池和二沉池,连续进水和出水。
(2)二沉池不排放剩余污泥,全部回流曝气池,直到混合液的污泥浓度达到设计值。
四、实验结果与分析1. 自然培养法经过15天左右的培养,曝气池中的污泥浓度达到1g/L以上,混合液的污泥沉降比达到15%~20%。
污泥呈黄褐色,镜检有大量新型菌胶团,较为密实,可以观察到许多活跃的钟虫。
污泥活性较强。
2. 接种培养法接种培养法在短时间内即可达到较高的污泥浓度,污泥沉降性能良好。
污泥呈黄褐色,镜检有大量新型菌胶团,较为密实,可以观察到许多活跃的钟虫。
污泥活性较强。
3. 连续培养法连续培养法使污泥浓度在较短时间内达到设计值,污泥沉降性能良好。
污泥呈黄褐色,镜检有大量新型菌胶团,较为密实,可以观察到许多活跃的钟虫。
培养污泥实验报告
一、实验目的1. 掌握污泥培养的基本原理和方法。
2. 熟悉污泥培养过程中各项指标的监测与调控。
3. 分析污泥培养效果,为实际污水处理工程提供参考。
二、实验材料与设备1. 实验材料:(1)城市污水:用于污泥培养的进水。
(2)粪便、食品加工业的含氮磷丰富的废液、饭店的米泔水等:作为污泥培养的营养补充。
(3)厌氧污泥:用于培养厌氧污泥的菌种。
2. 实验设备:(1)曝气池:用于培养活性污泥。
(2)消化池:用于培养厌氧污泥。
(3)显微镜:用于观察菌胶团长势。
(4)pH计:用于监测污泥培养过程中的pH值。
(5)有机物分析仪:用于监测污泥培养过程中的有机物含量。
三、实验方法1. 活性污泥培养:(1)将城市污水引入曝气池,暂停进水,进行曝气。
(2)在水温、气温适宜的情况下,1-2天就会出现絮状物。
(3)少量连续进水,或间歇进水,连续曝气。
(4)连续曝气一周后,通过显微镜检查菌胶团长势良好。
(5)逐渐增加进水量至设计量,投入试运行。
2. 厌氧污泥培养:(1)大中型污水处理厂在水处理段正常后,有足够的剩余污泥后,再培养厌氧污泥。
(2)先将消化池内充满二级出水,投入其它消化池的厌氧污泥菌种,或接入水处理段的剩余污泥。
(3)在消化污泥来源缺乏的地方,可用人粪、牛粪、猪粪、酒糟、剩余的淀粉等有机废物稀释到含固率为1%-3%投入消化池。
(4)培养消化污泥菌时,必须控制pH值和有机物投配负荷,pH值应保持在6.4-7.8之间,有机负荷控制在0.5kgVSS/(m3·d)之下。
(5)充分搅拌消化池内的混合污泥,保持消化池内的水温在352,边进泥边加热,待加至所需温度及泥位后,暂停进泥。
(6)每日分析沼气成分,所需数据正常时,取样品进行点火试验。
四、实验结果与分析1. 活性污泥培养结果:经过一周的培养,活性污泥菌胶团长势良好,菌胶团结构完整,絮体较大,污泥沉降性能较好。
2. 厌氧污泥培养结果:经过一段时间的培养,厌氧污泥产气效果良好,沼气成分稳定,符合实际需求。
活性污泥实验报告
活性污泥实验报告活性污泥实验报告一、引言活性污泥是一种生物处理技术,广泛应用于废水处理领域。
本实验旨在通过对活性污泥的研究,探索其在废水处理中的应用效果和机理。
二、实验目的1. 了解活性污泥的基本原理和处理废水的机制;2. 掌握活性污泥的培养方法和处理废水的操作技巧;3. 评估活性污泥在不同条件下的废水处理效果。
三、实验材料与方法1. 实验材料:- 活性污泥:从污水处理厂获取;- 废水样品:模拟实际废水,包含有机物和悬浮物;- 试剂:氨氮试剂、COD试剂等。
2. 实验方法:- 活性污泥的培养:将活性污泥与适量废水样品混合,保持适宜的温度和通气条件,定期搅拌;- 废水处理过程:将废水样品加入活性污泥培养液中,控制处理时间和条件; - 废水指标测定:使用氨氮试剂和COD试剂,按照标准方法测定废水中的氨氮和化学需氧量。
四、实验结果与分析1. 活性污泥的培养结果:- 活性污泥在适宜的培养条件下,呈现出黑色或深褐色的颗粒状结构,具有较好的沉降性和悬浮性;- 活性污泥培养液pH值保持在6.5-8.5之间,有利于维持菌群的生长和代谢活性。
2. 废水处理效果:- 活性污泥处理后,废水中的氨氮和COD浓度显著降低;- 处理效果受废水浓度、处理时间和温度等因素的影响;- 活性污泥对不同种类的有机物具有一定的降解能力,但对某些难降解物质处理效果较差。
