多水平结构方程模型 ppt课件

合集下载

多水平结构方程模型 ppt课件

多水平结构方程模型 ppt课件
多水平结构方程模型
多水平结构方程模型
多水平结构方程模型
• 概念
(Hyman, 1955; James & Brett, 1984; Judd & Kenny, 1981; Baron & Kenny, 1986 )
多水平结构方程模型
(MacKinnon, Fairchild,Fritz,2007)
• 最小方差二次无偏估计方法:
在无偏估计中,具有最小方差。
多水平结构方程模型
Estimators
• Muthén’s limited information estimator (MUML) – random
intercepts
– ESTIMATOR = MUML – Muthén’s limited information estimator for
unbalanced data – Maximum likelihood for balanced data
• Full-information maximum likelihood (FIML) – random intercepts and random slopes
多水平结构方程模型
Tests of Model Fit • MUML – chi-square, robust chi-square, CFI,
多水平结构方程模型
• 选用更为严格的显著性水平(即更小的α)
– 仍然有偏,没能校正观测独立性不成立带来的问题。
• 使用跨级相关系数ICC
– 并非最优,且没有考虑数据的层级结构关系。
• 将较低一层水平的分数合成在较高一层的水平上 进行数据分析
– 统计检验力下降; – 同样两个变量在较高水平和较低水平上的关系可能不同; – 数据间的变异不一定存在于较高水平; – 研究感兴趣的问题可能发生在较低水平而非较高水平。

结构方程模型ppt课件

结构方程模型ppt课件
27
变异数萃取量(平均方差抽取量)
平均变异数萃取量 (AVE)= Σ(因素负荷量2)/((Σ因素负荷量)2+ (Σ各测量变项的测量误差)) (Jöreskog and Sörbom , 1996)
AVE是计算潜在变项之各测量变量对该潜在变项 的变异解释力,若AVE愈高,则表示潜在变项有 愈高的信度与收敛效度。 Fornell and Larcker(1981)建议其标准值须大 于0.5。
單向因果關係 X對Y1為直接效果X對Y2為 問接效果Y1為中介變數
回溯因果關係 X與Y互為直接效果, X與Y non-recursive 具有回饋循環效果
循環因果關係 (feedback)
Y1對Y2、Y2 對Y3、Y3對Y1均 為直接效果,Y1、Y2、Y3
為間接循環效果
20
SEM条件
数据符合常态、无遗漏值及例外值(Bentler & Chou, 1987)下,样本比例最小为估计参数的5 倍,10倍则更为适当。
8
结构模式与测量模式
外生观察变量 外生潜在变量 内生潜在变量 内生观察变量
测量残差 因素负荷量 结构参数
因素負荷量 测量残差
e1
x1
Lx1
e2
x2
Lx2 F1满意度 b
e3
x3
Lx3
D Ly1
F2忠誠度 Ly2
Ly3
y1 e4 y2 e5 y3 e6
测量(CFA)模式
结构模式
测量(CFA)模式 9
b43
b41
D4
y4 e10
Ly4
e5 x5
Lx5
F2
e6 x6
Lx6
b42
F4
y5 e11

