导数函数与零点及交点和方程的根问题
导数中两种零点问题解决方法
导数中两种零点问题解决方法导数中的零点问题是指函数在其中一点的导数为零。
解决导数零点问题的方法有两种:一种是解析法,一种是数值法。
一、解析法解析法是指使用数学知识和方法,通过分析函数的性质来求解导数的零点。
解析法包括以下几种常见的方法:1.1.方程法方程法是根据导数的定义,将函数的导数表达式设置为零,得到一个方程,从而求解出导数的零点。
具体步骤如下:1.将函数的导数表达式设置为零,得到一个方程。
2.解方程,求出方程的根。
3.将根带入原函数,计算出在根处的函数值。
1.2.倒数法倒数法是指使用导数的倒数来求解导数的零点。
具体步骤如下:1.对函数进行求导,并求出导数的表达式。
2.求导数的倒数,得到一个新的函数。
3.使用方程法求解导数的倒数的零点。
4.将零点带入原函数,计算出在零点处的函数值。
1.3.函数性质法函数性质法是指通过分析函数的图像和性质来求解导数的零点。
具体步骤如下:1.根据函数的图像和性质,确定导数的零点的位置。
2.使用方程法求解导数的零点,得到具体的数值。
3.将零点带入原函数,计算出在零点处的函数值。
二、数值法数值法是指使用数值计算的方法来求解导数的零点。
数值法包括以下几种常见的方法:2.1.二分法二分法是一种迭代求根的方法,通过函数在区间内取值的正负性来确定区间,并通过不断缩小区间的范围来求解导数的零点。
具体步骤如下:1.根据函数的图像和性质,选择一个初值区间,并确定函数在区间内的正负性。
2.通过计算区间的中点,并确定中点的函数值的正负性,来缩小区间。
3.不断迭代上述步骤,直到区间的宽度满足要求,得到导数的零点的近似值。
2.2.切线法切线法是使用切线近似原曲线的方法,通过迭代求解切线与横轴交点的坐标,来求解导数的零点。
1.根据函数的图像和性质,选取一个初始点,并求出该点处的导数值。
2.过初始点作函数图像的切线,并求出切线方程。
3.求出切线与横轴的交点的坐标,并将该点作为新的初始点。
4.重复上述步骤,直到满足迭代终止条件,得到导数的零点的近似值。
利用导数研究函数的零点讲义 解析版
利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
考前归纳总结导数中的有关方程根的问题
导数中的有关方程根的问题一、常见基本题型:(1) 判断根的个数问题,常常转化为函数图象的交点个数问题,通过构造函数来求解,例1.已知函数221()ln(1),().1f x x g x a x =+=+-求方程()()f x g x =的根的个数. 解: 令221()()()ln(1)1h x f x g x x a x =-=+--- '2222222211()21(1)1(1)x x h x x x x x x ⎡⎤=+=+⎢⎥+-+-⎣⎦当[0,1)(1,)x ∈⋃+∞时,'()0h x ≥当(,1)(1,0)x ∈-∞-⋃-时,'()0h x <因此,()h x 在(,1),(1,0)-∞--时,()h x 单调递减,在(0,1),(1,)+∞时,()h x 单调递增.又()h x 为偶函数,当(1,1)x ∈-时,()h x 极小值为(0)1h a =-当1x -→-时,()h x →-∞, 当1x +→-时,()h x →+∞当x →-∞时,()h x →+∞, 当x →+∞时,()h x →+∞故()()f x g x =的根的情况为:当10a ->时,即1a <时,原方程有2个根;当10a -=时,即1a =时,原方程有3个根;当10a -<时,即1a >时,原方程有4个根(2)已知方程在给定的区间上解的情况,去求参数的取值范围,另外有关方程零点的 个数问题其实质也是方程根的问题。
例1.已知32()(),(,f x ax bx b a x a b =++-是不同时为零的常数),其导函数为()f x ',(1)求证:函数()y f x '=在(1,0)-内至少存在一个零点;(2)若函数()f x 为奇函数,且在1x =处的切线垂直于直线230x y +-=,关于x的方程1()4f x t =-在[1,](1)t t ->-上有且只有一个实数根,求实数t 的取值 范围.解:(1)证明:因为2()32f x ax bx b a '=++-当0a =时,12x =-符合题意; 当0a ≠时,2321b b x x a a ++-,令b t a =,则2321x tx t ++- 令2()321h x x tx t =++-,11()024h -=-<, 当1t >时,(0)10h t =->, ()y h x ∴=在1(,0)2-内有零点;当1t ≤时,(1)210h t -=-≥>,()y h x ∴=在1(1,)2--内有零点.∴当0a ≠时,()y h x =在(1,0)-内至少有一个零点. 综上可知,函数()y f x '=在(1,0)-内至少有一个零点(2) 因为32()()f x ax bx b a x =++-为奇函数,所以0b =,所以3()f x ax ax =-,2()3f x ax a '=-. 又()f x 在1x =处的切线垂直于直线230x y +-=,所以1a =,即3()f x x x =-.()f x ∴在(,),()33-∞-+∞上是单调递增函数,在[上是单调递减函数,由()0f x =解得1x =±,0x =,由1()4f x x =-解之得0x x ==作()y f x =与14y x =-的图知交点横坐标为02x x =±=当383[(0,){}x ∈时,过14y x =-图象上任意一点向左作平行于 x 轴的直线与()y f x =都只有唯一交点,当x 取其它任何值时都有两个或没有交点。
专题11 利用导数解决零点问题(解析版)
专题11 利用导数解决零点问题1.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2 所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a xf x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <= 故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '> 所以()f x 在(0,)+∞上单调递增,()(0)0f x f >= 故()f x 在(0,)+∞上没有零点,不合题意 3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增 (0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减 当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<= 当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增 1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '= 当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '= 当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减 有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点 即()f x 在(1,0)-上有唯一零点 所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-2.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x < 因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x xx x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增 即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 3.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111xf x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-;(2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞.4.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-.(1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)先求出函数的定义域,再求出()31af x x '=-+,然后分0a >,0a ≤可得出函数的单调性. (2)设()()ln 1sin g x x x =+-,将问题转化为函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点,又当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,求出其导数,由零点存在原理即可证明. (1)函数()()ln 13f x a x x =+-的定义域是()1,-+∞,()31af x x '=-+. 当0a >时,令()0f x '<,得33a x ->;令()0f x '>,得313a x --<<, 故()f x 在31,3a -⎛⎫- ⎪⎝⎭上单调递增,在3,3a -⎛⎫+∞ ⎪⎝⎭上单调递减;当0a ≤时,()0f x '<恒成立,故()f x 在()1,-+∞上单调递减. (2)当1a =时,方程()sin 3f x x x =-即为()ln 13sin 3x x x x +-=-,即()ln 1sin 0x x +-=. 令()()ln 1sin g x x x =+-,则()1cos 1g x x x '=-+, 则“方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解”等价于“函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点”.当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以()0g x >在()e 1,-+∞上恒成立, 所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点.因为e 1π-<,所以当,e 12x π⎛⎤∈- ⎥⎝⎦时,cos 0x <,101x >+, 所以()0g x '>在,e 12π⎛⎤- ⎥⎝⎦上恒成立.所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上单调递增,又ln 1sin ln 1102222g ππππ⎛⎫⎛⎫⎛⎫=+-=+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()e 11sin e 1g -=--,所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,即()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.故方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.5.(2022·湖北·大冶市第一中学模拟预测)已知函数()e sin xf x x ax =+,其中e 是自然对数的底数.(1)若1a =时,试判断f (x )在区间(2π-,0)的单调性,并予以证明;(2)从下面两个条件中任意选一个,试求实数a 的取值范围. ①函数()f x 在区间[0,2π]上有且只有2个零点; ①当2,0x π⎡⎤∈⎢⎥⎣⎦时,()2f x x ≥.【答案】(1)f (x )在(π2-,0)上单调递增,证明见解析;(2)选择①:π22e 1πa -≤<-;选择①:1a ≥-.【解析】 【分析】(1)求导,通过判定导函数在(π2-,0)上的正负确定单调性; (2)选择①:易得()00f =,则因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点,求导通过讨论找出符合条件的a 的取值范围;选择①:构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦,此时()00m =,可通过端点效应或隐零点等思路求a的取值范围. (1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()πe sin e cos 1sin 14x x xf x x x x ⎛⎫=++=++ ⎪⎝⎭'.当π,02x ⎛⎫∈- ⎪⎝⎭时,πππ,444x ⎛⎫+∈- ⎪⎝⎭,所以sin 1144x x ππ⎛⎫⎛⎫<+<-+< ⎪ ⎪⎝⎭⎝⎭, 又0e 1x <<,πsin 14xx ⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(π2-,0)上单调递增. (2) 选择①,由函数()e sin 0π,2xf x x ax x ⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++, 则()2e cos 0xh x x '=≥在[0.π2]上恒成立.即()f x '在[0,π2]上单调递增,()2ππ01e 2f a f a ⎛'⎫=+=⎪⎭'+ ⎝,,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.π2]上单调递增.则f (x )在(0,π2]上无零点,不合题意,舍去,当π2e a ≤-时,()0π2f x f ⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,π2]上单调递减,则()f x 在(0,π2]上无零点,不合题意,舍去,当2e 1a π-<<-时,π2(0)10,()e 2π0f a f a '=+<'=+≥则()f x '在(0,π2)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′ 所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(x0,π2)上单调递增,又()π200e ππ22f f a ⎛⎫==+ ⎪⎝⎭,因此只需20π22πe f a ⎛⎫=+≥ ⎪⎝⎭即可,即π22e 1πa -≤<-,综上所述:2π2e 1πα-≤<-选择①,构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦此时()2π2e π244π00x m m a ⎛⎫==+- ⎪⎝⎭,则2π()e sin e cos 2(0)π1,(e 2π)xxm x x x a x m a m a'=++-'=+'=-+,易知(1)π)(2m m '>'令()e sin e cos 2,()2e cos 2,(0)0,()2π2x x xt x x x a x t x x t t =++-'=-'='=-令2π()2e cos 2,()2e (cos sin ),(0)2,()2πe 2xxp x x p x x x p p =-=-'='=-', 令()2e (cos sin )x q x x x =-,则()4e sin 0x q x x '=-≤ 所以()2e (cos sin )x q x x x =-在(0,π2)上单调递减.