3. 活性污泥的处理机理:- 活性污泥中的微生物通过吸附、降解和转化等方式,将废水中的有机物转化为无机物或较稳定的有机物;- 活性污泥中的好氧微生物和厌氧微生物共同作用,实现废水中氮、磷等元素的去除。
五、实验结论1. 活性污泥是一种有效的废水处理技术,能够降低废水中的氨氮和COD浓度;2. 废水处理效果受多种因素影响,包括废水浓度、处理时间和温度等;3. 活性污泥具有一定的有机物降解能力,但对于某些难降解物质的处理效果有限;4. 活性污泥中的微生物起着关键作用,通过吸附、降解和转化等方式实现废水的处理。
活性污泥的培养与分析报告
审 批
规定,授予本年度综合素质
学分。
意
见
院系分管领导签名:
单位盖章
年月日
活性污泥的培养实验报告
一、实验目的 1. 通过培养活性污泥,加深对活性污泥法作用机理及主要技术参数,如活
性污泥浓度、有机物去除率、污泥增长规律等的理解; 2. 学会培养活性污泥和测定污泥沉降比(%)的方法,掌握培养活性污泥的基
综合素质学分 实验报告
院 系:生命与环境科学学院
专 业: 环境科学
学 号: 21009011064
姓 名:
王璐
指导教师:
钱丽萍
黄山学院综合素质学分申请表(2013——2014 年度)
院系:生命与环境科学学院 学号:211009011064
申请人姓名:王璐 班级:11 环境科学班 联系电话:18725590283
生产废水,进行驯化。 (二)、活性污泥的驯化步骤 1.通过分析确认来水各项指标在允许范围内,准备进水。 2.开始进入少量生产废水,进入量不超过驯化前处理能力的 20%。同时补充新鲜 水、粪便水及 NH4Cl. 3.达到较好处理后,可增加生产废水投加量,每次增加不超过 10~20%,同时减 少 NH4CL 投加量。且待微生物适应巩固后再继续增生产废水,直至完全停加 NH4Cl. 同步监测出水 CODcr 浓度等指标,并观察混合液污泥性状。在污泥驯化期还要适 时排放代谢产物,即泥水分离后上清液。 4.继续增加生产废水投加量,直至满负荷。满负荷运行阶段,由于池中已培养和 保持了高浓度、高活性的足够数量的活性污泥,池中曝气后混合液的 MLSS 达到 5000mg/1,此过程同步监测溶解氧,控制曝气机的运行,并进行污泥的生物相镜 检。 六、实验结果分析
项目 名称
活性污泥法实验
活性污泥实验一、 实验目的1、观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响;2、加深对活性污泥生化反应动力学基本概念的理解;3、掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。
二、 实验原理活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。
整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括:(1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系;(2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系;(3)有机底物降解与氧需。
1、底物降解动力学方程Monod 方程:SKs S V dt dS +=-max (1) Vmax-------有机底物最大比降解速度,Ks-----------饱和常数,在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡:0)(=++-+dtdS VSe Q R Q Se Q R Q So (2) 整理后,得dtdS V Se So Q -=-)( (3) 于是有SKs S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F XtSe So XV Se So Q /)(=-=-,F/M 为污泥负荷。