多层线性模型简介 两水平模型 PPT

多层线性模型简介 两水平模型 PPT

图1:不考虑学校之间差异的回归直线
HLM数学模型
(2)假如将数据进行简单合并,用每个学校学生 的平均成绩代替这个学校的成绩,直截了当在 学校水平上估计入学成绩对高考成绩的影响, 得到一条回归直线,如图2所示,这种方法忽 略了不同学生之间的差异;
图2:只考虑学校差异忽略学生差异回归直线
HLM数学模型
多层线性模型简介 两水平模型
回归分析模型
Yi 0 1 X i i
i ~ N 0, 2
回归分析模型的假设
线性(Linearity) 误差正态分布( normally
distributed) 误差方差齐性(homoskedastic) 误差或观测个体之间相互独立
(independent)
HLM常用模型类型
随机效应单因素协方差分析(One-way ANCOVA with Random Effects) 水平1:
Yij 0 j 1j X ij eij
水平2:
0 j g 00 u0 j 1 j g 10
HLM常用模型类型
一般的线性回归模型 第一水平 :
第二水平:
rij表示什么?
残差项 定义第 j 组第i 个观测 均值为0
模型的特征
注意到: 我们有:
ij = uj + rij
Var(ij)
= Var(uj + rij) = Var(uj) + Var(rij) + 2*Cov(uj,rij) = Var(uj) + Var(rij)
模型的特征
什么是多层(多水平)数据?
多层(多水平)数据指的是观测数据在单位上具 有嵌套的关系。如学生嵌套于班级,班级嵌套于 学校等。
同一单位内的观测,具有更大的相似性。同一 个班级的学生由于受相同的班级环境等因素的 影响有更大的相似性。

多水平统计模型简介操作 PPT

多水平统计模型简介操作 PPT

水平 2 方差之与:
Var yij | 0 , 1, xij Var(u0 j e0ij )
2 u0
2 e0
• 同一个学校得两个学生(用 i1, i表2 示)间得
协方差为:
Cov u0 j ei1 j ,u0 j ei2 j
Cov u0 j , u0 j
2 u0
• 因此,同一学校三名学生得协差阵为
例如,来自同一家庭得子女,其生理与心理特征 较从一般总体中随机抽取得个体趋向于更为相似, 即子女特征在家庭中具有相似性或聚集性 (clustering),数据就是非独立得(non independent)。
忽略多水平层次结构得后果
1、模型中得参数估计值、标准误有偏差 2、残差方差偏大,即模型拟合优度差 3、损失高水平(如水平二:学校)对结果得影响信息
Cov u0 j ei1 j , u0 j ei2 j
Cov u0 j , u0 j
2 u0
组内相关(intra-class correlation, ICC)
2 u0
2
2
u0
e0
ICC测量了学校间方差占总方差得比例, 实际上它反映了学校内个体间相关,即水平 1 单位(学生)在水平 2 单位(学校)中得聚集性或 相似性。
第二层:0 j 00 u0 j
组内相关得度量
应变量方差为(可含固定效应协变量)
Var yij | 0 , 1, xij Var(u0 j eij )
Var(u0 j ) Var(eij ) Cov(u0 j , eij )
2 u0
2 e0
此即水平 2 与水平 1 方差之与。
同一学校中两学生(用i1,i2 表示)间得协方差为:
• SAS、SPSS默认采用REML

结构方程模型 PPT课件

结构方程模型 PPT课件

3.结构方程的基本原理?
二、结构方程模型的结构
结构方程模型的结构示意图如下所示:
3.结构方程的基本原理?
首先了解几个概念:
(1)观测变量:可直接测量的变量,通常是指标 (2)潜变量:潜变量亦称隐变量,是无法直接观测并测量的变 量。潜变量需要通过设计若干指标间接加以测量。 (3)外生变量 :是指那些在模型或系统中,只起解释变量作用 的变量。它们在模型或系统中,只影响其他变量,而不受其他变量的 影响。在路径图中,只有指向其他变量的箭头,没有箭头指向它的变 量均为外生变量。 (4)内生变量:是指那些在模型或系统中,受模型或系统中其 它变量包括外生变量和内生变量影响的变量,即在路径图中,有箭头 指向它的变量。它们也可以影响其它变量。
构建研究模型,具体包括:观测变量 (指标)与潜变量(因子)的关系,各 潜变量之间的相互关系等
模型拟合
对模型求解,其中主要是模型参数的估 计,求得参数使模型隐含的协方差距阵 与样本协方差距阵的“差距”最小
模型评价
检查1.路径系数/载荷系数的显著性; 2.各参数与预设模型关系是否合理; 3.各拟合指数是否通过
结构方程模型
1.什么是结构方程模型? 2.为什么使用结构方程模型? 3.结构方程模型的基本原理? 4.结构方程模型的应用步构方程模型?
结构方程模型( Structural Equation Model)是基于变 量的协方差矩阵来分析变量之间关系的一种统计方法, 所以也称为协方差结构分析。
它是综合运用多元回归分析、路径分析和验证型因子 分析等方法而形成的一种统计数据分析工具。其核心概念 在20世纪70年代初期被提出,到80年代末期得以快速发展 成为多元数据分析的重要工具,广泛应用于心理学、经济 学、社会学、行为科学等领域。