又π20π(0)(0)20,()()2e 22πq p q p ='=>='=-<在(0,π2)上存在唯一实数1x 使得()10q x =,且满足当()10,x x ∈时,()0q x >当1π(,)2x x ∈时.()0q x <即p (x )在(0,x 1)上单调递增,在(x 1,π2)上单调递减.又()()ππ0002022p t p t ⎛⎫⎛⎫==-=-< ⎪'' ⎪⎝⎭⎝⎭,,所以()2e cos 2x p x x =-在1π(,)2x 上存在一实数2x 使得()20p x =,且满足当2(0,)x x ∈时,()0p x >;当2π()2x x ∈⋅时,()0p x <即()()t x m x ='在(0,x2)上单调递增,在(2x ,2π)上单调递减, 当()010m a ='+≥时,即()10a m x ≥-'≥,,函数()2e sin x m x x ax x =+-在[0,π2]上单调递增,又()00m =,因此()2e sin 0x m x x ax x =+-≥恒成立,符合题意,当()010m a '=+<,即1a <-,在π20,x ⎛⎫∈ ⎪⎝⎭上必存在实数3x ,使得当()30,x x ∈时,()0m x '<,又()00m =,因此在()30,x x ∈上存在实数()0m x <,不合题意,舍去 综上所述1a ≥-.6.(2022·浙江湖州·模拟预测)已知函数12()e x f x =(e 为自然对数的底数). (1)令1()||()()g x a x f x f x =--,若不等式()0g x ≤恒成立,求实数a 的取值范围; (2)令3()()x xf x m ϕ=-,若函数()ϕx 有两不同零点()1212,x x x x <. ①求实数m 的取值范围;①证明:21e e 21x x m -<+. 【答案】(1)(,1]-∞;(2)①2,03e m ⎛⎫∈- ⎪⎝⎭;①证明见解析.【解析】 【分析】(1)根据()g x 为偶函数,将问题转化为0x ≥时()0g x ≤恒成立,根据(0)0g =及参变分离求0x >有1122ee x x a x--≤恒成立,求参数范围;(2)①利用导数研究()ϕx 的单调性,及区间值域情况,进而判断()0x ϕ=有两不同解时m 的范围即可;①由(1)知:0x <时1122e e x x x -≥-且120x x <<,应用放缩法有2()e e x x x ϕ≥-,构造2()e e x x F x =-研究极值并判断()F x m =的两根与12,x x 大小关系得到3214e e e e x x x x -<-即可证结论. (1)由题设,1122()||e ex x g x a x -=--,则()()g x g x =-,所以()g x 为偶函数,故只需0x ≥时,()0g x ≤恒成立,而(0)0g =满足, 所以0x >有1122ee x x a x--≤恒成立,令02t x =>,则e e 2t ta t--≤,若()e e 2t t h t t -=--,则()e e 220t t h t -'=+-≥=,仅当0=t 时等号成立, 所以()0h t '>,即()h t 在(0,)+∞上递增,则()(0)0h t h >=,即e e 2t t t -->, 所以,在(0,)+∞上e e 12t tt-->,则1a ≤, 综上:a 的范围为(,1]-∞. (2)①由题设,323()1e 2x x x ϕ⎛⎫=+ ⎪'⎝⎭,若()0x ϕ'>得:23x >-,故()ϕx 在2,3⎛⎫-∞- ⎪⎝⎭单调减,在2,3⎛⎫-+∞ ⎪⎝⎭单调增,且x 趋向负无穷()ϕx 趋向于0,x 趋向正无穷()ϕx 趋向于正无穷,又2233e ϕ⎛⎫-=- ⎪⎝⎭,()00ϕ=,则0x <时,()0x ϕ<;0x >时,()0x ϕ>,要使()0x ϕ=有两个不同解12,x x 且120x x <<,则2,03e m ⎛⎫∈- ⎪⎝⎭;①由(1)知:0x <时1122e ex x x -≥-,则1132222()e e e e e x x x x xx ϕ-⎛⎫≥-=- ⎪⎝⎭;记2()e e x x F x =-且0x <,则(()e e 1)2x x F x '=-,所以(,ln 2)-∞-上()0F x '<,(ln 2,0)-上()0F x '>,故()F x 在(,ln 2)-∞-上递减,(ln 2,0)-上递增,且12()(ln 2),043e F x F ⎛⎫≥-=-∈- ⎪⎝⎭,所以()F x m =也有两根,记为34x x <,又(,0)-∞上)(()x F x ϕ≥,则31240x x x x <<<<, 令e x t =,则34e ,e xx 为20t t m --=的两根,故34e e 1x x +=,34e e x x m =-,所以34e e x x -=3124e e e e x x x x <<<,所以3214(41)1e e e e 212x x x xm m ++-<-==+. 7.(2022·湖北·模拟预测)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性; (2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【答案】(1)单调性见解析 (2)(][),22,λ∈-∞-+∞【解析】 【分析】(1)求导可得()()()21x a x f x x +-'=,再根据a -与0,1的关系分类讨论即可;(2)由题()ln g x a x x =+,,设()120,1x t x =∈根据零点关系可得21ln x x a t -=,再代入1222x x g λλ+⎛⎫' ⎪+⎝⎭化简可得()()21ln 02t t t λλ+-+<+恒成立,设()()()21ln 2t ht t t λλ+-=++,再求导分析单调性与最值即可(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x+--+-'=-+-== ①)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x > ①)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立 ①)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a >- 综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增 1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈ ①212112ln ln ln x x x xa x x t--==-()1a g x x'=+ ①122112122221122ln 2x x x x g a x x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,①ln 0t < ①()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,①()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ ①)24λ≥时,204t λ-<,①()0h t '>,①()h t 在()0,1上单调递增 ①()()10h t h <=恒成立, ①(][),22,λ∈-∞-+∞合题①)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,①()0h t '>,①()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<, ①()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减①2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了双零点与恒成立问题的综合,需要根据题意消去参数a ,令()120,1x t x =∈,再化简所求式关于t 的解析式,再构造函数分析最值.属于难题 8.(2022·浙江绍兴·模拟预测)设a 为实数,函数()e ln 1=++x f x a x x . (1)当1a e=-时,求函数()f x 的单调区间;(2)判断函数()f x 零点的个数.【答案】(1)减区间为()0,∞+,无增区间. (2)当0a ≥,函数()f x 在(0,)+∞上没有零点;当210e a -≤<,函数()f x 在(0,)+∞上有1个零点;当21e a <-,函数()f x 在(0,)+∞上有2个零点. 【解析】 【分析】(1)利用二次求导研究函数()f x 的单调性,进而得出结果; (2)利用分类讨论的思想,根据函数()f x 与()()f x g x x=具有相同的零点,结合导数分别研究当0a ≥、210e a -≤<、21e a <-时()g x 的单调性,利用零点的存在性定理即可判断函数()g x 的零点个数,进而得出结果. (1)函数()f x 的定义域为(0,)+∞, 当1a e=-时,1()e ln 1e xf x x x =-++,则1()e ln 1x f x x -'=-++,且()01f '=, 有1111e ()ex x x f x x x---''=-+=,令()01f x x ''=⇒=, 所以当(0,1)x ∈时()0f x ''>,则()'f x 单调递增, 当(1,)x ∈+∞时()0f x ''<,则()'f x 单调递减, 所以max ()(1)0f x f ''==,即()0f x '≤,则函数()f x 在(0,)+∞上单调递减, 即函数()f x 的减区间为(0,)+∞,无增区间; (2)由(1)知当1a e=-时函数()f x 在(0,)+∞上单调递减,又(1)0f =,此时函数()f x 只有1个零点; 因为函数()f x 的定义域为(0,)+∞,所以()f x 与()f x x具有相同的零点, 令()e 1()ln (0)x f x a g x x x x x x ==++>, 则222(1)e 11(1)(e 1)()x x a x x a g x x x x x --+'=+-=, 当0a ≥时,e 10x a +>,令()01g x x '=⇒=,则函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)e 10g x g a ==+>,此时函数()g x 无零点,即函数()f x 无零点;当0a <时,令()01g x x '=⇒=或1ln()x a=-,若10e a -<<,则11ln()a<-,列表如下:当211e ea -≤≤-时,222e 2e 222e 4222e e e (e )2e 2e e 2e 0e ea g ------=++<++=-++<, 当210e a -<<即21e a ->时,131e ()a a->-,1121111()e ln()[e ln()1]aa g a a a a a a a a---=-+--=---+3111[()(1)1]0a a a a a <-----+<,又(1)0g >,此时函数()g x 有1个零点,则函数()f x 有1个零点; 若1e <-a ,则11ln()a>-,列表如下:所以ln()min 1e 111()(ln())ln ln()ln ln()ln1011ln()ln()aa g x g a a a a a -=-=+-+=-<=--, 又(1)0g >,2(e )0g <,则此时函数()g x 有2个零点,即函数()f x 有2个零点; 综上,当0a ≥时,函数()f x 在(0,)+∞上没有零点, 当210ea -≤<时,函数()f x 在(0,)+∞上有1个零点, 当21e a <-时,函数()f x 在(0,)+∞上有2个零点.【点睛】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题.9.(2022·河南·开封市东信学校模拟预测(理))已知函数()ln 12a af x x x =+-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)讨论函数()f x零点的个数.【答案】(1)当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭(2)当4a ≤,函数()f x 有且仅有一个零点;当4a >时,函数()f x 有且仅有3个零点 【解析】 【分析】(1)求导,再分0a <,04a ≤≤和4a >分类讨论即可;(2)根据单调性及零点存在性定理分析即可. (1)函数()f x 的定义域为(0,)+∞,2221(2)1()(1)(1)a x a x f x x x x x +-+'=-=++,在一元二次方程2(2)10x a x +-+=中,22Δ(2)44(4)a a a a a =--=-=-, ①当0a <时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当04a ≤≤时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当4a >时,一元二次方程2(2)10x a x +-+=有两个不相等的根, 分别记为()1221,x x x x >,有122x x a +=-,1210x x =>,可得210x x >>, 有12x x ==可得此时函数()f x 的增区间为()()120,,,x x +∞减区间为()12,x x , 综上可知,当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭; (2)由(1)可知:①当4a ≤时,函数()f x 单调递增,又由(1)0f =,可得此时函数只有一个零点为1x =; ①当4a >时,由122110,x x x x =>>,可得1201x x <<<,又由(1)0f =,由函数的单调性可知()()12(1)0,(1)0f x f f x f >=<=, 当01x <<且20e ax -<<时,可得2ln ln e ax -<,有ln 02ax +<, 可得()ln ln 022a af x x a x <+-=+<, 当2e ax >时,2()ln ln e 02222aa a a af x x >->-=-=可知此时函数()f x 有且仅有3个零点,由上知,当4a ≤时,函数()f x 有且仅有一个零点; 当4a >时,函数()f x 有且仅有3个零点.10.(2022·贵州·贵阳一中模拟预测(文))已知函数()323.f x ax x a b =-++(1)讨论()f x 的单调性;(2)当()f x 有三个零点时a 的取值范围恰好是()()()3,22,00,1,--⋃-⋃求b 的值. 