完全混合曝气池中S=Se ,所以(4)式整理后可得max11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se 1为横坐标,Xt Se So -(污泥负荷)为纵坐标,直线的斜率为max V Ks ,截距为max1V ,可分别求得max V 、Ks 。
又因为在低底物浓度条件下,Se<<Ks ,所以有Se K KsSe V Se Ks Se V dt dS ==+=-max max (6) 即 KSe XtSe So =- (7) 以Se 为横坐标,Xt Se So -(污泥负荷)为纵坐标,可求得直线斜率K 。
活性污泥实验
活性污泥实验一、实验目的1、 观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响;2、 加深对活性污泥生化反应动力学基本概念的理解;3、 掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。
二、实验原理活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。
整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括:(1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系;(2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系;(3)有机底物降解与氧需。
1、底物降解动力学方程Monod 方程:SKs S V dt dS +=-max (1) Vmax-------有机底物最大比降解速度,Ks-----------饱和常数,在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡:0)(=++-+dtdS VSe Q R Q Se Q R Q So (2) 整理后,得 dtdS V Se So Q -=-)( (3)于是有SKs S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F XtSe So XV Se So Q /)(=-=-,F/M 为污泥负荷。
完全混合曝气池中S=Se ,所以(4)式整理后可得max11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se1为横坐标,Xt Se So -(污泥负荷)为纵坐标,直线的斜率为max V Ks ,截距为max1V ,可分别求得max V 、Ks 。
又因为在低底物浓度条件下,Se<<Ks ,所以有Se K KsSe V Se Ks Se V dt dS ==+=-max max (6) 即 KSe XtSe So =- (7) 以Se 为横坐标,Xt Se So -(污泥负荷)为纵坐标,可求得直线斜率K 。
活性污泥实验报告
活性污泥实验报告实验报告:活性污泥处理废水效果评估引言本实验旨在评估活性污泥法对废水处理的效果。
活性污泥法是一种常用的生物处理技术,通过微生物在含氧环境下将有机物降解为无害的产物。
本实验将使用活性污泥反应器对模拟的废水进行处理,并对处理前后的水质参数进行分析比较。
实验方法实验装置:使用一个活性污泥反应器作为废水处理单元。
废水样本:收集待处理的废水样本,并记录其初始水质参数(如浊度、化学需氧量(COD)、氨氮等)。
反应条件:确保恒定的温度(25±2℃)和pH值(7±0.5),同时提供足够的氧气进入反应器中。
活性污泥悬浮液的添加:将活性污泥悬浮液按一定比例加入反应器中,以启动生物反应。
反应时间:选择适当的反应时间,通常为24小时。
反应结束后,采集处理后的废水样本,并测定其水质参数。
结果与讨论在本实验中,我们对废水样本进行了活性污泥法处理,并对处理前后的水质参数进行了评估。
初步结果显示,经过活性污泥法处理后,废水的浊度明显下降。
具体而言,初始浊度为XNTU,而处理后的浊度下降至YNTU(X与Y为具体数值)。
这表明活性污泥能够有效去除废水中的悬浮颗粒物。
此外,化学需氧量(COD)也是评估废水处理效果的重要指标之一。
在本实验中,我们发现经过活性污泥处理后,废水的COD值显著降低。
