第八章-倒易点阵简介PPT

合集下载

倒易点阵介绍

倒易点阵介绍

n O
光程差 On Am OA S OA S0 OA ( S S0 )

相应的位向差为
2

2
( S S0 )

OA
其中p、q、r是整数 因为S0是入射线方向单位矢量, S是衍射线方向为单 位矢量,因此S- S0是矢量,则:(S S0 ) * *
2
1/
A
O
S0 /
5 、以S0端点O点为原点,作
倒易空间,某倒易点(代表
某倒易矢量与hkl面网)的 端点如果在反射球面上, 说明该g*=S, 满足Bragg’s Law。某倒易点的端点如果
P
S/
S S0 g
2
不在反射球面上, 说明不
满足Bragg’s Law,可以直
1/
A
O
S0 /
25
概念回顾
以A为圆心,1/λ 为半径所做的球称为反 射球,这是因为只有在这个球面上的倒 易点所对应的晶面才能产生衍射。有时 也称此球为干涉球, Ewald球。 围绕O点转动倒易晶格,使每个倒易点 形成的球称为倒易球 以O为圆心,2/λ 为半径的球称为极限球。

26
大倒易球半径为
g=1/d≤ 2/:
hkl
即 d hkl

2
S/的晶面不Fra bibliotek1/
2 C S0/
g
O
Direction of direct beam
可能发生衍射
Sphere of reflection
极限球
Limiting sphere
关于点阵、倒易点阵及Ewald球的思考
(1) 晶体结构是客观存在,点阵是一个数学抽象。 晶体点阵是将晶体内部结构在三维空间周期平移这 一客观事实的抽象,有严格的物理意义。 (2) 倒易点阵是晶体点阵的倒易,不是客观实在, 没有特定的物理意义,纯粹为数学模型和工具。 (3) Ewald球本身无实在物理意义,仅为数学工具。 但由于倒易点阵和反射球的相互关系非常完善地描 述了X射线和电子在晶体中的衍射,故成为研究晶 体衍射有力手段。

倒易点阵

倒易点阵

倒易点阵的应用—解释X射线及电子衍射
• 劳厄方程
当相邻原子的散射X射线光程差等于 入射X射线波长整数倍时发生衍射。
a(cosα-cosα0) = Hλ
一维原子列的衍射示意图
倒易点阵的应用—解释X射线及电子衍射
• 劳厄方程
设空间点阵的三个平移向量为a ,b和c,入射的X射线与它们的交角分别为α0,β0和γ0。 衍射方向与它们的交角分别为α,β和γ 。根据上述讨论可知,衍射角α,β和γ在x, y, z三个轴上应满足以下条件:
单晶体电子衍射花样标定
• 确定零层倒易截面上各ghkl矢量端点(倒易阵点)的指数,定出零层倒易截面的 法向(即晶带轴[uvw]),并确定样品的点阵类型、物相及位向。 (1)测量靠近中心斑点的几个衍射斑点至中心斑点距离R1、R2、R3、R4…及 R1与R2、R1与R3等衍射斑点之间的夹角。 (2) 计算R12∶R22∶R32∶…=N1∶N2∶N3∶… 其中N = h2 + k2 + l2

于是,它们的点乘 根据倒易基矢定义式,显然有

都为0。
倒易点阵的应用—解释X射线及电子衍射
• „ 劳厄的一个科学假设
1911年埃瓦尔德在索末菲的指导下在慕尼黑大学从事博士论文研究,劳厄在 与他的讨论中了解到晶格的平移周期与X射线的波长属于同一量级,因此想到 在二维光栅的两个衍射方程组中再加一个类似的方程,就可以描述X射线在三 维晶体中的衍射。 在此假设的指导下,Knipping和Friedrich在1912年4月开始用CuSO4 后来 用闪锌矿(立方ZnS)进行实验,很快就得到X射线衍射的证据。这不但证明 了X射线的波动性,还确定了晶体的三维周期性。
a*、b*、c*
即倒易基矢