【答案】(1)答案见解析 (2)3b = 【解析】 【分析】(1)求函数()f x 的导函数()'f x ,讨论a ,并解不等式()0f x '>,()0f x '<可得函数的单调区间;(2)由(1)结合零点存在性定理可求b . (1)()f x 的定义域为R ,()()23632,f x ax x x ax =-=-'若0a =,则()0600f x x x '>⇒->⇒<,()00f x x <⇒>'∴ ()f x 在(),0∞-单调递增,()0,∞+单调递减,若0a >,则()00'>⇒<f x x 或2x a>, ()200f x x a>⇒<<', ()f x ∴在(),0∞-单调递增,20,a ⎛⎫ ⎪⎝⎭单调递减,2,a ⎛⎫+∞ ⎪⎝⎭单调递增,若0a <,则()200f x x a'>⇒<< ()20f x x a>⇒<'或0x >, ()f x ∴在2,a ⎛⎫-∞ ⎪⎝⎭单调递减,2,0a ⎛⎫⎪⎝⎭单调递增,()0,∞+单调递减.(2)可知()f x 要有三个零点,则0a ≠, 且2(0)0f f a ⎛⎫< ⎪⎝⎭由题意也即是()200f f a ⎛⎫< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃,也就是关于a 的不等式()()()32224400a b a ba a b a b a a ++-⎛⎫++-<⇒< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃, 令()()()32240a b a ba h a a+++=<,时()()()()()1114130h b b b b =++-=+-=, 所以有1b =-或3b =, 当3b =时,()()()()()323222233434400a a a a a a a h a aa++-+-+-=<⇒<,()()()2231440a a a a a+-++<的解是()()()3,22,00,1--⋃-⋃,满足条件,当1b =-时,()()()322140a a a h a a---=<,当1a =-时,()1120h -=>,不满足条件, 故1b ≠-,综合上述3b =.11.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数()()e 12()exx xf x a a =+--∈R . (1)若()e ()=⋅x g x f x ,讨论()g x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)答案见解析;(2)()0,1. 【解析】 【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形,根据导数与0的关系可得单调性;(2)函数有两个零点即()e ()=⋅x g x f x 有两个零点,根据(1)中的单调性结合零点存在定理即可得结果. (1)由题意知,()()()e ()e e 12e e 12e e x x x x x xx x g x f x a a x ⎡⎤=⋅=⋅+--=+--⎢⎥⎣⎦,()g x 的定义域为(,)-∞+∞,()e (e 1)e e 2e 1(2e 1)(e 1)x x x x x x x g x a a a '=++⋅--=+-.若0a ≤,则()0g x '<,所以()g x 在(,)-∞+∞上单调递减; 若0a >,令()0g x '=,解得ln x a =-.当(,ln )x a ∈-∞-时,()0g x '<;当(ln ,)x a ∈-+∞时,()0g x '>, 所以()g x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增. (2)因为e 0x >,所以()f x 有两个零点,即()e ()=⋅x g x f x 有两个零点. 若0a ≤,由(1)知,()g x 至多有一个零点.若0a >,由(1)知,当ln x a =-时,()g x 取得最小值,最小值为1(ln )1ln g a a a-=-+. ①当1a =时,由于(ln )0g a -=,故()g x 只有一个零点: ①当(1,)∈+∞a 时,由于11ln 0a a-+>,即(ln )0g a ->,故()g x 没有零点; ①当(0,1)a ∈时,11ln 0a a-+<,即(ln )0g a -<. 又2222(2)e (e 1)2e 22e 20g a -----=+-+>-+>,故()g x 在(,ln )a -∞-上有一个零点.存在03ln 1,x a ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,则0000000000()e (e 1)2e e (e 2)e 0x x x x x xg x a x a a x x =+--=+-->->.又3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()g x 在(ln ,)a -+∞上有一个零点.综上,实数a 的取值范围为(0,1).12.(2022·青海·大通回族土族自治县教学研究室三模(理))已知函数()ln 1f x ax x =++. (1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围; (2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围. 【答案】(1)0a ≥或1a =- (2)(,2]-∞ 【解析】 【分析】(1)求导1()f x a x'=+,0x >,分0a ≥和0a <讨论求解; (2)对任意的0x >,2()e x f x x ≤恒成立,转化为2ln 1e xx a x+≤-在(0,)+∞上恒成立求解. (1)解:1()f x a x'=+,0x >, 当0a ≥时,()0f x '>恒成立,所以()f x 在(0,)+∞上单调递增.又()11ee 11a af a a ----=--+()1e 10a a --=-≤,(1)10f a =+>, 所以此时()f x 在(0,)+∞上仅有一个零点,符合题意; 当0a <时,令()0f x '>,解得10x a <<-;令()0f x '<,解得1x a>-, 所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.要使()f x 在(0,)+∞上仅有一个零点,则必有10f a ⎛⎫-= ⎪⎝⎭,解得1a =-.综上,当0a ≥或1a =-时,()f x 在(0,)+∞上仅有一个零点. (2)因为()ln 1f x ax x =++,所以对任意的0x >,2()e x f x x ≤恒成立,等价于2ln 1e xx a x+≤-在(0,)+∞上恒成立. 令2ln 1()e (0)xx m x x x+=->,则只需min ()a m x ≤即可, 则2222e ln ()+'=x x xm x x ,再令22()2e ln (0)x g x x x x =+>,则()221()4e 0'=++>xg x x x x, 所以()g x 在(0,)+∞上单调递增.因为12ln 204g ⎛⎫=< ⎪⎝⎭,2(1)2e 0g =>,所以()g x 有唯一的零点0x ,且0114x <<, 所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>, 所以()m x 在()00,x 上单调递减,在()0,x +∞上单调递增. 因为022002eln 0x x x +=,所以()()()00002ln 2ln ln ln x x x x +=-+-,设()ln (0)S x x x x =+>,则1()10'=+>S x x, 所以函数()S x 在(0,)+∞上单调递增.因为()()002ln S x S x =-,所以002ln x x =-,即0201ex x =.所以()0()m x m x ≥=02000000ln 1ln 11e 2x x x x x x x +-=--=, 则有2a ≤.所以实数a 的取值范围为(,2]-∞.13.(2022·福建省福州第一中学三模)已知函数()e sin 1x f x a x =--在区间0,2π⎛⎫⎪⎝⎭内有唯一极值点1x .(1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)+∞ (2)证明见解析 【解析】 【分析】(1)先求导,再讨论1a 时,函数单增不合题意,1a >时,由导数的正负确定函数单调性知符合题意; (2)先由导数确定函数()f x 在区间(0,)π上的单调性,再由零点存在定理即可确定在区间(0,)π内有唯一零点;表示出()12f x ,构造函数求导,求得()120f x >,又由()20f x =,结合()f x 在()1,x x π∈上的单调性即可求解. (1)()e cos x f x a x '=-,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos (0,1)x ∈,21e e x π<<,①当1a 时,()0f x '>,()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,没有极值点,不合题意,舍去;①当1a >时,显然()'f x 在0,2π⎛⎫ ⎪⎝⎭上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()'f x 在0,2π⎛⎫ ⎪⎝⎭上有唯一零点1x ,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在0,2π⎛⎫⎪⎝⎭上有唯一极值点,符合题意.综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10<f x ,又因为()e 10f ππ=->,所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x x f x a x a x x =--=--,由(1)知()10f x '=,所以11e cos xa x =,则()112112e 2e sin 1x xf x x =--,构造2()e 2e sin 1,0,2t t p t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t t p t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e cos sin t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】本题关键点在于先表示出()12f x ,构造函数()p t 求导,令导数为新的函数再次求导,进而确定函数()p t 的单调性,从而得到()120f x >,再结合()20f x =以及()f x 在()1,x x π∈上的单调性即可证得结论. 14.(2022·安徽·合肥市第八中学模拟预测(文))已知函数()e (sin cos )sin .x f x x x a x =+-.(1)当1a =时,求函数f (x )在区间[0]2π,上零点的个数; (2)若函数()y f x =在(0,2π)上有唯一的极小值点,求实数a 的取值范围 【答案】(1)2个(2)2]∞-⋃(,3222[2e ,)2e ,2e πππ⎧⎫+∞⋃⎨⎬⎩⎭【解析】 【分析】(1)利用导数判断函数f x ()在[0]2π,上的单调性,结合零点存在性定理确定零点个数;(2)利用导数,通过分类讨论确定函数f x ()的单调性及极值,由此确定a 的取值范围.(1)因为1a =,所以()e (sin cos )sin .x f x x x x =+-()(2e 1)cos x f x x '=-,则当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 又32223(0)10,()e 10,()1e 0,(2)e 022f f f f ππππππ=>=->=-<=>,则f x ()在322ππ⎛⎫ ⎪⎝⎭,,322ππ⎛⎫⎪⎝⎭,上各有一个零点,所以f x ()在区间[0]2π,上共有两个零点, (2)2()(2e )cos ,(02),22e 2e x x f x a x x ππ'=-∈<<,①当2a ≤时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 此时f x ()在32x π=的时候取得极小值,则2a ≤时符合题意: ①当22e a π≥时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在02π⎛⎫⎪⎝⎭,上单调递减,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递增, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,单词递减, 此时f x ()在2x π=的时候取得极小值,则22a e π≥时符合题意①当222e a π<<时,0ln 22a π<<,此时f x ()在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减,在ln ,22a π⎛⎫ ⎪⎝⎭,上单调递增,在3,22ππ⎛⎫ ⎪⎝⎭上单调递减,在3(,2)2ππ上单调递增,此时有两个极小值点,不符合题意: ①当22e a π=时,ln22a π=,此时f x ()在(0,32π)上单调递减,在3,22ππ⎛⎫ ⎪⎝⎭上单调递增,此时f x ()在32x π=的时候取得极小值,则22e a π=时符合题意;①当3222e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在,ln 22a π⎛⎫ ⎪⎝⎭上单调递增,在3ln 22a π⎛⎫⎪⎝⎭,上单调递减,在3,22ππ⎛⎫⎪⎝⎭上单调递增,此时有两个极小值点,不符合题意; ①当322e a π=时,3ln22a π=,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在22ππ⎛⎫ ⎪⎝⎭,上单调递增,此时f x ()在2x π=的时候取得极小值,则322e a π=时符合题意;①当322e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在322ππ⎛⎫⎪⎝⎭,上单调递增,在3(,ln )22a π上单调递减,在(ln ,2)2aπ上单调递增,此时有两个极小值点,不符合题意;综上所述3222(,22e ,)2 ][e ,2e a πππ⎧⎫∈-∞+∞⎨⎬⎩⎭.【点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.15.(2022·江西·上高二中模拟预测(理))已知函数()()2ln 0ax af x x a x -=->.