具体而言,初始COD值为Xmg/L,而处理后的COD值下降至Ymg/L(X与Y为具体数值)。
这说明活性污泥法对有机物的降解具有较高效率。
最后,对比分析处理前后的氨氮含量,我们可以看到活性污泥法也对氨氮的去除起到了显著作用。
初始氨氮浓度为Xmg/L,而处理后的氨氮浓度减少至Ymg/L(X与Y为具体数值)。
综上所述,通过活性污泥法处理废水,我们观察到废水中浊度、COD和氨氮等水质参数得到了明显改善。
这说明活性污泥法是一种有效的废水处理技术,可以用于去除废水中的悬浮物和有机污染物。
结论本实验通过活性污泥法对废水进行处理,并评估了处理前后的水质参数。
活性污泥实验报告
活性污泥实验报告1.实验目的活性污泥是一种利用微生物降解有机废水的生物处理技术。
本实验旨在探究活性污泥的作用原理、影响因素以及其在废水处理中的应用。
2.实验原理活性污泥是指一种具有高效微生物附恢复能力的混合微生物种群。
通过人工培养和调控微生物种群,使其在特定的环境下降解有机物质。
废水中的有机物经过处理后可以稳定地转化成无害的物质。
在生物处理中,活性污泥主要用于污泥法、接触氧化法和生物滤池等工艺。
3.实验装置与药品实验装置包括活性污泥容器、搅拌器、进水管、出水管和温度计等。
药品包括葡萄糖溶液、NaOH溶液、稀盐酸溶液等。
4.实验步骤(1)准备活性污泥容器,装入适量活性污泥;(2)调节进水管和出水管的位置,注意控制进水和出水速度;(3)用温度计测量污泥容器内的温度,并记录;(4)开始实验后,每隔一段时间取出污泥样品,进行监测;(5)分别在取出的样品中加入葡萄糖溶液和NaOH溶液,观察变化并记录。
5.实验结果与分析(1)观察到活性污泥容器内温度开始升高,说明微生物降解反应开始进行;(2)监测到进水管和出水管中悬浮物的变化情况,发现进水悬浮物逐渐减少,出水悬浮物减少的速度较快,并且水质逐渐变清澈;(3)加入葡萄糖溶液后,发现悬浮物数量明显增加,说明微生物开始大量繁殖,加强对有机物质的降解作用;(4)加入NaOH溶液后,pH值升高,加速微生物降解废水中有机物的速度。
6.实验结论通过本实验,我们了解到活性污泥处理废水的基本原理和操作过程。
活性污泥在降解废水中的有机物质方面具有明显的效果,进一步说明了活性污泥的处理能力和优势。
7.实验启示活性污泥处理废水是一种可行的环保技术,但在操作过程中需要严格控制进水和出水速度,保持适宜的温度和pH值。
此外,进一步研究活性污泥的微生物种群和其对不同有机物质的降解能力,可进一步提高活性污泥的处理效果。
环境专业实习报告范文【3】
环境专业实习报告范文【3】3.2.2剩余污泥系统控制活性污泥系统每天都要排放一部分活性污泥,使系统内的污泥量增多,要使总的污泥量基本平衡,就必须定期排放一部分剩余污泥,通过排泥量的调节,可以改变活性污泥中微生物种类和增长速度,可以改变需氧量,可以改善污泥的沉降性能,因此排泥是活性污泥法中的一项重要操作,排泥方法有以下几种:a. 用MLSS控制排泥用MLSS控制排泥指在维持曝气池混合液污泥浓度恒定的情况下,确定排泥量,排泥量计算公式如下:MLSS——曝气池混合液污泥浓度mg/L MLSS——曝气池混合液要维持的污泥浓度mg/LVa——曝气池容积m3 RSS——回流污泥浓度mg/Lb. 用F/M控制排泥F/M即是污泥负荷,一般活性污泥法中的F/M控制在0.2~0.5kgBOD5/kgMLSS.d,根据F/M保持恒定,来调整系统内的污泥浓度,其公式如下:MLSS——曝气池污泥浓度mg/L Va——曝气池容积m3BODi——入流污水中的BOD5mg/L Q——入流污水量m3F/M——污泥负荷kgBOD5/kgMLSS.d RSS——回流污泥浓度mg/LVm——剩余污泥排放量m3c. 用SRT控制排泥用SRT控制排泥,被认为是一种最可靠最准确的排泥方法,这种方法的关键在于正确选择泥龄SRT和准确计算系统内的污泥总量,用SRT控制排泥量公式如下:Qw——每天排放的污泥体积流量m3 MLSS——曝气池内混合液污泥浓度mg/LVa——曝气池容积m3 SRT——泥龄d,一般活性污泥法泥龄为4~8天SSe——二沉池出水SS浓度mg/L RSS——回流污泥浓度mg/L Q——入流污水量m3以上三种控制排泥方式各有利弊,在工艺调整中应加以综合,根据实际情况,进行综合调度,从而使整个系统始终处于最佳状态。