结构方程模型 ppt课件

结构方程模型  ppt课件

CONTENTS
01 概念介绍 02 基本原理
03 案例分析
04 实际操作
ppt课件
2
01 概念介绍
1.基本概念
结构方程模型(Structural Equation Modeling, SEM)是一种验证性多元统计分析技术, 是应用线性方程表示观测变量与潜变量之间,以及潜变量之间关系的一种多元统计方法, 其实质是一种广义的一般线性模型。
ppt课件
19
02 基本原理
3.模型拟合——主要拟合度指标
(3)整体模型拟合度
a) χ2卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等 于样本协方差阵。如果模型拟合的好,卡方值应该不显著。在这种情况下,数据拟合不好的模型被拒绝。
b) RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。 RMR应该小于0.08,RMR越小,拟合越好。
2.模型评价——参数估计 (1) 假设条件 ① 测量模型误差项δ,ε的均值为零 ② 结构模型的残差项ζ的均值为零 ③ 误差项ε,δ与因子η,ξ之间不相关,误差项ε与δ不相关 ④ 残差项ζ与ξ ,η ,δ之间不相关 (2)参数估计策略 ① 加权最小平方策略(WLS) ② 最大概似法(ML) ③ 无加权最小平方法(ULS) ④ 一般化最小平方法(GLS) ⑤ 渐进分布自由法(ADF)


5

6
结构模型:反映潜在变量之间因果关系
方程式: 1 11 1 1 2 21 1 21 1 2
0 0
B



21
0

多水平统计模型简介SPSS操作课件.ppt

多水平统计模型简介SPSS操作课件.ppt
多水平模型简介
Multilevel Models
ko
1
Chongqing Medical University Peng Bin
单水平模型
1,2,...,i,...n个观察对象
yi 0 1xi ei ,
ei
~
N
(0,
2 e
)
模型假设: 正态性、独立性、残差方差齐同性 协变量的影响保持不变
• 多水平模型将单一的随机误差项分解到与数据 层次结构相应的各水平上,具有多个随机误差 项并估计相应的残差方差及协方差。
• 构建与数据层次结构相适应的复杂误差结构, 是多水平模型区别于经典模型的根本特征
• 多水平模型由固定与随机两部分构成,其随机
部分可以包含解释变量ko
8
多水平模型基本结构
假定一个两水平的层次结构数据,学校为水 平 2 单位,学生为水平 1 单位,学校为相应总体 的随机样本。
yij 0 1 j xij eij
截距不同,斜率不同
yij

ko
0 j 1 j xij eij11
Chongqing Medical University Peng Bin
按学校绘制散点图及拟合线
该模型即为多水平模型
yij 0 j 1 j xij eij
计值与总均数的离差值,反映了第 j 个学校对 y 的 随机效应。
ko
15
Chongqing Medical University Peng Bin
1 j 01 u1 j
01 表示协变量 x 在所有学校的平均效应估计
值(固定部分),u1 j 表示协变量 x 在不同学校所
产生的特殊效应(随机部分),反映协变量与学 校之间产生的交互效应,即学校间 y 的变异与协 变量 x 的变化有关。