倒易点阵

倒易点阵
二维问题一维化处理
材料现代研究方法讲义
正点阵和倒易点阵中基本平移矢量之间的关系 r r r 正点阵基本平移矢量: a , b , c
uur uu uu r r 倒易点阵基本平移矢量: a *, b *, c *
rr r rr r rr r 晶胞体积 V = a b × c = b c × a = c a × b r r r r uur b × c r uur r uu r uu r r b×c a*= = r r r a a* = b b* = c c* =1 V a ⋅b × c r r r r r uu r uu r uur r r uu c × a r c×a a b* = b c* = c a* = 0 b* = =r r r
P=
k

h
Q=
l

k
0 a/h
u r S hkl
ur ur ur ur uu r P×Q P×Q ∝ r*= = r r r 规一化因子 a ⋅b×c hkl
u b/k r P
r r r r uu r hkl b a c b r * = r r r − × − h l k a ⋅b×c k
衍射矢量方程及厄瓦尔德图解
材料现代研究方法讲义
衍射矢量方程
r r s − s 0 ⊥ ( HKL) 衍射矢量
r r u r s − s 0 = 2 S sin θ = 2sin θ r r 1 s − s0 = λ ⋅ d HKL uuur r r * s − s 0 = λ ⋅ rHKL uu r uur uu r uu r r * = H a * + Kb * + Lc *
材料现代研究方法讲义
厄瓦尔德图解:衍射矢量方程与倒易点阵结合, 厄瓦尔德图解:衍射矢量方程与倒易点阵结合,表示 衍射条件与衍射方向

固体物理倒格矢PPT

固体物理倒格矢PPT

将Γ (r)作傅里叶级数展开,有:
Γ (r)= C e C e n1 n2 n3
iGn r n
n
iGn r
n
n1 n2 n3
n
Γ (r)= C e C e n1 n2 n3
iGn r n
n
iGn r
n
n1 n2 n3
n
Gn为倒格矢,Gn n1b1 n2b2 n3b3,n1、n2、n3 Z
令a3=k
a1
a2a2
a3 a3
a1
a3a2
a1 a3
a1 ai a2 aj

b1
b2
2 2
a1
a2a2
a3 a3
a1
a3a2
a1 a3
2
a
2
a
i j
离原点最近的倒 格点有4个: b1,-b1,b2,-b2.
-b1
b2
b1 -b2
离原点次近的倒
格点有4个:
b1+b2 ,b1-b2 ,
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名

倒易点阵介绍

倒易点阵介绍
倒易点阵
1
倒易点阵
❖ 倒易点阵概念及定义 ❖ 倒易点阵的物理意义 ❖ 倒易点阵的应用是一个假想的点阵.
❖ 将空间点阵(真点阵或实点阵)经过倒易变换,就 得到倒易点阵,倒易点阵的外形也是点阵,但其 结点对应真点阵的晶面,倒易点阵的空间称为倒 易空间。
❖ 1860年法国结晶学家布拉菲提出并作为空间点 阵理论的一部分,但缺乏实际应用。
24
25
点阵中单胞的体积:V=a·(b×c)=b·(a×c) =c·(a×b)
5
倒易点阵基矢与正点阵基矢的关系
(仅当正交晶系)
6
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0;
a*·b= a*·c=b*·a=b*·c=c*·b=0
同名基矢点乘为1。
a*·a=b*·b=c*·c=1.
2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点
的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
7
ghkl=h a*+k b*+lc* 表明:
❖ 1平.倒行易于矢它量的法gh向kl垂N直hkl于正点阵中相应的 [hkl]晶面,或 ❖ 2.倒易点阵中的一个点代表的是正点阵中的一组晶面
8
晶带定理
❖ 在正点阵中,同时平行于某一晶 向[uvw]的一组晶面构成一个晶带, 而这一晶向称为这一晶带的晶带 轴。
向平行于(hkl)晶面的法线,则有K‘ –K= G,即为布拉格方程 14
的矢量形式。
倒易点阵的应用
倒易点阵使许多晶体几何学问题的解决变得简易。例如单胞体 积,晶面间距、晶面夹角的计算以及晶带定理的推导等等。以 下是倒易点阵的应用。 1°由倒易点阵的基本性质可得: a*=1/d100,b*=1/d010,c*=1/d100 (a*=G100=1/d100) 在晶体点阵S 中,点之间或点阵平面之间的距离用Å 作单位, 因此,a*、b*、c*的单位为Å-1。在用图解法解决实际问题时, 用相对标度值表示相对大小即可。