4. 内回流系统4.1 概述高污二期四系列增加了内回流系统,即在每组曝气池末端各安装一台Flygt pp4680、Q=1.17m3/s的内回流泵,内回流泵将曝气池混合液由第三廊道末端抽升回第一廊道首端,延长污水在曝气池中的停留时间,其目的是通过微生物硝化和反硝化作用,增加脱氮功能,进一步提高出水水质。
活性污泥实验报告
一、实验目的1. 了解活性污泥法的基本原理和工艺流程。
2. 掌握活性污泥的培养、驯化和运行方法。
3. 观察活性污泥的生物相,了解微生物的种类和数量。
4. 评估活性污泥处理污水的能力。
二、实验原理活性污泥法是一种生物处理技术,利用微生物分解污水中的有机物,将其转化为无害物质。
实验中,通过向污水中投加活性污泥,使其在曝气池中充分混合、降解有机物,达到净化污水的目的。
三、实验材料与设备1. 实验材料:生活污水、活性污泥、营养盐、微量元素等。
2. 实验设备:SBR反应器、曝气泵、温度计、pH计、浊度仪、取样瓶等。
四、实验步骤1. 活性污泥的培养与驯化(1)将生活污水按照一定比例稀释,调整pH值为7.0~8.0,加入适量的营养盐和微量元素。
(2)将稀释后的污水倒入SBR反应器中,投加30%的活性污泥。
(3)开启曝气泵,使活性污泥与污水充分混合,进行曝气。
(4)每隔一定时间取样,观察污泥沉降性能,调整污泥浓度,直至达到理想的污泥沉降性能。
2. 活性污泥的运行(1)调整SBR反应器中的污泥浓度,使污泥浓度保持在3~5g/L。
(2)将生活污水按照一定比例稀释,加入营养盐和微量元素。
(3)将稀释后的污水倒入SBR反应器中,投加活性污泥。
(4)开启曝气泵,使活性污泥与污水充分混合、降解有机物。
(5)每隔一定时间取样,检测污水的浊度、COD、NH4+-N等指标,评估活性污泥处理污水的能力。
3. 活性污泥生物相观察(1)取一定量的活性污泥,加入适量的生理盐水,制成悬浊液。
(2)使用显微镜观察悬浊液中的微生物种类和数量。
(3)记录观察结果,分析活性污泥中微生物的种类和数量。
五、实验结果与分析1. 活性污泥的培养与驯化实验过程中,活性污泥的沉降性能逐渐提高,污泥浓度达到3~5g/L时,沉降性能最佳。
2. 活性污泥的运行实验结果表明,活性污泥对生活污水中的有机物有较好的降解能力,COD去除率可达70%以上,NH4+-N去除率可达50%以上。
活性污泥性实验报告
一、实验目的1. 了解活性污泥法的基本原理和工艺流程。
2. 掌握活性污泥的培养、驯化过程。
3. 学习如何通过活性污泥法处理生活污水,并观察其效果。
二、实验原理活性污泥法是一种生物处理方法,通过微生物对污水中有机物的降解,使污水得到净化。
活性污泥是污水生物处理系统的主体,由微生物、有机物、无机物等组成。
活性污泥中的微生物主要有细菌、真菌、原生动物和后生动物等。
三、实验设备与材料1. SBR模型:普通活性污泥处理生活污水模型。
2. 活性污泥:取自污水处理厂。
3. 生活废水:人工模拟配制。
4. 100mL量筒。
5. 移液管。
6. pH试纸。
7. 恒温水浴锅。
8. 烧杯。
9. 玻璃棒。
10. 消毒液。
四、实验步骤1. 准备工作:将活性污泥稀释至一定浓度,用pH试纸检测pH值,调整至适宜微生物生长的pH范围。
2. 投加活性污泥:将稀释后的活性污泥按比例加入SBR模型中,同时加入生活废水。
3. 静置培养:将SBR模型置于恒温水浴锅中,保持适宜温度,静置培养一段时间。
4. 观察记录:定期观察活性污泥的生长状况,记录污泥的沉降性能、颜色、气味等。
5. 污水处理:将培养好的活性污泥加入生活废水中,观察处理效果。
6. 污泥分离:使用100mL量筒和移液管,将活性污泥与处理后的污水分离。
7. 数据分析:对实验数据进行统计分析,比较不同条件下活性污泥的处理效果。
五、实验结果与分析1. 活性污泥的生长状况:经过一段时间培养,活性污泥呈絮状,颜色逐渐变深,沉降性能良好。
2. 污水处理效果:活性污泥对生活污水中的有机物有较好的降解作用,处理后的污水颜色变浅,气味减轻。