(1)讨论()f x 的单调性;(2)设()()2ag x f x x=-+有两个零点12,x x ,若212x x >,证明:3312672e x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导得()2221b ax x af x a x x x -+-=--=',对导函数进行分情况讨论其正负,即可得()f x 的单调性. (2)通过函数有两个零点,转化成1212ln 2ln 2x x a x x ++==,然后根据比例,构造出221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,得到122111,e t x t x t x --==,进而构造函数33313ln ()ln[(1)]ln(1)1t t h t t t t t -=+=++-,利用导数处理单调性,进而可求. (1))()2221b ax x af x a x x x -+-=--=' 令2()F x ax x a =-+- ,则()00F a =-< ,且对称轴102x a=> 而214a ∆=-易知当10,2a ⎛⎫∈ ⎪⎝⎭ 时()f x 在0⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 单调递减,在⎝⎭单调递增当)12a ∞⎡∈+⎢⎣, 时()f x 在()0+∞,单调递减. (2)()g x 有两个零点12,x x 且0x >,则1212ln 2ln 2ln 2ln 20x x x x ax a a x x x +++-+=⇒=⇒==, 设21x t x =, 212x x >,2t ∴> ∴221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,∴11ln ln 2ln 2t x t x ++=+,所以12111ln ln 2e 1t t x x t t --=-⇒=-, ∴33333631121(1)e (1)t x x t x t t --+=+=+,设33313ln ()ln[(1)]ln(1)1t t h t tt t t -=+=++-,2t >,则222331(1)()[1ln ](1)1t t h t t t t t -'=--+-+, 设2231(1)()1ln 1t t t t t tϕ-=--++,则7437323223211()(441)[(1)4(1)](1)(1)t t t t t t t t t t t t t ϕ--'=+--=-+-++, 当(1,)t ∈+∞时,()0t ϕ'>,所以函数()t ϕ在(1,)t ∈+∞上递增,()()10t ϕϕ∴>=,则()0h t '>,()h t ∴在(1,)+∞递增,又2t >,∴()(2)ln72h t h >=,故3361272e x x -+>. 【点睛】本题考查了含参函数的单调性,最值问题,方程与函数零点的综合问题,利用导数解决单调性的问题,分情况讨论,转化,构造函数证明不等式,二阶求导等综合性的函数知识,在做题时要理清思路,是一道导数的综合题.16.(2022·山东师范大学附中模拟预测)已知函数()()ln h x x a x a =-∈R . (1)若()h x 有两个零点,a 的取值范围;(2)若方程()e ln 0xx a x x -+=有两个实根1x 、2x ,且12x x ≠,证明:12212e ex x x x +>. 【答案】(1)()e,+∞ (2)证明见解析 【解析】 【分析】(1)分析可知0a ≠,由参变量分离法可知直线1y a=与函数()ln xf x x=的图象有两个交点,利用导数分析函数()f x 的单调性与极值,数形结合可求得实数a 的取值范围;(2)令e 0x t x =>,其中0x >,令111e x t x =,222e xt x =,分析可知关于t 的方程ln 0t a t -=也有两个实根1t 、2t ,且12t t ≠,设120t t >>,将所求不等式等价变形为12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭>+,令121t s t =>,即证()21ln 1s s s ->+,令()()21ln 1s g s s s -=-+,其中1s >,利用导数分析函数()g s 的单调性,即可证得结论成立. (1)解:函数()h x 的定义域为()0,∞+.。
导数与不等式的证明及函数零点、方程根的问题
05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。
导数与函数零点问题解题方法归纳
导函数零点问题一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题.二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【2020·福建南平期末】已知函数()()21e x f x x ax =++. (1)讨论()f x 的单调性;(2)若函数()()21e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e xf x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()21e xg x m x =+'-,当0m 函数在定义域上单调递增,不满足条件;当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m ,01m <<三种情况讨论可得.【解析】(1)因为()()21x f x x ax e =++,所以()()221e xf x x a x a ⎡⎤=+++⎣⎦'+, 即()()()11e xf x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-.①当0a =时,()()21e 0x f x x =+',当且仅当1x =-时,等号成立.故()f x 在(),-∞+∞为增函数.②当0a >时,()11a -+<-,由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-;所以()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数.③当0a <时,()11a -+>-,由()0f x >′得()1x a >-+或1x <-,由()0f x <′得()11x a -<<-+;所以()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.综上,当0a =时,()f x 在为(),-∞+∞增函数;当0a >时,()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数;当0a <时,()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.(2)因为()()21e 1x g x x mx =+--,所以()()21e x g x m x =+'-, ①当0m 时,()0g x ',()g x 在[)1,-+∞为增函数,所以()g x 在[)1,-+∞至多一个零点.②当0m >时,由(1)得()g x '在[)1,-+∞为增函数.因为()01g m '=-,()00g =.(ⅰ)当1m =时,()00g '=,0x >时,()0g x '>,10x -<<时,()0g x '<;所以()g x 在[)1,0-为减函数,在[)0,+∞为增函数,()()min 00g x g ==.故()g x 在[)1,-+∞有且只有一个零点.(ⅱ)当1m 时,()00g '<,()()210m g m e m m '=+->,()00,x m ∃∈,使得()00g x '=, 且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.所以()()000g x g <=,又()()()22221e 1110m g m m m m m =+-->+--=, 根据零点存在性定理,()g x 在()0,x m 有且只有一个零点.又()g x 在[)01,x -上有且只有一个零点0.故当1m 时,()g x 在[)1,-+∞有两个零点.(ⅲ)当01m <<时,()01g m -'=-<,()00g '>,()01,0x ∃∈-,使得()00g x '=,且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.因为()g x 在()0,x +∞有且只有一个零点0,若()g x 在[)1,-+∞有两个零点,则()g x 在[)01,x -有且只有一个零点.又()()000g x g <=,所以()10g -即()2110e g m -=+-,所以21e m -, 即当211em -<时()g x 在[)1,-+∞有两个零点. 综上,m 的取值范围为211em -< 【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x时,常猜x =0或x =ln x .2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】 【2020·山西吕梁期末】已知函数221()ln ()x f x a x a R x-=-∈. (1)讨论()f x 的单调性;(2)设()sin x g x e x =-,若()()()()2h x g x f x x =-且()y h x =有两个零点,求a 的取值范围. 【解析】(1)()f x 的定义域为(0,)+∞,1()2ln f x x a x x =--, 21()2f x x '=+2221a x ax x x-+-=, 对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<,得44a a x <<,所以()f x 在,)+∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在(44a a 上是减函数. (2)由已知可得()cos x g x e x '=-, 因为0x >,所以e 1x >,而c o s 1x ≤,所以cos 0x e x ->,所以()0g x '>,所以()sin xg x e x =-在()0+∞,上单调递增. 所以()()00g x g >=.故()h x 有两个零点,等价于()2y f x x =-=1aInx x--在()0+∞,内有两个零点. 等价于1ln 0a x x--=有两根, 显然1x =不是方程的根, 因此原方程可化为()1ln 01x x x x a-=>≠且, 设()ln x x x φ=,()ln 1x x φ='+,由()0x φ'>解得11x e<<,或1x > 由()0x φ'<解得10x e <<, 故()ln x x x φ=在10e ⎛⎫ ⎪⎝⎭,上单调递减,在()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.其图像如下所示:所以()min 11x e eφφ⎛⎫==- ⎪⎝⎭, 所以110e a-<-<, 所以a e >. 类型二 设而不求,巧“借”零点 【例2】【2015高考新课标1,文21】设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 【解析】(I )()f x 的定义域为0+,,2()=20x a f x e x x . 当0a时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,a x 单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. (II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00x x ,时,()0f x ;当0+x x ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0x x 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x ,所以00022()=2ln 2ln 2a f x ax a a a x a a . 故当0a 时,2()2ln f x a a a. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最值.因此需要求()0f x '=的根.但是2()=20x af x e x 的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”.【举一反三】 【2020·江西赣州期末】已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+.(1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值. 【解析】(1)令2()x f x e ax x =--,则()21x f x e ax '=--,得:(1)e 1f a =--,(1)e 21f a '=--,由题得:(1)e 21e 31(1)e 1e 31f a a f a b b ⎧=--=-=⎧⇒⎨⎨=--=-+=⎩'⎩(2)根据题意,要证不等式4()5f x m >+对于任意恒成立,即证(0,)x ∈+∞时,4()5f x -的最小值大于m , 令244()()()2155x x g x f x e x x g x e x '=-=---⇒=--, 记()()21()2x xh x g x e x h x e ''==--⇒=-,当(0,ln 2)x ∈时,()0h x '<;当x (ln 2,)∈+∞时,()0h x '>,故()h x 即()g x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 又(0)0g '=,(ln 2)12ln 20g '=-<,且(1)30g e '=-<,323402g e ⎛⎫'=-> ⎪⎝⎭, 故存在唯一031,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=, 故当()00,x x ∈时,0g x ;当()0,x x ∈+∞时,()0g x '>;故()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()02min 0004()5x g x g x e x x ==--- 一方面:()014(1)5g x g e <=- 另一方面:由()00g x '=,即00210x e x --=,得()022*********x g x e x x x x =---=-++ 由031,2x ⎛⎫∈ ⎪⎝⎭得:()0111205g x -<<,进而()011140205g x e -<<-<, 所以1120m <- ,又因为m 是整数,所以1m -,即max 1m =-. 类型三 二次构造(求导),避免求根 【例3】【2020重庆巴蜀中学月考】已知函数()()21ln 12f x x a x =+-.(1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210e x e --<<.