倒易点阵

倒易点阵

向量P×Q正是沿晶面法向
P

b

a
Q

k c

h b
H

l
P
k
Q

(
b

a)

(
c

b)
kh lk
倒易点阵的引入(2)
H

P
Q

(
b

a)

( c

b)
kh lk
所以,为了方便表示, 我们引入新的矢量
H

(b

a)
如何确定倒易点阵上的阵点
根据基矢的对应关系式确定倒易基矢
a*

b
c
V
b*

a
c
c*

V a
b
V
a* 1 d100
b*
1
d 010
c* 1 d 001
倒易基矢的方向大小确定后,将基矢平移单位长度得到阵点
正点阵基矢间夹角和倒点阵基矢间夹角间的关 系
• 根据基矢之间的夹角的定义,有 • 把正点阵基矢与倒易点阵基矢的关系代入,得

(j 2 (i 2 (i
2
k) k) j)
体心立方的倒格子是边长为2/a的面心立方 。
变换矩阵的引入
由倒易矢量的定义可以知道,倒空间中的三个基矢其实 是正空间中与正空间基矢共原点的三个矢量,因此可以 用空间变换将两组基矢联系起来,从而将正、倒空间的 矢量计算结合起来。
ab bb
ac bc

a* b*

c c a c b c c c*

倒易点阵介绍综述

倒易点阵介绍综述

(2) 波长连续, 使Ewald球的数 量增加,即球壁 增厚(Laue法)
S / 1/
A
S 0 /
O
Δλ
增大晶体产生衍射几率的方法
( 3 ) Ewald 球 不 动 , 增 加随机分 布的晶体 数量 , 相当于围绕O点转动倒易
S / 1/ hkl
晶格,使每个倒易点均
形成一个 球 (倒易 球 )。 (粉晶法的基础)

OA pa qb rc
ha k b l c*
现在不明确h、k、l一定是整数。由:
2
( S S0 )
可见,只有当φ =2π n时,才能发生衍射,此时n应 为整数。 由于p、q、r是整数,因此满足衍射条件时h、k、l 一定是整数。于是得到结论:

OA 2 (ha* k b* l c* ) ( pa qb r c) 2 (hp kq lr )
5
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0; a*·b= a*·c=b*·a=b*·c=c*·b=0 同名基矢点乘为1。 a*·a=b*·b=c*·c=1. 2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点的矢量 ghkl(倒易矢量)为:ghkl=h a*+k b*+lc* 式中hkl为正点阵中 的晶面指数 3. 倒易矢量的长度等于正点阵中相应晶面间距的倒数,即 ghkl=1/dhkl 4. 对正交点阵,有 a*∥a,b*∥b,c*∥c, a*=1/a,b*=1/b,c*=1/c, 5. 只有在立方点阵中,晶面法线和同指数的晶向是重合(平行) 的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
O
观地看出那些面网的衍射状
况。

倒易点阵

倒易点阵

倒易点阵的概念
• 定义 用a, b, c表示基矢量,用a*, b*, c*表示倒 易点阵的基矢量,则 •
倒易点阵的两个基本性质
• 倒易矢量的定义:从倒易点阵原点向任一倒易 点阵的阵点所连接的矢量叫倒易矢量。 r*=Ha*+Kb*+Lc* 1)r*HKL(HKL) , r*垂直于正点阵的(HKL)晶面;
倒易点阵
•倒易点阵的特点 •倒易点阵的概念 •倒易点阵的两个基本性质
倒易点阵的特点(从物理角度讲)
正点阵 从实际晶体结构中抽象出来,正点 阵与晶体的结构相关,是物质空 间(正空间)。
倒易点阵
由正点阵派生出的一种几何图象。 倒易点阵与晶体的衍射现象相关, 反映的是衍射强度分布
倒易点阵的特点
• 利用倒易点阵处理晶体几何关系和衍射 问题,使几何概念清楚,数学描述简化。 • 晶体点阵中的二维平面在倒易空间中对 应一个零维的倒易阵点。 • 晶面间距和取向两个参量在倒易空间中 仅用一个倒易矢量表示。
2)| r*HKL|=1/dHKL