3. 数据分析:通过对实验数据的统计分析,得出以下结论:(1)在一定条件下,活性污泥法可以有效地处理生活污水。
(2)活性污泥的培养和驯化过程对处理效果有较大影响。
(3)适宜的pH值、温度和营养物质等条件有利于活性污泥的生长和污水净化。
六、实验结论通过本次实验,我们了解了活性污泥法的基本原理和工艺流程,掌握了活性污泥的培养、驯化过程,并观察了活性污泥法处理生活污水的效果。
活性污泥法处理生活污水综合性实验(学生)
环境工程学综合性实验——活性污泥法处理生活污水综合性实验一、实验目的《环境工程学综合性实验》强化了学生的工程意识,使学生掌握水、大气和固体废弃物污染控制技术的基础知识、基本方法和水处理工艺流程及各处理构筑物的工作原理及设计方法,以工程应用为出发点,培养学生提出问题、分析问题、解决问题的能力;通过实践性教学环节的训练,培养学生对实际工程的理解能力和综合运用水污染控制技术的技能,解决实际工程问题,使学生基本获得独立进行一般水污染控制工程项目(包括城市污水处理厂、工业废水处理厂或处理站)的工艺设计及运行管理的基本职业技能及动手能力,为学生就业、创业打下一个良好的基础。
活性污泥法处理生活污水综合性实验方案中涉及到《环境工程学》中的生活污水处理单元设计、水的生物化学、物理化学处理知识和《环境监测》中水质项目(水温、pH值、BOD5、COD、悬浮固体、浊度、NH3-N)的监测、《环境微生物学》中好氧微生物驯化原理过程、水中总大肠菌群及活性污泥性质的测定,AUTOCAD中环境设计单元制图。
该实验是将环境学科中的多个领域和环节加以综合、相互渗透的实验形式,带有一定的研究性、探索性和创新性。
它不仅需要综合的实验技能、独立的设计能力还能培养团队协同合作的精神。
二、实验内容(一)实验原理污水处理一般来说包含以下三级处理:一级处理是它通过机械处理,如格栅、沉淀或气浮,去除污水中所含的石块、砂石和脂肪、油脂等。
二级处理是生物处理,污水中的污染物在微生物的作用下被降解和转化为污泥。
三级处理是污水的深度处理,它包括营养物的去除和通过加氯、紫外辐射或臭氧技术对污水进行消毒。
可能根据处理的目标和水质的不同,有的污水处理过程并不是包含上述所有过程。
机械处理工段机械(一级)处理工段包括格栅、沉砂池、初沉池等构筑物,以去除粗大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离,这是普遍采用的污水处理方式。
机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5和SS的典型去除率分别为25%和50%。
好氧活性污泥的性质测定实验-东华大学环境学院大三实验报告.docx
一、活性污泥
(一)什么是活性污泥?
由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。
不可以,五分钟时间太短,污泥可能只完成了自由沉淀,没有完成絮凝沉淀和成层沉淀,不能反映污泥的性能。
(2)对于城市污水来说,活性污泥SVI大于200或小于50各表征了什么运行问题?如何解决问题?
SVI值小于50,活性污泥颗粒细小,无机物含量高,缺乏活性;
SVI值大于200,沉淀性能不好,可能产生污泥膨胀。
(5)快速水分测定仪:1台
(6)马弗炉:1台
(7)载玻片和盖玻片
(8)100mL量筒:1只
(9)定量滤纸:数张
(10)布氏漏斗:1个
(11)称量瓶:1只
(12)干燥器:1只
(13)坩埚:1只
(14)电炉:1台
(15) 500mL烧杯:2个
(16)玻璃棒:2根
三、实验原理
——活性污泥是人工培养的生物絮凝体,它是由好氧微生物及其吸附的有机物组成的。活性污泥具有吸附和分解废水中的有机物(有些也可利用无机物质)的能力,显示出生物化学活性。活性污泥组成可分为四部分:有活性的微生物、微生物自身氧化残留物、吸附在活性污泥上不能被微生物所降解的有机物和无机悬浮固体。
MLVSS=0.526-0.1993=0.3267g
七、思考题
(1)测定污泥沉降比时,为什么要静止沉淀30min?只是想知道污泥的沉降性能,只静沉5分钟可以吗?