【分析】(1)求出()'f x ,令()'0f x ≥,解不等式可得单调递增区间;(2)通过求()f x 的导函数,可得()f x 在()0,1上有两个极值点,设为1x ,2x ,又由()f x 在()0,1上有唯一的零点0x 可得0110,2x x ⎛⎫=∈ ⎪⎝⎭,所以有()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,消去a ,可得0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭,研究其单调性,利用零点存在性定理可得结果.【解析】(1)由已知()f x 的定义域为0x >,当1a =-时,()()21ln 12f x x x =--, 则()()2111'x x x xf x x -++=--=, 令()'0f x ≥且0x >,则102x +<≤, 故()f x在10,2⎛ ⎝⎦上单调递增;(2)由()()21ln 12f x x a x =+-, 有()()2111'ax f x ax a x x x-+=+-=,记()21g x ax ax =-+,由4a >,有()()001011110242110a g g a a g >⎧⎪=>⎪⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎪⎪⎩, 即()f x 在()0,1上有两个极值点,设为1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根, 则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞,当1x =时,()10f =, 所以得0110,2x x ⎛⎫=∈ ⎪⎝⎭, 所以()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()00'2ln 1t x x =+,其在10,2⎛⎫ ⎪⎝⎭上单调递增,所以()001'2ln 12ln 11ln 402t x x =+<+=-< 则()00'2ln 10t x x =+<在10,2⎛⎫⎪⎝⎭上恒成立, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212*********e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩, 由零点存在定理,210ex e --<<. 【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【2020·云南昆明一中期末】已知函数2()(1)x x f x eax e =-+⋅,且()0f x . (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【解析】(1)因为()()ee 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥, 构造函数()e 1x u x ax =--,则()'e xu x a =-,又()00u =, 若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >,则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e x xf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()0022200000011e 1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭.三.强化训练1.【2020·安徽合肥二中月考】已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】0x ≤时,()xf x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()xx f x x e x e x x'=+--=+-,显然10x +>, 由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=, 0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点.故选B . 2.【2020江苏盐城期中】已知函数,若函数存在三个单调区间,则实数的取值范围是__________. 【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。
导数中的零点问题
导数中的零点问题1.已知函数 .(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;(Ⅱ)求函数的单调区间;(Ⅲ)记 . 当时,函数在区间上有两个零点,求实数的取值范围.2.已知函数(Ⅰ)若的图像与直线相切,求(Ⅱ)若且函数的零点为,设函数试讨论函数的零点个数. (为自然常数)3.已知函数 .(1)若时,讨论函数的单调性;(2)若函数在区间上恰有 2 个零点,求实数的取值范围 .4.已知函数(为自然对数的底数,),在处的切线为.(1)求函数的解析式;(2)在轴上是否存在一点,使得过点可以作的三条切钱若存在,请求出横坐标为整数的点坐标;若不存在,请说明理由.5.已知函数f x x22lnx a R, a 0 . a( 1)讨论函数 f x 的单调性;( 2)若函数f x 有最小值,记为g a ,关于a的方程g a a21 m 有三9a个不同的实数根,求实数m 的取值范围.6.已知函数(Ⅰ)求函数f x x 2aa R , e 为自然对数的底数).x(ef x 的极值;(Ⅱ)当 a 1 时,若直线l : y kx 2 与曲线y f x 没有公共点,求k 的最大值.7.已知函数(为自然对数的底数).(1)求曲线在点处的切线方程;(2)当时 , 不等式恒成立 , 求实数的取值范围;(3)设,当函数有且只有一个零点时, 求实数的取值范围 .8.已知函数 .(1)若函数有两个零点,求实数的取值范围;(2)若函数有两个极值点,试判断函数的零点个数.9.已知函数 .(Ⅰ)讨论的单调性;(Ⅱ)是否存在实数,使得有三个相异零点若存在,求出的值;若不存在,说明理由.10.已知函数 .( 1)求函数的单调区间;( 2)记,当时,函数在区间上有两个零点,求实数的取值范围.11.已知函数 .(1)讨论的导函数零点的个数;(2)若函数的最小值为,求的取值范围.12..(1)证明:存在唯一实数,使得直线和曲线相切;(2)若不等式有且只有两个整数解,求的范围.13 .已知函数 f x ax3bx23x a,b R在点1, f 1处的切线方程为y 20 .( 1)求函数 f x 的解析式;( 2)若经过点M 2,m 可以作出曲线y f x 的三条切线,求实数m 的取值范围.14.已知函数f xx22aln x, a R .x( 1)若f x 在 x 2 处取极值,求 f x 在点1, f 1 处的切线方程;( 2)当a 0 时,若 f x 有唯一的零点x0,求x0.注 x 表示不超过x的最大整数,如0.6 0, 2.1 2, 1.52. 参考数据:ln2 0.693,ln3 1.099,ln5 1.609,ln7 1.946.15 .已知函数 f x e x m xln x m 1 x ;(1)若m 1 f x在0,上单调递增;,求证:(2)若g x =f ' x ,试讨论 g x 零点的个数.16.已知函数 f x e ax ?sinx 1 ,,其中 a 0 .(I) 当a 1时,求曲线y f x 在点0,f 0 处的切线方程;( Ⅱ) 证明: f x 在区间0,上恰有 2 个零点.参考答案1.(Ⅰ);(Ⅱ)当时 , 减区间为;当时,增区间为,减区间为; (Ⅲ).【解析】【分析】( 1)先求出函数f ( x )的定义域和导函数 f ′( x ),再由两直线垂直的条件可得 f ′( 1)=﹣ 3,求出 a 的值;( 2)求出 f ′( x ),对 a 讨论,由 f ′( x )> 0 和 f ′( x )< 0 进行求解,即判断出函数的单调区间;( 3)由( 1)和题意求出g ( )的解析式,求出′( x ),由 g ′( x )>0 和 g ′( x )< 0x g进行求解, 即判断出函数的单调区间, 再由条件和函数零点的几何意义列出不等式组,求出b 的范围.【详解】(Ⅰ)定义域, ,,∴.(Ⅱ)当,,单减区间为当时令,单增区间为;令,单减区间为当时,单减区间∴当时 , 减区间为;当时,增区间为,减区间为;(Ⅲ)令,,令,;令,∴是在上唯一的极小值点,也是唯一的最小值点∴∵在上有两个零点∴只须∴.【点睛】本题主要考查了利用导数研究函数的单调性以及几何意义、函数零点等基础知识,注意求出函数的定义域,考查计算能力和分析问题的能力.2.( 1)( 2)有两个不同的零点【解析】分析:(Ⅰ)设切点坐标为,故可以关于的方程组,从该方程组解得.(Ⅱ)因,故为减函数,结合可得的零点.又是分段函数,故分别讨论在上的单调性,结合利用零点存在定理得到有两个不同的零点.详解:(Ⅰ)设切点,所以,故,从而又切点在函数上,所以即,故,解得,.(Ⅱ)若且函数的零点为,因为,,为上的减函数,故.当时,,因为,当时,;当时,,则在上单调递增,上单调递减,则,所以在上单调递减.当时,,所以在区间上单调递增.又,且;又,所以函数在区间上存在一个零点,在区间上存在一个零点.综上,有两个不同的零点.点睛:处理切线问题的核心是设出切点坐标,因为它的横坐标沟通了切线的斜率和函数在该值处的导数.零点问题需要利用导数明确函数的单调性,再结合零点存在定理才能判断函数零点的个数.3.( 1)见解析;( 2)【解析】分析:( 1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;( 2)分三种情况讨论的范围,分别利用导数研究函数的单调性,结合零点存在定理与函数图象,可筛选出函数在区间上恰有 2 个零点的实数的取值范围.详解:( 1)当时,,此时在单调递增;当时,①当时,,恒成立,,此时在单调递增;②当时,令在和上单调递增;在上单调递减;综上:当时,在单调递增;当时,在和上单调递增;在上单调递减;( 2)当时,由(1)知,在单调递增,,此时在区间上有一个零点,不符;当时,,在单调递增;,此时在区间上有一个零点,不符;当时,要使在内恰有两个零点,必须满足在区间上恰有两个零点时,点睛:导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,;第二个点是围绕利用导数研究函数的单调性、极值 ( 最值 ) 展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力.4.( 1)( 2)不存在横坐标为整数的点,过该点可以作的三条切线.【解析】分析:(1) 求出 f ( x)的导数,由切线方程可得切线斜率和切点坐标,可得a=2,即可得到 f ( x)的解析式;(2) 令,设图象上一点,,该处的切线, 又过点则过作 3 条详解:( 1),由题意可知,,即( 2),令,设图象上一点,,该处的切线又过点则①过作 3 条不同的切线,则方程①关于有令,图象与轴有 3 个不同交点3 个不同实根( 1)当,,是单调函数,不可能有 3 个零点(2)当,或时,当时,所以在单调递减,单调递增,单调递减曲线与轴有个交点,应该满足,,当,又,所以无解(3)当,或时,,当时,在单调递减,单调递增,单调递减,应满足,,当,又,无解,综上,不存在横坐标为整数的点,过该点可以作的三条切线.点睛:( 1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.( 2)本题将方程实根个数的问题转化为两函数图象交点的问题解决.5.( 1)当a 0 时, f x 在 0, 上递减,当 a 0 时, f x 在 0, a 上递减,在a , 上递增;(2)1 1ln3 .ln2 ln 3 m33【解析】试题分析:( 1)函数求导得 f ' x 2x 2,分 a 0 和 a 0 两种情况讨论即可;a x2( 2)结合( 1 )中的单调性可得最值g a 1 lna ,即m a ln a ( a 0) ,令2(a 9aF a a ln a 0) ,求导得单调性得值域即可.试题解析:( 1) f ' x2x 2, (x0) ,a x当 a 0 时, f ' x 0 ,知 f x 在 0,上是递减的;当 a时, f ' x 2 xa x ax 在 0, a 上是递减的, 在 a ,ax,知 f上递增的 .( 2)由( 1)知, a 0 , f xmin fa1 ln a ,即 g a1 lna ,方程 g a a2 1 m ,即 m a ln a29a( a 0) ,9a令 Faa lna 2(a0) ,则 F ' a1 1 23a 13a 2a9a 29a 2,9a知 Fa 在0, 1 和 2 ,是递增的,1 , 2是递减的,333 3F a 极大F 11 ln3 ,Fa极小F 21 ln2 ln 3,3 33 3依题意得1ln2ln 3 m1 ln3 .33点睛:已知函数有零点求参数常用的方法和思路:( 1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;( 2)分离参数法:先将参数分离,转化成函数的值域问题解决;( 3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解 .6.( 1)见解析( 2) k 的最大值为 1.【解析】试题分析: (1)先求导数,再根据 a 的正负讨论导函数符号变化规律,最后根据导函数符号确定极值, ( 2)先将无交点转化为方程1 在 R 上没有实数解,转化为k 1 x1e xxe x 在 R 上 没 有 实 数 解 , 再 利 用 导 数 研 究 g xxe x 的 取 值 范 围 , 即得k 11 , 1 ,即得 k 的取值范围是 1 e,1 ,从中确定 k 的最大值 . k 1ea①当 a 0 时, f x 0 , f x 为, 上的增函数,所以函数 f x 无极值 .②当 a 0 时,令 f x 0 ,得 e x a ,x lna .x ,ln a , f x 0 ; x lna , f x 0.所以 f x 在,ln a 上单调递减,在lna, 上单调递增,故 f x 在x lna 处取得极小值,且极小值为 f lna lna 1 ,无极大值.综上,当 a 0 时,函数 f x 无极小值;当 a 0 , f x 在 x lna 处取得极小值 lna ,无极大值.(Ⅱ)当 a 1 时, f x x 2 1 x. e直线 l : y kx 2 与曲线y f x 没有公共点,等价于关于 x 的方程 kx 2 x 2 1在 R 上没有实数解,即关于x 的方程:e xk 1 x 1x * 在 R 上没有实数解.e可化为1①当 k 1 时,方程* 0 ,在 R 上没有实数解.e x②当 k 1 时,方程* 化为 1 xe x.k 1令 g x xe x,则有 g x 1 x e x令 g x 0 ,得 x 1 ,当 x 变化时,g x 的变化情况如下表:x , 1 -1 1, g x - 0 +g x ↘ 1 ↗e当 x 1 时,g x min 1,同时当 x 趋于+ 时,g x 趋于 + ,e从而 g x 的取值范围为1. [ , )e所以当 11 , 1 时,方程 * 无实数解,k e解得 k 的取值范围是 1 e,1 .