倒易点阵

倒易点阵

厄瓦尔德图解:衍射矢量方程与倒易点阵结合, 厄瓦尔德图解:衍射矢量方程与倒易点阵结合,表示 衍射条件与衍射方向
反射球(衍射球, 反射球(衍射球,厄 瓦尔德球) 瓦尔德球):在入射线 方向上任取一点C为球 心,以入射线波长的倒 数为半径的球. 产生衍射的条件: 产生衍射的条件:若以入 射线与反射球的交点为原 点,形成倒易点阵,只要 倒易点落在反射球面上, 对应的点阵面都能满足布 拉格条件,衍射线方向为 反射球心射向球面上其倒 易结点的方向.
P1
SP1 / λ
r
* P1
SP2 / λ
S0 / λ
C
O*
r
* P2
P2
材料现代研究方法讲义
利用厄瓦尔德图解释晶体的衍射现象 1,劳埃法:单晶体试样固定不动,采用连续X射线
材料现代研究方法讲义
利用厄瓦尔德图解释晶体的衍射现象 2,旋转晶体法:单晶体绕与入射线垂直的轴转动.
材料现代研究方法讲义
b×c b×c a*= = V a b × c
c×a c×a b* = = V bc× a a×b a×b c* = = V ca×b
aib * = bic * = cia * = 0
a* = 1 a , b* = 1 b , c* = 1 c
材料现代研究方法讲义
正点阵和倒易点阵中点,线,面的关系 点阵矢量 r * = ha * + kb * + lc * 倒易点阵基本平移矢量: 倒易点阵基本平移矢量:a *, b *, c *
为新的三个基矢, 以 a *, b *, c * 为新的三个基矢, 引入另一个点阵, 引入另一个点阵,显然该点阵 c×a 中的点阵矢量 r * = ha * + kb * + lc * b* = V 的方向就是晶面(hkl)的法线方 的方向就是晶面 的法线方 a×b 向,该矢量指向的点阵点指数 c* = V 即为hkl 即为 . 倒易点阵的一个结点对应空间点阵的一个晶面

倒易空间Ewald图解.ppt

倒易空间Ewald图解.ppt

2011-12-5
7
Ewald图解
设S0与S分别为入射线与反 射线方向单位矢量,S-S0称 为衍射矢量,则反射定律可 表达为:S0与S分居反射面 (HKL)法线(N)两侧且 S0、S与N共面,S0及S与 (HKL)面夹角相等(均为 θ)。据此可推知S-S0∥N (此可称为反射定律的数学 表达式),如图所示。
2011-12-5 15
第一 从已知条件中能读出多少内容: 1. 从|a|=3Å,|b|=2Å,gamma=60°,c//a×b可以看 出:这个点阵是一个简单单斜点阵 这个点阵是一个简单单斜点阵;a、b俩基矢间的夹角 这个点阵是一个简单单斜点阵 为60°;c轴垂直于a、b俩基矢所在平面;|c|没给出 没给出。 ; 没给出 2. 所求倒易矢为 g*110与g*210 。 第二,理清思路: 根据倒易矢与相应正点阵晶面之间的关系可知,所求倒易 矢的方向分别为正点阵中(110)和(210)晶面的法向, 倒易矢模长分别为晶面间距d110和d210的倒数。
2011-12-5
18
2011-12-5
19
倒易点阵的性质
倒易点阵是衍射波在空间的方位与强度的 分布。倒易空间的每一阵点都和正空间的相 应的晶面族对应。 1. 定义:设a、b、c为正空间单胞的三基矢, a、b、c a* 、b * 、c *为倒空间单胞的三基矢,则: a* • a = b* • b = c* • c = 1 (1) a* • b = b* • c = c* • a = a* • c = b* • a = c* • b=0 (2) (1)决定了倒易矢的长度;(2)给出了方向。
2011-12-5 8
讨论衍射矢量方程的几何图解形式
衍射矢量方程的几何图解如图所 示,入射线单位矢量S0与反射晶面 (HKL)倒易矢量R*HKL及该晶面反 射线单位矢量S构成矢量三角形( 称衍射矢量三角形)。该三角形为 等腰三角形(S0=S);S0终点是倒 易(点阵)原点(O*),而S终点 是R*HKL的终点,即晶面对应的倒易 点,S与S0之夹角为2θ,称为衍射 角,2θ表达了入射线与反射线的方