正常的活性污泥在30min内即可完成絮凝沉淀和成层沉淀,并进入压缩沉淀过程;
传统活性污泥工艺实训报告
一、实训背景随着我国城市化进程的加快,城市生活污水排放量不断增加,对水环境造成了严重污染。
为了解决这一问题,我国积极开展污水处理技术研究,其中传统活性污泥法因其工艺成熟、运行稳定、处理效果好等优点,成为我国污水处理领域的主流技术之一。
为了使学生对传统活性污泥法有更深入的了解,提高学生的实际操作能力,本次实训以传统活性污泥工艺为主题,通过模拟实验,让学生掌握该工艺的操作流程、原理及注意事项。
二、实训目的1. 使学生了解传统活性污泥法的基本原理和工艺流程;2. 使学生掌握传统活性污泥法的操作技能;3. 培养学生的实验操作能力和团队合作精神;4. 提高学生对污水处理技术的认识,为今后从事相关工作奠定基础。
三、实训内容1. 传统活性污泥法的基本原理传统活性污泥法是一种利用好氧微生物降解有机物的方法,其基本原理是:在曝气池中,好氧微生物通过氧化分解污水中的有机物,将有机物转化为CO2、H2O和微生物细胞,实现污水的净化。
2. 传统活性污泥法的工艺流程传统活性污泥法主要包括以下几个阶段:(1)进水:污水经格栅、沉砂池等预处理后,进入曝气池。
(2)曝气:在曝气池中,好氧微生物利用污水中的有机物进行新陈代谢,同时消耗氧气。
(3)污泥回流:将部分活性污泥回流至曝气池前端,以保证活性污泥的浓度。
(4)沉淀:在二次沉淀池中,活性污泥与处理后的清水分离。
(5)排泥:将沉淀池中的剩余污泥排出。
3. 实训操作步骤(1)准备实验材料:活性污泥、污水、曝气设备、沉淀设备、计量设备等。
(2)设置实验装置:将曝气池、二次沉淀池等设备连接好,确保其正常运行。
(3)调节进水水质:根据实验要求,调节污水水质,使其符合活性污泥法处理的要求。
(4)启动曝气设备:开启曝气设备,使好氧微生物在曝气池中进行新陈代谢。
(5)污泥回流:根据活性污泥浓度,调节污泥回流泵,使活性污泥回流至曝气池前端。
(6)观察实验现象:观察曝气池中活性污泥的生长情况、水质变化等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《环工综合实验(2)》(好氧活性污泥培养综合实验)
实验报告
专业环境工程
班级环工1301
姓名
指导教师余阳
成绩
东华大学环境科学与工程学院实验中心
二0一六年5月
高碑店污水处理厂的工艺流程图
四、实验步骤
1、活性污泥指标的测定:取城市生活污水处理厂曝气池的活性污泥,测定MLSS,SV 30,SVI 并镜检;
2、小型间歇式活性污泥反应器的准备:3L 反应器1个,曝气系统一套,葡萄糖或乙酸钠模拟废水(自配);
3、接种:向反应器中加入适量的活性污泥菌种(MLSS 为3g/L );
4、培养:配制污泥培养营养液,COD 值自选,加入到活性污泥菌种中,反应器中加水至体积为3L 。
计算负荷,溶解氧值自定(第一天);
5、测定活性污泥指标及有机物去除率,沉淀,排水1.5L (或排泥维持MLSS 稳定),加入营养液1.5L (COD 值自选),曝气,溶解氧自定(第二天);
6、测定活性污泥指标及有机物去除率(第三天) ;
要求:维持MLSS 稳定(3g/L),不发生污泥膨胀,测定实际污泥增长量,计算污泥泥龄;
五、实验记录及原始数据
SV30min 取样体积为100ml
第一天
原水(添加营养液后)COD (经测
定)为406.7mg/L
烘干滤纸的质量为0.504g 污泥及滤纸的总重量1.03g
坩埚14.3325g 坩埚及残余物14.5318g
时间 1 3 5 10 15 20 30 V
98.0
72.4
62.9
49.3
41.5
38.0
31.5
污泥均匀分散视野范围内,污泥之间相互粘结,呈现菌胶团状,活性污泥在菌胶团之间摆动鞭毛游动,游动之时吃有机物,游动速度较快,体积变大,改变观察区域,不同形状的微生物都在进食。
第二天
烘干滤纸的质量为0.49g 污泥及滤纸的总重量0.76g
硫酸亚铁铵浓度测定
序号
1
2 3
平均值 用量(硫酸亚铁铵) 18.68 18.65
18.70
18.677
C 硫酸亚铁铵=0.0535M
COD 的测定
项目
空白 空白 水样 水样 用量
18.53
18.70
17.70
17.30
原水(经过一天碳化)为95.87mg/L
原水(添加营养液后)COD (经测定)为432.3mg/L
第三天