综上,得 k 的最大值为 1.7.( 1);(2);( 3)或【解析】分析:( 1)先求切点的坐标,再利用导数求切线的斜率,最后写出切线的方程.(2)先分离参数得到,再求函数的最小值,即得实数a 的取值范围 .(3) 先令,再转化为方程有且只有一个实根,再转化为有且只有一个交点,利用导数和函数的图像分析得到 a 的取值范围. 详解:( 1),所以切线的斜率.又因为,所以切线方程为,所以切线方程为.( 2)由得 .当 x=0 时,上述不等式显然成立,故只需考虑的情况.将变形得令,所以令,解得x> 1;令,解得x< 1.从而在( 0,1 )内单调递减,在(1, 2)内单调递增.所以 , 当 x=1 时,取得最小值e-1 ,从而所求实数的取值范围是.(3)令当时,,函数无零点;当时,,即令,令,则由题可知,当,或时,函数有一个函数零点点睛:第( 3)问的转化是一个关键,由于直接研究函数有且只有一个零点比较困难,所以本题把函数的零点转化为方程有且只有一个实根,再转化为有且只有一个交点,这样问题经过一次又一次的转化,大大提高了解题效率,优化了解题. 所以在解答数学难题时,注意数学转化思想的灵活运用.8.( 1)( 2) 3【解析】试题分析:( 1)第( 1)问,先把问题转化成的图象与的图象有两个交点,再利用导数求出的单调性,通过图像分析得到 a 的取值范围 .(2)第(2)问,先通过函数有两个极值点分析出函数g(x) 的单调性,再通过图像研究得到它的零点个数.试题解析:( 1)令,由题意知的图象与的图象有两个交点..当时,,∴在上单调递增;当时,,∴在上单调递减.∴.又∵时,,∴时, .又∵时, .综上可知,当且仅当时,与的图象有两个交点,即函数有两个零点.( 2)因为函数有两个极值点,由,得有两个不同的根,(设).由( 1)知,,,且,且函数在,上单调递减,在上单调递增,则 .令,则,所以函数在上单调递增,故, . 又,;,,所以函数恰有三个零点.点睛:对于零点问题的处理,一般利用图像法分析解答. 先求出函数的单调性、奇偶性、周期性、端点的取值等情况,再画出函数的图像分析函数的零点的个数. 本题第( 2)问,就是利用这种方法处理的.9.(Ⅰ)见解析 . (Ⅱ)见解析 .【解析】试题分析:( I )求出,分三种情况讨论的范围,分别令求得的范围,可得函数增区一定有且的极大值大于0,极小值小于0,则取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,换元后只需证明即可.试题解析:(Ⅰ)由题可知.当,即时,令得,易知在上单调递减,在上单调递增.当时,令得或.当,即时,在,上单调递增,在上单调递减;当时,,在上单调递增;当时,在,上单调递增,在上单调递减.(Ⅱ)不存在.理由如下:假设有三个相异零点.由(Ⅰ)的讨论,一定有且的极大值大于0,极小值小于已知取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,又,,故存在使得,即存在使得.令,即存在满足.令,,从而在上单调递增,所以,故不存在满足,与假设矛盾,从而不存在使得有三个相异零点10. (1) 见解析 ;(2) . 0..【解析】试题分析:(1)先求出函数 f (x)的定义域和导函数 f ′( x),对字母 a 分类讨论,由 f ′(x)>0 和 f ′(x)<0 进行求解,即判断出函数的单调区间;(2)由(1)和题意求出 g(x)的解析式,求出 g′(x),由 g′(x)>0 和 g′(x)< 0 进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出 b 的范围.试题解析:(1)定义域为,,当时,,当时,由得,∴当时,的单调增区间为,无减区间,当时,的减区间为,增区间为.( 2)当时,,.令,得,,在区间上,令,得递增区间为,令,得递减区间为,所以是在上唯一的极小值点,也是最小值点,所以,又因为在上有两个零点,所以只需,,所以,即 .11. (1) 见解析 ;(2) .【解析】试题分析:( 1)先求出,则至少存在一个零点,讨论的范围,利用导数研究函数的单调性,结合单调性与函数图象可得结果;( 2)求出,分五种情况讨论的范围,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性,结合函数图象可排除不合题意的的范围,筛选出符合题意的的范围.试题解析:( 1),令,故在上单调递增,则,因此,当或时,只有一个零点;当或时,有两个零点;(2)当时,,则函数在处取得最小值,当时,则函数在上单调递增,则必存在正数,使得,若,则,函数在与上单调递增,在上单调递减,又,故不符合题意.若,则,函数在上单调递增,又,故不符合题意.若,则,设正数,则,与函数的最小值为矛盾,12.( 1)详见解析;( 2) .【解析】试题分析:(1) 先设切点坐标,根据导数几何意义得切线斜率,根据切点既在切线上也在曲线上,联立方程组可得.再利用导数研究单调性,并根据零点存在定理确定零点唯一性,即得证结论,(2) 先化简不等式为,再分析函数单调性及其值域,结合图形确定讨论 a 的取法,根据整数解个数确定 a 满足条件,解得的范围.试题解析:(1)设切点为,则①,和相切,则②,所以,即.令,所以单增.又因为,所以,存在唯一实数,使得,且.所以只存在唯一实数,使①②成立,即存在唯一实数使得和相切.(2)令,即,所以,令,则,由( 1)可知,在上单减,在单增,且,故当时,,当时,,当时,因为要求整数解,所以在时,,所以有无穷多整数解,舍去;当时,,又,所以两个整数解为 0, 1,即,所以,即,当时,,因为在内大于或等于1,所以无整数解,舍去,综上,.13.( 1)f x x33x ;(2) 6 m 2【解析】试题分析:( 1)求出函数的导函数,然后根据导数的几何意义得到关于a,b 的方程组,解方程组求得a, b 后可得函数的解析式.(2)设出切点x0 , y0 ,求导数后可得 f x0 3x02 3 ,即为切线的斜率,然后根据斜率公式可得 3x02 3 x03 3x0 m,即2x03 6x02 6 m 0.若x0 2函数有三条切线,则函数g x 2x3 6 x2 6 m有三个不同的零点,根据函数的极值可得所求范围.试题解析;( 1)∵f xax3 bx2 3x ,∴ fx 3ax 22bx 3 ,根据题意得 {f 1 a b 3 2a 1f 13a2b 3 ,解得 {b 0,∴函数的解析式为fx x 3 3x .( 2)由( 1)得 f x3x 2 3 .设切点为x 0 , y 0 ,则 y 0 x 03 3x 0 , f x 03x 02 3 ,故切线的斜率为 3x 02 3 ,由题意得 3x 023 x 03 3x 0 m ,x 0 2即 2x 03 6x 02 6 m 0 ,∵过点M2,m m 2 可作曲线 yf x 的三条切线∴方程 2 x 03 6 x 026m 0 有三个不同的实数解,∴函数 g x 2x 3 6x 2 6 m 有三个不同的零点.由于 g x 6x 2 12x 6x x2 ,∴当 x 0 时, g x 0, g x 单调递增,当 0 x 2时, g x 0, g x 单调递减,当 x2 时, g x0, g x 单调递增 .∴当 x 0 时, g x 有极大值,且极大值为 g 0 m 6 ;当 x 2 时, g x 有极小值,且极小值为 g 2 m 2 .∵函数 g x 有 3 个零点,6 m 0 ∴ {m,2 0解得 6m 2 .∴实数 m 的取值范围是6,2 .点睛:利用导数研究方程根的方法( 1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求, 画出函数图象的大体形状, 标明函数极 ( 最 ) 值的位置, 通过数形结合的思想去分析问题,使问题的求解有直观的整体展现.( 2)研究方程根的情况,也可通过分离参数的方法,转化为两函数图象公共点个数的问题处理,解题时仍要利用数形结合求解.14.( 1) 7x y 10 0 ;( 2) 2【解析】试题分析: ( 1)求导,利用对应导函数为 0 求出 a 值,再利用导数的几何意义进行求解;( 2)求导,讨论导函数的符号变化确定函数的单调性和极值,通过极值的符号确定零点的位置,再利用零点存在定理进行求解.试题解析:(1)因为 fx2x 3 ax 2216 2a 2 a 7 ,则x 2,所以 f4 0 ,解得f 1 7 ,即 fx 在点 1, f 1 处的切线方程为 y 37 x 1 ,即 7 x y10 0 ;( 2) f x x22 aln x ,f x2x 3 ax2x 0xx2令g x2x 3 ax 2 ,则 g x 6x 2 a由 a0, gx 0 ,可得 xa6g x 在 0, a上单调递减,在a , 上单调递增66由于 g 02 0 ,故 x0,a时, g x 06又 g 1a 0 ,故 g x 在 1,上有唯一零点,设为x 1 ,从而可知 f x在0, x 1 上单调递减,在 x 1,上单调递增由于 fx 有唯一零点 x 0 ,故 x 1 x 0 , 且 x 0 1又 2lnx 031 0 ......*x 0 3 1令h x 2ln x 031 ,可知h x 在 1, 上单调递增x 0 3 1由于 h 22ln2 10 2 0.7 10 0 , h 32ln3290 ,7 726故方程* 的唯一零点 x 02,3 ,故 x 0215.( 1)见解析( 2)当 m 1时, g x 没有零点; m 1时, g x 有一个零点; m1时, gx 有两个零点 .【解析】试题分析:( 1)m 1时, f x e x 1 xlnx , f ' xe x 1lnx 1 ,要证 f x在 0,+ 上单调递增,只要证:f ' x0 对 x 0 恒成立,只需证明e x 1x (当且仅当 x1 时取等号) . x lnx 1 (当且仅当 x 1时取等号),即可证明 f ' x0 ;( 2)求函数的导数,根据函数极值和导数的关系,分 m 1 m >1, m1讨论,即可判断函数 g x 零点的个数.试题解析:( 1) m 1时, f xe x 1xlnx , f ' x e x 1 lnx 1 ,要证 f x 在 0,+上单调递增,只要证:f ' x0 对 x 0 恒成立,令i x e x 1 x ,则 i ' x e x 1 1 ,当 x 1 时, i ' x 0 ,当 x 1 i ' x 0 ,故 i x 在 ,1 上单调递减,在 1,+上单调递增,时,所以 i x i 10 ,即 e x 1x (当且仅当 x 1 时等号成立),令 j xx 1 lnx x 0 ,则 j ' xx 1x ,当 0x 1时, j ' x 0 ,当 x 1时,j ' x 0 ,故 j x 在( 0, 1)上单调递减,在 1,+上单调递增,所以j xj 1 0 ,即 x lnx 1(当且仅当 x 1 时取等号), f xe x 1lnx 1 x lnx 10 (当且仅当 x 1 时等号成立)f x 在 0,+ 上单调递增 .( 2)由 g xe xmlnx m 有 g ' xe x m1 x0 ,显然 g ' x 是增函数,x令g ' x 00 ,得 e x 0 m1 , e m x 0 e x 0 , mx 0 ln x 0 ,x 0则 x0, x 0 时, g ' x 0 , x x 0 ,时, g ' x0 ,∴ gx 在 0,x 0 上是减函数,在 x 0 ,上是增函数,∴ gx 有极小值,g x 0e xmln x 0 m12ln x 0 x 0 ,x 0①当 m 1时, x 0 1, g x 极小值 =g 10 , g x 有一个零点1;② m1时, 0 x 0 1, g x 0g 1 1 0 1 0,g x 没有零点;③当 m 1时, x 0 1, g x 010 1 0 ,又 g e me emmm m e e mm0 ,又对于函数 y e x x 1 , y ' e x 10 时 x 0 ,∴当 x 0 时, y1 0 1 0 ,即 e xx 1 ,∴g 3m e 2mln3m m2m 1 ln3m mm 1 lnmln3 ,令 tmm 1 lnm ln3 ,则 t ' m11 m 1mm ,∵ m 1,∴ t ' m 0 ,∴ t mt 12 ln3 0 ,∴ g 3m0 ,又 e m1 x 0 , 3m 3x 0 3lnx 0x 0 ,∴ g x 有两个零点,综上, 当 m 1时, g x 没有零点;m 1时, g x 有一个零点; m 1时, g x 有两个零点 .【点睛】 本题题考查导数的综合应用, 利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.16.( Ⅰ) y x 1 ( Ⅱ) 见解析.【解析】试题分析:( Ⅰ)求出 f x 在 x0 的导数即可得切线的斜率, 也就得到在 0, f处切线方程. (Ⅱ)先研究函数 fx 的单调性,其导数为 f ' x e axa sin x cosx ,当x 0,时,利用三角函数的符号可以判断出 f ' x 0 ,当 x, 时,导数有唯 22一的零点 x 0 且为函数的极大值点.结合f0 , f 0 f 0 可以判断 f x 在20,x 0 存在一个零点,在 x 0 , 上存在一个零点,故在 0,上存在两个不同的零点.解析:(Ⅰ)当 a 1 时, f xe x sinx 1,所以f x e x sinx cosx ,故 f ' 01 ,又 f 01 ,故曲线在 0, f 0 的切线方程为 y x 1 .(Ⅱ) f 'xe ax asinx cosx .当 x0, 时,因为 a 0,sin x 0,cosx 0 ,故 f ' x 0 ,所以 f x 在 0,是单22调增函数;当 x, 时, f ' xae ax cosx 1 tanx ,令 tanx1 0, x, ,此方程2aa2有唯一解 x x 0 .当 x, x 0 时, f ' x 0 , f x 在, x 0 上是单调增函数; 22当 xx 0 ,时,f ' x 0 , f x 在 x 0 ,上是单调减函数;因为 fx 的图像是不间断的, 所以 f x 在0,x 0上是单调增函数, 在 x 0 ,上是单调减a,f 0f1 0 , 而 x 0函 数 .又 f2e 21 02 , 故f x 0f0 ,根据零点存在定理和 f x 的单调性可知 f x 在 0,x 0存在一个零2点,在x 0 ,上存在一个零点,故f x 在 0,上存在两个不同的零点.点睛:导数背景下函数的零点个数的讨论不仅要考虑函数的极值的符号, 还要结合零点存在定理去判断.一般地,我们在一个单调区间中要找到这样的a, b ,使得 f a f b0 .。
高三总复习数学课件 利用导数研究函数的零点问题
根据以上信息,画出大致图象,如图所示.
(3)令 g(x)=f(x)-a=0,得 f(x)=a. 所以函数 g(x)=f(x)-a(a∈R )的零点的个数,即函数 y=f(x)的图象与直线 y =a 的交点个数.
易知当 x=-2 时,f(x)取得最小值, 最小值为 f(-2)=-e12.
若选择条件②, 由于 0<a<12,故 0<2a<1, 则 f(0)=b-1≤2a-1<0, 当 b≥0 时,e2>4,4a<2, f(2)=e2-4a+b>0, 又函数 f(x)在区间(0,+∞)上单调递增, 故函数 f(x)在区间(0,+∞)上有一个零点.