倒易点阵

倒易点阵

正点阵基矢间夹角和倒点阵 基矢间夹角间的关系
• 根据基矢之间的夹角的定义,有 • 把正点阵基矢与倒易点阵基矢的关系代入,得
• 最后得 • 同理得 • 按同样的方法,可用倒易点阵的α*、β*、γ*来表示正点阵的 α、β、γ。
正点阵与倒易点阵的关系
a
Hhkl
垂直关系(方向)
在倒易点阵中,从原点指向阵点[坐标hkl]的 倒易矢量 Hhkl = ha* +kb* +lc* Hhkl必和正点阵的(hkl)面垂直, 即倒易点阵的阵点方向[hkl]*和正点阵的(hkl) 面垂直:[hkl]*⊥(hkl)。
晶体学基础
倒易点阵
Outline
• 倒易点阵的定义
• 倒易点阵的基本性质
• 由正点阵导出倒易点阵 • 倒易矢量在晶体学中几何关系的应用
倒易点阵引入(1)
• 1913-1921年Ewald根据Gibbs倒易空间概念提出了倒易点阵。 • 晶体学中最关心通常是晶体取向,即晶面的法线方向。 • 用3个基失a, b, c表示某晶面的法向矢量Shkl。
• 底心点阵的倒易点阵仍为底心点阵,如果是C面有 心化,倒易点阵单胞的棱长已不是a*, b*, c*,而是 2a*, 2b*, c* 。单胞体积变为正点阵单胞的4倍。
SUMMARY
• 倒易点阵的定义
• 倒易点阵的基本性质(垂直及倒数关系) • 如何由正点阵导出倒易点阵 • 求点阵平面的法线方向指数
倒易点阵定义
点阵参数分别为a, b, c和a*,b*,c* 的两个点阵的基矢存在如下关系:
则,这两个点阵互为倒易。 正点阵晶胞体积为V,则 V = a●b×c 因a ● a*=1,则 a* =(b×c)/V 同理 b* =(c×a)/V; c* =(a×b)/V 同理 a =(b* ×c*)/V*; b =(c* ×a *)/V*; c =(a* ×b)/V* 正点阵晶胞体积与倒易点阵晶胞体积之间也存在倒易关系,即 V● V*≡1

晶体的投影和倒易点阵 ppt课件

晶体的投影和倒易点阵 ppt课件
9
极射赤平投影:
以赤道平面为投影平面,以南极(或北极)为视点,将球面上的各个 点、线进行投影。
晶体投影的基本要素
10
D’
C’
B’
A’
极射赤平投影
2021/5/14
球面投影与极射赤面投影之间的关系:
球面上过南北轴的大圆,其极射赤面投影为过基圆中 心的直径;
球面上未过南北轴的倾斜大圆,其投影为大圆弧,大 圆弧的弦为基圆直径;
W
E
14
经纬线坐标网
乌式网
四、标准极射赤面投影图(标准极图)
定义:以晶体的某一简单晶面为投影图,将各晶面的球面投影再投影 到此平面上去所形成的投影图。
在测定晶体取向、如织构中非常有用,标明了晶体中所有重要晶面的 相对取向和对称关系和对称关系,可方便地定出投影图中所有极点的 指数。
15
1.4 倒易点阵
第2章 晶体学基础
参考教材: The Science and Engineering of
Materials
1
目录
晶体及其基本性质 晶向、晶面及晶带 晶体的间隙 晶体的缺陷 晶体的投影 倒易点阵
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
18
2021/5/14
2. 倒易点阵坐标系的建立:
从正点阵的原点O出发,作任一晶面(hkl)的法线ON,在该法 线上取一点Phkl ,使OPhkl长度正比例与该晶面间距dhkl的倒数, 则点阵称为该晶面的倒易点,用hkl表示,所有晶面的倒易点便 构成了倒易点阵。