结构方程模型课件PPT

结构方程模型课件PPT

2021/3/10
3
2、为什么使用结构方程模型
很多心理、教育、社会等概念,均难以直接准确测量,这种变量称为潜变量 (latent variable),如智力、学习动机、家庭社会经济地位等等。我们只能求其次, 用一些外显指标(observable indicators),去间接测量这些潜变量。
如:以语文、数学、英语三科成绩(外显变量),作为学业成就(潜变量)的 指标。
系)。
Λy是y指标与η潜伏变项的关系(如:中、英、数成绩与学业成就间关系)。
2021/3/10
7
(2)结构模型:潜变量之间的关系
η——内生(依变)(endogenous,dependent)潜伏变项(如:学业成就) ξ——外源(自变)(exogenous,independent)潜伏变项(如:社经地位) β——内生潜伏变项间的关系(如:学业成绩与其他内生潜伏变项的关系) г——外源变项对内生变项的影响(如:社经地位对学业成就) ζ——模式内未能解释部份(即模式内所包含的变项及变项间关系所未能解 释部分)
的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。
我们的课程只考虑线性结构方程模型。 结构方程模型常用于:验证性因子分析、高阶因子分析、
路径及因果分析、多时段(multiwave)设计、单形模型(Simple Model)、及多组比较等 。
常用的分析软件有:LISREL、Amos、EQS、MPlus
2021/3/10
10
5、结构方程模型中的变量
潜变量 显变量
内生变量 外源变量
变量 指标
自变量 因变量
2021/3/10
11
2021/3/10
12

多水平统计模型(共108张PPT)

多水平统计模型(共108张PPT)
表示全 部医院的 y 随 x 变化的斜率的平均值(平 在临床试验和动物实验中,常需对患者或动物的某些指标进行重复测量,以了解不同时间观测指标的变化以及处理因素与观测指标的关系随
时间的变化;
1 此即水平 2 和水平 1 方差之和。
空模型的结果可以说明总结局测量变异中多大程度是由组内变异引起,多大程度是由组间变异引起。 (3) 第一水平模型纳入第一水平解释变量
随机系数模型
(Random Coefficient Model)
随机系数模型是指协变量的系数估计不是固 定的而是随机的,即协变量对反应变量的效应在
不同的水平 2 单位间是不同的。
仍以医院与患者两水平数据结构说明随机系 数模型基本结构与假设。
yij0j 1jxije0ij
与方差成份模型的区别在于 。 1 j
结构,可忽略医院的存在,即简化为传统的单
水平模型;反之,若存在非零的 略医院的存在。
,则不u20能忽
水平 2 单位中的水平 1 单位间存在相关,
通 常 的 “ 普 通 最 小 二 乘 法 ” (Ordinary Least Squares OLS)进行参数估计是不适宜的。
进一步,如数据具有三个水平的层次结 构,如医院、医生和患者三个水平,则将有 两个这样的相关系数,即医院内相关和医生 内相关。
多水平统计模型简介
A Brief Introduction to
Multilevel Statistical Models
概述 层次结构数据的普遍性 经典方法及其局限性 基本多水平模型 多水平模型的应用
概述
80 年代中后期,英、美等国教育统计学家开始探讨分析
层次结构数据(hierarchically structured data)的统计方法, 并相继提出不同的模型理论和算法。

结构方程模型初级介绍ppt课件

结构方程模型初级介绍ppt课件

篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
例子:员工工作满意度的测量
概念模型:
x
工作方式选择
工作自主权
工作目标调整
任务完成时间充裕度
工作负荷轻重
工作负荷
工作节奏快慢
工作内容丰富程度 工作多样性程度
表2 模型拟合优度结果
指标 DF Χ2 P NFI NNFI CFI IFI GFI AGFI RFI RMR RMSEA
指标值 687 1386.64 0.0 0.901 0.937 0.950 0.951 0.861 0.817 0.861 0.0584 0.0457
篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
结构方程(structural
equation),描述潜变量之间的
关系,如工作自主权与工作 满意度的关系。
工作自主权
工作满意度
篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(一)测量模型
对于指标与潜变量(例如两个工作自主权指标与工作自主权)间的关系,通常 写为以下测量方程:
工作单调性
工作满意度
y
目前工作满意度 工作兴趣 工作乐趣
工作厌恶程度
篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(2)模型拟合(model