当b<0时,构造函数H(x)=ex-x-1,则H′(x)=ex-1, 当x∈(-∞,0)时,H′(x)<0,H(x)单调递减, 当x∈(0,+∞)时,H′(x)>0,H(x)单调递增, 注意到H(0)=0,故H(x)≥0恒成立,从而ex≥x+1,此时f(x)=(x-1)ex- ax2+b≥(x-1)(x+1)-ax2+b=(1-a)x2+(b-1),
综上,当 a<-e12时,函数 g(x)的零点的个数为 0; 当 a=-e12或 a≥0 时,函数 g(x)的零点的个数为 1; 当-e12<a<0 时,函数 g(x)的零点的个数为 2.
[系统思维] 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个 数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的 符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)利用函数零点存在定理:先用该定理判断函数在某区间上有零点,然后 利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该 区间上零点的个数.
利用导数研究函数零点
思维升华
利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化为确定g(x)的零点个数问 题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号 (或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导 数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间 上零点的个数.
索引
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围. 解 y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+ 1的图象有两个不同的交点. 由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 故f(x)min=f(1)=-1. 由题意得,m+1>-1, 即m>-2,① 当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.
利用导数研究函数零点
索引
1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展 趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零 点是否存在及零点的个数等.
2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解” 相互转化.
索引
当x>0且x→0时,f(x)→0; 当x→+∞时,显然f(x)→+∞. 由图象可知,m+1<0, 即m<-1,② 由①②可得-2<m<-1. 所以m的取值范围是(-2,-1).
索引
思维升华
与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点, 并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进 而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问 题.
高考满分数学压轴题22 导数中的参数问题(可编辑可打印)
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
【高考理数】利用导数解决函数零点问题(解析版)
2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数
专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
第09讲 利用导数研究函数的零点问题及方程的根(学生版) 备战2025年高考数学一轮复习学案(新高考
第09讲利用导数研究函数的零点问题及方程的根(6类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为15-17分【备考策略】1能用导数证明函数的单调性2能结合零点的定义及零点存在性定理解决零点问题3能结合方程的根的定义用导数解决方程的根的问题【命题预测】导数的综合应用是高考考查的重点内容,也是高考压轴题之一近几年高考命题的趋势,是稳中求变、变中求新、新中求活,纵观近几年的高考题,导数的综合应用题考查多个核心素养以及综合应用能力,有一定的难度,一般放在解答题的最后位置,对数学抽象、数学运算、逻辑推理等多个数学学科的核心素养都有较深入的考查,需综合复习利用导数研究函数零点的方法(1)通过最值(极值)判断零点个数的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.利用导数研究函数方程的根的方法(1)通过最值(极值)判断零点个数(方程的根)的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数(方程的根)或者通过零点个数(方程的根)求参数范围.(2)数形结合法求解零点(方程的根)对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点(方程的根)①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数(方程的根)寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.1.(2024·湖北武汉·模拟预测)已知函数()()21ln R 2f x x ax a =-Î.(1)当1a =时,求()f x 的最大值;(2)讨论函数()f x 在区间21,e éùëû上零点的个数.2.(2024·湖南长沙·三模)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()h x 零点的个数.3.(2024·河北保定·二模)已知函数()sin cos f x a x x x =+.(1)若0a =,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()π,πx Î-,试讨论()f x 的零点个数.1.(2024·山东·模拟预测)已知函数()1e 4xf x =-(1)求曲线()y f x =在点()()1,1f 处的切线l 在y 轴上的截距;(2)探究()f x 的零点个数.2.(2024·浙江·模拟预测)已知函数()()e sin 1xf x a x x =+--.(1)当12a =时,求()f x 的单调区间;(2)当1a =时,判断()f x 的零点个数.3.(2024·河南·模拟预测)已知函数()()20,e x ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.1.(2022·全国·高考真题)已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.2.(2022·全国·高考真题)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 的取值范围.3.(2024·湖南邵阳·三模)已知函数()32113f x x x =-++.(1)求函数()f x 的单调递增区间;(2)若函数()()()g x f x k k =-ÎR 有且仅有三个零点,求k 的取值范围.4.(2024·广东茂名·一模)设函数()e sin xf x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.1.(2024·广东汕头·三模)已知函数2)()(e x f x x ax =-.(1)若曲线()y f x =在=1x -处的切线与y 轴垂直,求()y f x =的极值.(2)若()f x 在(0,)+¥只有一个零点,求a .2.(2024·福建泉州·模拟预测)已知函数()32,f x x ax a =-+ÎR .(1)若2x =-是函数()f x 的极值点,求a 的值,并求其单调区间;(2)若函数()f x 在1,33éùêúëû上仅有2个零点,求a 的取值范围.3.(2024·全国·模拟预测)已知函数()ln f x x kx =+的单调递增区间为()0,1.(1)求函数()f x 的图象在点()()e,e f 处的切线方程;(2)若函数()()e xaxg x f x =-有两个零点,求实数a 的取值范围.4.(2024·安徽·三模)已知函数()e e (1),0x x f x a a x a -=--+>.(1)求证:()f x 至多只有一个零点;(2)当01a <<时,12,x x 分别为()f x 的极大值点和极小值点,若()()120f x kf x +>成立,求实数k 的取值范围.1.(2024·浙江温州·一模)已知()11e xf x -=(0x >).(1)求导函数()f x ¢的最值;(2)试讨论关于x 的方程()f x kx =(0k >)的根的个数,并说明理由.1.(2024·山西·模拟预测)已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x éùÎêúëû时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.2.(2024·河南信阳·一模)已知函数()ln(1)3mf x x x =++.(1)若3m =-,求证:()0f x £;(2)讨论关于x 的方程2π()sin 03π2x f x +=在(1,2)-上的根的情况.1.(2024·贵州贵阳·二模)已知函数1()ln ,2f x ax x a x=+ÎR .(1)当1a =时.求()f x 在(1,(1))f 处的切线方程;(2)若方程31()2f x x x=+存两个不等的实数根,求a 的取值范围.2.(2024·山东烟台·三模)已知函数()()e xf x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.1.(2023·广东梅州·三模)已知函数()2e xf x ax =-,a ÎR ,()f x ¢为函数()f x 的导函数.(1)讨论函数()f x ¢的单调性;(2)若方程()()22f x f x ax ¢+=-在()0,1上有实根,求a 的取值范围.2.(2024·全国·模拟预测)已知函数e ()xf x ax b =+的图象在点(0,(0))f 处的切线方程为210x y ++=.(1)求,a b 的值;(2)若()21mf x x =-有两个不同的实数根,求实数m 的取值范围.1.(2021·全国·高考真题)已知0a >且1a ¹,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.1.(2024·江苏·模拟预测)已知函数()2ln 3f x a x x =++在1x =处的切线经过原点.(1)判断函数()f x 的单调性;(2)求证:函数()f x 的图象与直线5y x =有且只有一个交点.2.(2024·陕西西安·二模)设函数21()(1)e 2x f x ax x =+-.(1)当1a £时,讨论()f x 的单调性;(2)若[2,2]x Î-时,函数()f x 的图像与e x y =的图像仅只有一个公共点,求a 的取值范围.3.(2024·云南昆明·模拟预测)已知函数()log a axf x x =.(1)当2a =时,求()f x 的单调区间;(2)证明:若曲线()y f x =与直线21y a =有且仅有两个交点,求a 的取值范围.1.(2023·全国·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A .(),2-¥-B .(),3-¥-C .()4,1--D .()3,0-2.(2024·全国·高考真题)(多选)设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心3.(2022·全国·高考真题)(多选)已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰 有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.1.(2024·四川绵阳·模拟预测)函数()e x f kx b x =--恰好有一零点0x ,且0k b >>,则0x 的取值范围是( )A .(,0)-¥B .(0,1)C .(,1)-¥D .(1,)+¥2.(2024·陕西铜川·模拟预测)已知0w >,若函数()ln ,0,3πsin ,π03x x x f x x x w ì->ïï=íæöï+-££ç÷ïèøî有4个零点,则w 的取值范围是( )A .47,33æùçúèûB .47,33éö÷êëøC .710,33æùçúèûD .710,33éö÷êëø3.(2024·全国·模拟预测)(多选)已知函数()31f x x ax =-+,a ÎR ,则( )A .若()f x 有极值点,则0a £B .当1a =时,()f x 有一个零点C .()()2f x f x =--D .当1a =时,曲线()y f x =上斜率为2的切线是直线21y x =-4.(2024·安徽·模拟预测)若关于x 的方程()eln e ln e xxm m x x +=+-有解,则实数m 的最大值为 .5.(2024·天津北辰·三模)若函数22()233(3)f x a x a x x =----有四个零点,则实数a 的取值范围为 .一、单选题1.(2023·陕西西安·模拟预测)方程e 1x a x -=+有两个不等的实数解,则a 的取值范围为( )A.æöç÷ç÷èøB .211,e æö--ç÷èøC .21,0e æö-ç÷èøD .1,0e æö-ç÷èø2.(2024·四川凉山·二模)若()sin cos 1f x x x x =+-,π,π2x éùÎ-êúëû,则函数()f x 的零点个数为( )A .0B .1C .2D .3二、多选题3.(2024·四川成都·模拟预测)已知函数3()1f x x x =++,则( )A .()f x 有两个极值点B .()f x有一个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2024·辽宁·模拟预测)已知函数()e xxf x =-,则下列说法正确的是( )A .()f x 的极值点为11,e æö-ç÷èøB .()f x 的极值点为1C .直线2214e e y x =-是曲线()y f x =的一条切线D .()f x 有两个零点三、填空题5.(2024·全国·模拟预测)方程()1ln 0x x k -++=有两个不相等的实数根,则实数k 的取值范围为 .6.(2024·山西·三模)已知函数12,0()e ,0x x x f x x x ì+>ï=íï£î,若函数()()()g x f x x m m =-+ÎR 恰有一个零点,则m 的取值范围是.7.(23-24高三上·四川内江·期末)已知函数()324f x x x t =+-,若函数()f x 的图象与曲线25y x =有三个交点,则t 的取值范围是 .四、解答题8.