第八章-倒易点阵简介PPT

第八章-倒易点阵简介PPT

P
S/
g S S0
1/
2
A S0 /
O
入射矢量S0、
衍射矢量S
及倒易矢量g*的端 O 点均落在球面上
S0
A
2 S
S的方向与大小均 由2所决定
g3
S
g1
S
P3
g2
P1
P2
Ewald 球与极限球
19
凡是处于Ewald球面上的倒易点均符合衍射条件 若同时有m个倒易点落在球面上,将同时有m个衍射发生,衍 射线方向即球心A与球面上倒易点连线所指方向。
现在不明确h、k、l一定是整数。由:
2 ( S S 0 ) O 2 ( A h a * k b * l c * ) ( p a q b r c ) 2 ( h k p l q )r
可见,只有当φ=2πn时,才能发生衍射,此时n应 为整数。
由于p、q、r是整数,因此满足衍射条件时h、k、l 一定是整数。于是得到结论:
第八章 倒易点阵简介
倒易点阵几何 衍射条件 爱瓦尔德图解法 粉末衍射法
1
倒易点阵简介
布拉格公式作为结构分析的数学工具,在 大多数场合已经足够,但是,还有一些衍射 效应是布拉格公式无法解释的,例如非布 拉格散射就是如此.
倒易点阵概念的引入,为一般衍射理论奠 定了基础.

倒易点阵几何
倒易点阵的概念 倒易点阵的定义 倒易点阵的性质 晶带定理
1/
2
A S0 /
O
15
3 、S长度为1/d,方向垂
直于hkl面网, 所以
S=g* 即: 衍射矢量就是倒易矢量。
P
S/
g S S0
4 、可以A点为球心,以 1/为半径作一球面,称为

倒易点阵介绍综述PPT文档共28页

倒易点阵介绍综述PPT文档共28页

倒易点阵介绍综述
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 只有在立方点阵中,晶面法线和同指数的晶向是重合(平行) 的。即倒易矢量ghkl是与相应指数的晶向[hkl] 平行的。
6
ghkl=h a*+k b*+lc* 表明:
1平.倒行易于矢它量的g法hk向l垂N直hkl于正点阵中相应的 [hkl]晶面,或 2.倒易点阵中的一个点代表的是正点阵中的一组晶面
hkl S/
1/
A
S0/
O
增大晶体产生衍射几率的方法
(1)入射方向不变,转动晶体
即Ewald球不动, 围绕O点转动倒易 晶格,接触到球面 的倒易点代表的晶
hkl S/
1/
C
S0/
O
面均产生衍射(周
(S S0)ha*kb*lc*ghkl
满足衍射条件的矢量方程。 X射线衍射理论中的劳埃方程和布拉格方
程均可由该矢量方程导出。
布拉格方程推导 ghkl
1
S2
m
θ
A
θ
θ
(S-S0) (HKL)
n
S0
O
S-S0=Ssinθ+ S0sinθ= 2sinθ
(S-S0)/λ= 2sinθ)/λ=ghkl=1/d
P
S/
g S S0
1/
2
A S0 /
O
入射矢量S0、
衍射矢量S
及倒易矢量g*的端 O 点均落在球面上
S0
A
2 S
S的方向与大小均 由2所决定
g3
S
g1
S
P3
g2
P1
P2
Ewald 球与极限球
19
凡是处于Ewald球面上的倒易点均符合衍射条件 若同时有m个倒易点落在球面上,将同时有m个衍射发生,衍 射线方向即球心A与球面上倒易点连线所指方向。
2dsinθ =λ
12
Ewald 作图法
Ewald 图解是衍射条件的几何表达式。 sinθ =λ/2d
令d= λ /ghkl (此时比例系数用X射线的波长) 则sinθ = ghkl /2
即某衍射面( hkl)所对应的布拉格角的正弦等 于其倒易矢量长度的一半。
13
Ewald 图解
入射线
θ
B
1
反射方向 P
反射线
g