结构方程模型讲义_图文

结构方程模型讲义_图文
Extracted Estimates) ﹥该因子与其他因子的 共同变异抽取值(相关系数的平方),则表明 数据具有较高的辨别有效性( Fornell&Larcker,1981)。 变异数抽取估计值:计算各因子非测量误差的 变异数占变异数的比值。 R2(判定系数coefficient of determination): 已解释变异占总变异的百分比
何时能说X引起Y?
X时间在先。(纵向设计) 明确说明因果方向,比如不可逆,或者循环。 (同时测
量设计) 常识、理论、经验研究的成果都可以成为说明的线索。 难以说明怎么办? X与Y之间的关系不因引进第三变量而消失 (统计控制) 。
结构方程模型的结构
结构方程模型可以分为测量方程( measurement)和结构方程(structural equation)两部分
插入新变量
点击Data菜单Insert Variables选项,打开对话框 点击OK键,在光标的左边,一个新变量就被插入到数据文件中 点击Data菜单Define Variables选项激活Define Variables对话框 选中刚才插入的变量 点击Rename键,键入新的变量名 点击OK键回到Define Variables对话框 点击Define Variables对话框中的OK键得到PSF窗口 点击File菜单上Save as选项,在“文件名”字符区键入新的文件名 这样,一个新变量被插入到原有的数据集中并存储为新的文件名
Factor Loading
三个因子与各变量之间的相关系数,称为因子 载荷量(loading)
系数绝对值越大,与相应因子的相关强度越强 。
因子旋转
因子旋转:用一个正交阵右乘已经得到的因子载荷阵(由线性代 数可知,一次正交变化对应坐标系的一次旋转),使旋转后的因 子载荷阵结构简化。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 水平2:
多水平结构方程模型
• 2-1-1对应的固定中介效应模型方程为:
• 水平1: Y (1)
(1)
ij
0j
ij
• 水平2: 0j(1)0(0 1)cX ju0j(1)
M (2)
(2)
ij 0j
ij
• 水平1: 0j(2)0(0 2)ajX u0j(2)
• 水平2: Yij0j(3)bjM ijij(3)
多水平结构方程模型
多水平结构方程模型
多水平结构方程模型
• 概念
(Hyman, 1955; James & Brett, 1984; Judd & Kenny, 1981; Baron & Kenny, 1986 )
多水平结构方程模型
(MacKinnon, Fairchild,Fritz,2007)
模型记号 2-2-2 2-2-1 2-1-2 2-1-1 1-2-2 1-2-1 1-1-2 1-1-1
X变量 位于水平2 位于水平2 位于水平2 位于水平2 位于水平1 位于水平1 位于水平1 位于水平1
M变量 位于水平2 位于水平2 位于水平1 位于水平1 位于水平2 位于水平2 位于水平1 位于水平1
0j(3)0(0 3)cXju0j(3)
• 水平1: bj b • 水平2:
多水平结构方程模型
• 1-1-1对应的固定中介效应模型方
程为:
Yij0j(1)cjXijij(1)
u (1) 0j
(1) 00
(1) 0j
• 水平1: • 水平2:
• 水平1: • 水平2:
cj c
M ij0j(2)ajXiji(j2)
多水平结构方程模型
• 选用更为严格的显著性水平(即更小的α)
– 仍然有偏,没能校正观测独立性不成立带来的问题。
• 使用跨级相关系数ICC
– 并非最优,且没有考虑数据的层级结构关系。
• 将较低一层水平的分数合成在较高一层的水平上 进行数据分析
– 统计检验力下降; – 同样两个变量在较高水平和较低水平上的关系可能不同; – 数据间的变异不一定存在于较高水平; – 研究感兴趣的问题可能发生在较低水平而非较高水平。