烘干滤纸的质
时间 1 3 5 10 15 20 30 V 85.6
39.8 31.2 24.9
21.5
19.9
18.7
时间 1 3 5 10 15 20 30 V
78.0
47.5
38.5
29.0
24.5
21.5
18.5
量为0.49g 污泥及滤纸的总重量0.78g
C 硫酸亚铁铵=0.0578M CO
D 的测定
项目 空白 空白 水样
水样 用量
17.25
17.3
16.7
16.7
所以空白用量为17.28ml;水样16.7ml
累枝虫(第三天) 盖纤虫(第三天)
微生物在菌胶团之间游动,但是上图左边的微生物体积巨大,体内的两个核(形如液泡)也在运动,前进进食
六、数据处理及结论
第一天
0.0
20.040.060.080.0
100.00
5
10
15
20
25
30
35
体积/V
时间/min
沉降曲线
MLSS和MLVSS代表的是污泥浓度的宏观指标,不能完全代表污泥中具有活性的微生物的浓度;但其测定方便,且可以满足评价污泥量的工程要求,作为设计参数。
对于特定污水处理系统,MLVSS/MLSS相对稳定,生活污水系统一般为0.7-0.8;该值太低说明污泥活性较差。
(PACT法和白土活性污泥法等投料活性污泥法例外)
MLSS=1.03−0.504
0.1
=5.26g/L
加进桶中的MLSS理论值应该为3g/L;实测值与理论值差距较大,原因:可能是搅拌不均匀,导致取了局部污泥浓度较高的水样,由SV30=31.5ml也可得出结论
NVSS=14.5318-14.3325=0.1993g
MLVSS=0.526-0.1993=0.3267g
f=MLVSS
MLSS
=0.621<0.75
f值偏小,说明水样中NVSS过高
BOD—污泥负荷与SVI值之间的关系
当BOD—污泥负荷介于0.5~1.5kg/(kgMLSS d)之间时,SVI值突出最高,污泥沉降效果不佳。
因此,
应避免采用这一区段的BOD—污泥负荷
N s=QS e
X V V
=
3×0.4067
5.26
=0.23kgBOD/kgMLSS∙d
N S<0.5,在阴影范围内属于一半负荷区
第二天
去除率为
432.3−53.64
432.3
×100=87.6%
VX V =6.075g ∆X =(2.9−2.7)×3×0.74=0.444g
θc =X V V ∆X =6.0750.444
=13.68天
污泥龄一般在5~20天,上述计算值在允许范围内,设计合理。
实验结论: 1、
活性污泥培养初期 活性污泥培养中期
活性污泥培养成熟期
鞭毛虫、变形虫
游泳型纤毛虫、鞭毛虫
钟虫等固着型纤毛虫、楯纤虫、轮虫
微生物在处理水中的指示作用
从上述图片可以看出,累枝虫、盖纤虫的出现,说明活性污泥正常,出水水质好,所以实验比较成功。
从上图可以看出第一天沉降性能没有另外两天好,可能是搅拌不均匀,导致取了局部污泥浓度较高的水样;另外,可以看出在一定时间范围内,虽然第二天的沉降曲线斜率大于第三天沉降曲线斜率,但是第二天水样中的污泥浓度小,且最后两个体积几乎相等,所以第三天的污泥沉降性能好于第二天。
0.0
20.040.060.080.0
100.0120.00
10
2030
40
体积/V
时间/min
沉降曲线
第三天第二天第一天
答:效果不佳的原因分析如下:
1、活性染料有良好的水溶性但是可生物降解性差,
,从数学方面2、BOD5/COD<0.25,生化环境不够理想、微生物数量不够多、反应速率尚低; N r=QS e
X V V 解释,分子小,所以商变大→N r大,BOD-污泥负荷率高,污泥降解能力不够,使得污泥数量减少。
处理设施的基建投资和运行费用较高、运行不够稳定、难降解有机物处理效果差等。
改良工艺如下:
原工艺的气浮混凝池节厌氧水解反应池
PACT池节原工艺的二沉池之后同原来。
选择理由
1、BOD5/COD>0.45可生化性好,BOD5/COD>0.3可生化,<0.25难以生化处理,可采用水解酸化-好氧;<0.2不易生化,宜采用还原或氧化预处理改善可生化性后,再用生物处理
2采用水解反应池可以提高BOD5/COD(工程中简称B/C),改善可生化性;部分削减废水中有机物。
3、消化池上清液中富有氨氮,可以供应大量碳水化合物代谢所需的氮。
4、活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥少而稳定,无需消化,可直接排放;。