θ (hkl)
A
θO
反射球
Ewald 作图法
1、设以单位矢量S0代表波 长为的X-RAY,照射在晶 体上并对某个hkl面网产生 衍射, 衍射线方向为S,二 者夹角为2。
2、定义S=S-S0为衍射矢量, 其长度为:
S=S-S0=2sin / =1/d
P
S/
g S S0
7
晶带定理
在正点阵中,同时平行于某一晶 向[uvw]的一组晶面构成一个晶带, 而这一晶向称为这一晶带的晶带 轴。
图示为正空间中晶体的[uvw]晶带
图中晶面(h1k1l1)、(h2k2l2)、 (h3k3l3)的法向N1、N2、N3和倒 易矢量gh1k1l1、gh2k2l2、gh3k3l3的方 向相同.
第八章 倒易点阵简介
倒易点阵几何 衍射条件 爱瓦尔德图解法 粉末衍射法
1
倒易点阵简介
布拉格公式作为结构分析的数学工具,在 大多数场合已经足够,但是,还有一些衍射 效应是布拉格公式无法解释的,例如非布 拉格散射就是如此.
倒易点阵概念的引入,为一般衍射理论奠 定了基础.
2
倒易点阵几何
倒易点阵的概念 倒易点阵的定义 倒易点阵的性质 晶带定理
现在不明确h、k、l一定是整数。由:
2 ( S S 0 ) O 2 ( A h a * k b * l c * ) ( p a q b r c ) 2 ( h k p l q )r
可见,只有当φ=2πn时,才能发生衍射,此时n应 为整数。
由于p、q、r是整数,因此满足衍射条件时h、k、l 一定是整数。于是得到结论:
1/
2
A S0 /
O
15
3 、S长度为1/d,方向垂
直于hkl面网, 所以
S=g* 即: 衍射矢量就是倒易矢量。
P
S/
g S S0
4 、可以A点为球心,以 1/为半径作一球面,称为
1/
2
A S0 /
O
反射球(Ewald 球)。衍
射矢量的端点必定在反射
球面上
5 、以S0端点O点为原点,作 倒易空间,某倒易点(代表 某倒易矢量与hkl面网)的 端点如果在反射球面上, 说明该g*=S, 满足Bragg’s Law。某倒易点的端点如果 不在反射球面上, 说明不 满足Bragg’s Law,可以直 观地看出那些面网的衍射状 况。
晶带定理:因为各倒易矢量都和
其晶带轴r=[u43;kv+lw=0, 这就是
晶带定理。
8
衍射条件
设:入射线波长为λ,入
射线方向为单位矢量S0,
衍射线方向为单位矢量S,
那么在S方向有衍射线的
条件是:在与S方向相垂
1
直的波阵面上,晶体中各
原子散射线的位向相同。
先计算原点O和任一原子 A的散射线在与S方向的 位向差。
3
倒易点阵的概念
倒易点阵是一个假想的点阵. 将空间点阵(真点阵或实点阵)经过倒易变换,
就得到倒易点阵,倒易点阵的外形也是点阵, 但其结点对应真点阵的晶面,倒易点阵的空间 称为倒易空间。
4
倒易点阵的定义
设正点阵的原点为O,基矢 为a、b、c,倒易点阵的原点 为 O* , 基 矢 为 a* 、 b* 、 c* , 则有:
ghkl
m
θ
A
θ
θ
n O
光程 差 O nAm OA SOA S0
OA (SS0)
S2 (S-S0) (HKL)
S0
相应的位向差为 22(SS0)OA
OApaqbrc 其中p、q、r是整数
因为S0是入射线方向单位矢量, S是衍射线方向为单 位矢量,因此S- S0是矢量,则:(SS0)ha*kb*lc*
同名基矢点乘为1。 a*·a=b*·b=c*·c=1.
2. 在倒易点阵中,由原点O*指向任意坐标为hkl的阵点的矢量 g的h晶kl(倒面易指矢数量)为:ghkl=h a*+k b*+lc* 式中hkl为正点阵中
3. 倒易矢量的长度等于正点阵中相应晶面间距的倒数,即 ghkl=1/dhkl
4. 对正交点阵,有 a*∥a,b*∥b,c*∥c, a*=1/a,b*=1/b,c*=1/c,
a*=b×c/V, b*=c×a /V, c*=a×b/V. 式中,V为正 点阵中单胞的体积: V=a·(b×c) =b·(c×a) =c·(a×b)
表明某一倒易基矢垂直于正 点阵中和自己异名的二基矢所 成平面
5
倒易点阵的性质
1. 正倒点阵异名基矢点乘为0; a*·b= a*·c=b*·a=b*·c=c*·b=0
相关文档
最新文档