Y变量 位于水平2 位于水平1 位于水平2 位于水平1 位于水平2 位于水平1 位于水平2 位于水平1
第二水平
a
X
M
第一水平
c'第二水平2-2-Fra bibliotek模型b
Y
X
c'
第一水平
a
M
bj
第二水平
第一水平
2-1-1模型 Y M
常见的 三种模型
1-1-1模型
X
Y
多水平结构方程模型
(温忠麟、张雷、侯杰泰、刘红云, 2004)
伍德沃兹S-O-R模型是最早的中介模型之一 中介模型是许多心理学理论的形成基础
中介模型M可:指心导理干紧预张模式设计 研究中介模M型:是抵对制心吸理烟学技研能究方法的促进补充
X:态度与行为不一致
Y:态度或行为调整改变
X:干预训练
认知失调中介模型 Y:吸烟行为 青少年吸烟干预模式
多水平结构方程模型
•以两水平中介模型为例,根据X、Y和M所在的层级不同,理 论上说可能的中介模型有八种类型:
• 选择c-c’还是ab? • 根据具体关心的问题决定
多水平结构方程模型
多水平结构方程模型
截距 • 随机
斜率(路径系数) • 随机
多水平结构方程模型
• 2-2-1模型
– 一定是固定效应的
• 可用两步方法估计中介效应
– 第一步:用最小二乘回归估计X对M的效应 – 第二步:用多水平模型估计M和X对Y的同时效
斜率(路径系数) • 均固定
多水平结构方程模型
• 2-2-1对应的固定中介效应模型方程为:
• 水平1: Y (1)
(1)
ij
0j
ij
• 水平2: 0j(1)0(0 1)cX ju0j(1)
• 水平2: Mj0(2)aX jj(2)
Y (3)
(3)
ij 0j
ij
• 水平1: 0j(3 )0(3 0 ) c X j bjM u 0j(3 )
多水平结构方程模型
• 解决办法——多水平中介模型
(Kenny, Kashy, & Bolger, 1998)
传统中介模型扩展到
多水平模型的分析框架
多水平结构数据
中介分析
多水平结构方程模型
多水平结构方程模型
多水平结构方程模型
截距 • 随机,即允许截距在不同组间存在差异
– 这一随机系数的定义从模型上可以考虑多水平 数据组内观测之间存在相关的特点
• 估计:a b
• 检验:
多水平结构方程模型
• 当变量具有多水平结构时
X:组织氛围
同一组织内部的员工比较相似
第二水平:组织水平
M:工作满意度
第一水平:员工水平
Y:留职意向
• 忽视数据的多水平结构和相似性将导致
– 效应估计有偏(Raudenbush & Bryk, 2002)
– 低估标准误,增大统计一类错误概率(Barcikowski, 1981; Moulton, 1986; Scariano & Davenport, 1987)
多水平结构方程模型
• 选用更为严格的显著性水平(即更小的α)
– 仍然有偏,没能校正观测独立性不成立带来的问题。
• 使用跨级相关系数ICC
– 并非最优,且没有考虑数据的层级结构关系。
• 将较低一层水平的分数合成在较高一层的水平上 进行数据分析
– 统计检验力下降; – 同样两个变量在较高水平和较低水平上的关系可能不同; – 数据间的变异不一定存在于较高水平; – 研究感兴趣的问题可能发生在较低水平而非较高水平。
多水平结构方程模型
• 选用更为严格的显著性水平(即更小的α)
– 仍然有偏,没能校正观测独立性不成立带来的问题。
• 使用跨级相关系数ICC
– 并非最优,且没有考虑数据的层级结构关系。
• 将较低一层水平的分数合成在较高一层的水平上 进行数据分析
– 统计检验力下降; – 同样两个变量在较高水平和较低水平上的关系可能不同; – 数据间的变异不一定存在于较高水平; – 研究感兴趣的问题可能发生在较低水平而非较高水平。
u (2) 0j
(2) 00
(2) 0j
aj a
Y ij0j(3 ) c jX ij b jM iji(j3 )
u (3) 0j
(3) 00
(3) 0j
cj c
bj b
多水平结构方程模型
• 在多水平模型中, 中介效应的两种表示c-c’ 和ab并不相等(Krull & MacKinnon, 1999)
相关文档
最新文档