(2023·广西河池·模拟预测)已知函数()()22ln f x x x ax a =-+ÎR (1)当1a =时,求函数()f x 在()()1,1f 处的切线方程;(2)若函数()f x 与直线y ax a =-在1,e e éùêúëû上有两个不同的交点,求实数a 的取值范围.9.(23-24高三上·北京大兴·阶段练习)已知()ln f x x =,(1)求()f x x的极值;(2)若函数()y f x ax =-存在两个零点,求a 的取值范围.10.(2024·湖南邵阳·三模)已知函数()32113f x x x =-++.(1)求函数()f x 的单调递增区间;(2)若函数()()()g x f x k k =-ÎR 有且仅有三个零点,求k 的取值范围.一、单选题1.(2024·全国·模拟预测)已知过点(2,0)-的直线与函数2()e 2x f x x +=+的图象有三个交点,则该直线的斜率的取值范围为( )A .(,1)-¥-B .(,0)-¥C .(1,0)-D .(1,)-+¥2.(2024·贵州贵阳·一模)已知函数()e ,0e ,0x a x f x x x -ì+>ï=íï<î,若方程()e 0f x x +=存在三个不相等的实根,则实数a 的取值范围是( )A .(),e -¥B .(),e -¥-C .(),2e -¥-D .(),2e -¥二、填空题3.(2024·重庆·模拟预测)若函数e ()e x x f x a =+的图象与函数e ()e xxg x x =+的图象有三个不同的公共点,则实数a 的取值范围为.4.(2024·湖北黄冈·二模)已知函数()()e 1e kxf x k =--与函数()()1e ln 1xg x x--=的图象有且仅有两个不同的交点,则实数k 的取值范围为 .5.(2024·福建泉州·一模)已知函数()(1)e e x x f x x a =-+-有且只有两个零点,则a 的范围.三、解答题6.(2024·广东深圳·模拟预测)已知()sin cos f x x x a x =-在π2x =时取得极大值.(1)讨论()f x 在[]π,π-上的单调性;(2)令()24sin 4cos 4h x x x x x =--+,试判断()h x 在R 上零点的个数.7.(2024·全国·模拟预测)已知函数()2e =-+x f x x a ,x ÎR ,()()2x f x x x j =+-.(1)若()x j 的最小值为0,求a 的值;(2)当0.25a <时,证明:方程()2f x x =在()0,¥+上有解.8.(2024·广东梅州·二模)已知函数()e xf x =,()21g x x =+,()sin 1h x a x =+(0a >).(1)证明:当()0,x Î+¥时,()()f x g x >;(2)讨论函数()()()F x f x h x =-在()0,π上的零点个数.1.2.3.4.9.(2024·广西南宁·二模)已知函数()ln f x x ax =-(1)若()f x 在定义域内单调递增,求a 的取值范围,(2)若函数()()1g x f x x =-+恰有两个零点,求a 的取值范围,10.(2024·广西贺州·一模)已知函数()ln ,2a f x x x a x=++ÎR .(1)若12a >-,讨论()f x 的单调性;(2)若关于x 的方程2()ef x =有且只有一个解,求a 的取值范围.1.(2022·浙江·高考真题)设函数e ()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点①21,222e a b a <£>;②10,22a b a <<£.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+Î(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b e x x e b>+.(注: 2.71828e =×××是自然对数的底数)4.(2020·全国·高考真题)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.5.(2020·全国·高考真题)已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.6.(2020·全国·高考真题)已知函数()(2)x f x e a x =-+.(1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.7.(2019·全国·高考真题)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.8.(2019·全国·高考真题)已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.9.(2019·全国·高考真题)已知函数()sin ln(1)f x x x =-+,()f x ¢为()f x 的导数.证明:(1)()f x ¢在区间(1,2p-存在唯一极大值点;(2)()f x 有且仅有2个零点.10.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+Î在()0,+¥内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为 .。
函数与导数之零点问题(解析版)
函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。
导数的应用四+零点问题.学生版
第13讲导数的应用四:零点问题一、三次函数零点问题经典精讲【例1】(2017春•腾冲县月考)已知函数y32﹣2x(Ⅰ)求函数在点(0,0)处的切成方程(Ⅱ)若函数y32﹣2x的图象与函数y=k的图象恰有三个不同的交点,求实数k 的取值范围.二、零点个数判断经典精讲【例2】(2013•陕西)已知函数f(x)=e x,x∈R.(Ⅰ)求f(x)的反函数的图象上的点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线y有唯一公共点.【例3】(2018春•伊通县期末)已知函数f(x).(1)若a=﹣1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)的图象的下方.【例4】(2018秋•全国期末)已知函数f(x)=ax(3a+1)lnx+a,a∈R.(1)若a>0,求函数f(x)的单调区间;(2)当a=1时,试判断函数f(x)的零点个数,并说明理由.三、证明零点个数问题经典精讲【例5】(2019•云南一模)已知e是自然对数的底数,函数f(x)与F(x)=f(x)﹣x的定义域都是(0,+∞).(2)求证:函数F(x)只有一个零点x0,且x0∈(1,2).【例6】(2017秋•保山期末)已知函数.(2)讨论f(x)的单调性;(3)若函数f(x)在x∈[1,e]上无零点,求a的取值范围.总结:四、对两个零点的加工处理经典精讲【例7】(2017秋•保山期末)已知函数f(x)=e x﹣ax(a∈R).(1)若曲线y=f(x)在点(0,f(0))处的切线为x+y﹣1=0,求实数a的值;(3)若函数f(x)有两个零点x1,x2,求证:x1+x2>2.五、与横轴交点问题经典精讲【例8】(2018•玉溪模拟)已知函数f(x)x3﹣x2+ax﹣a(a∈R).(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.六、两个图像交点个数问题经典精讲【例9】(2017春•水富县期末)已知函数f(x)=x2+2ax+2lnx(a∈R),g(x)=2e x+3x2(e为自然对数的底数).(Ⅱ)若函数y=f(x)的图象与函数y=g(x)的图象有两个不同的交点,求实数a的取值范围.七、讨论零点个数经典精讲【例10】(2017•常德一模)已知函数f(x)=xlnx﹣mx的图象与直线y=﹣1相切.(Ⅱ)若g(x)=ax3,设h(x)=f(x)﹣g(x),讨论函数h(x)的零点个数.课后习题1.(2016春•玉溪月考)已知函数.(1)求f(x)在x=1处的切线方程;(2)函数y=f(x)﹣b有三个零点,求b的取值范围;2.(2014•西安一模)已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)x3x2的下方.3.(2012春•腾冲县期末)已知函数f(x)x3﹣x2+ax﹣a(a∈R).(1)当a=﹣3时,求函数f(x)的极值;(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.4.(2015•碑林区一模)设函数f(x)=x3+ax2﹣a2x+m(a>0)(1)若函数f(x)在x∈[﹣1,1]内没有极值点,求实数a的取值范围;(2)a=1时函数f(x)有三个互不相同的零点,求实数m的取值范围;5.(2018秋•昆明月考)已知函数f(x)=lnx﹣ax,a∈R.(1)讨论f(x)的单调性;(2)若函数f(x)存在两个零点x1,x2,使lnx1+lnx2﹣m>0,求m的最大值.6.(2018秋•五华区月考)已知函数f(x)=lnx﹣a(a∈R).(1)求f(x)的单调区间和极值;(2)当a=1时,证明:对任意的k>0,函数g(x)=kx﹣1+f(x)有且只有一个零点.7.(2017•昭通二模)已知函数f(x)=x﹣alnx,a∈R.(Ⅰ)研究函数f(x)的单调性;(Ⅱ)设函数f(x)有两个不同的零点x1、x2,且x1<x2.(1)求a的取值范围;(2)求证:x1x2>e2.8.(2017•云南二模)已知e是自然对数的底数,f(x)=me x,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)﹣g(x﹣2)﹣2017.(1)设m=1,求h(x)的极值;(2)设m<﹣e2,求证:函数φ(x)没有零点;9.(2017•昆明二模)设函数f(x)=x2e﹣x,g(x)=xlnx.(1)若F(x)=f(x)﹣g(x),证明:F(x)在(0,+∞)上存在唯一零点;10.(2017春•五华区月考)设函数.(1)讨论函数f(x)的单调性;(2)若a≥﹣e,讨论函数f(x)的零点的个数.11.(2016秋•昭通期末)设函数f(x)=x2﹣2lnx(I)求f(x)的单调区间;(II)求f(x)在,上的最大值和最小值;(III)若关于x的方程f(x)=x2﹣x﹣a在区间[1,3]上恰好有两个相异的实根,求实数a的取值范围.12.(2015•北京)设函数f(x)klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.13.(2013•昭通模拟)已知函数f(x)=lnx(a∈R).(1)当a时,如果函数g(x)=f(x)﹣k仅有一个零点,求实数k的取值范围;(2)当a=2时,试比较f(x)与1的大小.1.解:(1)函数.可得f′(x)=x2﹣4,f′(1)=﹣3,f(1),f(x)在x=1处的切线方程:y3(x﹣1),即:9x+3y﹣10=0(2)函数.可得f′(x)=x2﹣4=0,可得:极大值,极小值.要函数y=f(x)﹣b有三个零点,即y=f(x)与y=b的图象有三个交点,则b的取值范围为:<<.2.(1)解:∵f(x)=x2+lnx,∴f′(x)=2x,∵x>1时,f′(x)>0,∴f(x)在[1,e]上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e2;(2)证明:令F(x)=f(x)﹣g(x)lnx,则F′(x)=x﹣2x2,∵x>1,∴F′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)<0,即f(x)<g(x),∴当x∈(1,+∞)时,函数f(x)的图象总在g(x)的图象下方.3.解:(1)f(x)x3﹣x2﹣3x+3,所以f′(x)=x2﹣2x﹣3.解x2﹣2x﹣3=0,得:x=﹣1或x=3,所以x∈(﹣∞,﹣1)时,f′(x)>0;x∈(﹣1,3)时,f′(x)<0;x∈(3,+∞)时,f′(x)>0.根据极值的定义知:x=﹣1时,f(x)取到极大值f(﹣1);x=3时,f(x)取到极小值f(3)=﹣6.(2)∵f′(x)=x2﹣2x+a,∴△=4﹣4a=4(1﹣a).①若a≥1,则△≤0,∴f′(x)≥0在R上恒成立,∴f(x)在R上单调递增.∵f(0)=﹣a<0,f(3)=2a>0,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.②若a<1,则△>0,∴f′(x)=0有两个不相等的实数根,不妨设为x1,x2,(x1<x2).∴x1+x2=2,x1x2=a.∵x12﹣2x1+a=0,∴a=﹣x12+2x1.∴f(x1)x1[x12+3(a﹣1)]同理f(x2)x2[x22+3(a﹣1)]令f(x1)•f(x2)>0,解得a>0.而当0<a<1时,f(0)=﹣a<0,f(3)=2a>0,故当0<a<1时,函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是(0,+∞).4.解:(1)∵f(x)=x3+ax2﹣a2x+m(a>0),∴f′(x)=3x2+2ax﹣a2,∵f(x)在x∈[﹣1,1]内没有极值点,∴方程f′(x)=3x2+2ax﹣a2=0在[﹣1,1]上没有实数根,由△=4a2﹣12×(﹣a2)=16a2>0,二次函数对称轴x<0,当f′(x)=0时,即(3x﹣a)(x+a)=0,解得x=﹣a或x,∴<>,或<1(a<﹣3不合题意,舍去),解得a>3,∴a的取值范围是{a|a>3};(2)当a=1时,f(x)=x3+x2﹣x+m,∵f(x)有三个互不相同的零点,∴f(x)=x3+x2﹣x+m=0,即m=﹣x3﹣x2+x有三个互不相同的实数根.令g(x)=﹣x3﹣x2+x,则g′(x)=﹣(3x﹣1)(x+1)令g′(x)>0,解得﹣1<x<;令g′(x)<0,解得x<﹣1或x>,∴g(x)在(﹣∞,﹣1)和(,+∞)上为减函数,在(﹣1,)上为增函数,∴g(x)极小=g(﹣1)=﹣1,g(x)极大=g();∴m的取值范围是(﹣1,);5.解:(1)函数f(x)=lnx﹣ax的定义域为(0,+∞),f′(x),当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,令f′(x)=0,得x>0,当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减.综上所述,当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.(2)∵lnx1﹣ax1=0,lnx2﹣ax2=0,即lnx1=ax1,lnx2=ax2,两式相减得:lnx1﹣lnx2=a(x1﹣x2),即a.由已知lnx1+lnx2>m,得a(x1+x2)>m,∵x1>0,x2>0,∴a>,即>.不妨设0<x1<x2,则有<,令t,则t∈(0,1),∴lnt<,即lnt<0恒成立,设g(t)=lnt(0<t<1),则g′(t).令h(t)=t2+2(1﹣m)t+1,h(0)=1,h(t)的图象开口向上,对称轴方程为t=m﹣1.方程t2+2(1﹣m)t+1=0的判别式△=4m(m﹣2).①当m≤1时,h(t)在(0,1)上单调递增,h(t)>h(0)=1,∴g′(t)>0.g(t)在(0,1)上单调递增,∴g(t)<g(1)=0在(0,1)上恒成立;②当1<m≤2时,△=4m(m﹣2)≤0,h(t)≥0在(0,1)上恒成立,∴g′(t)>0.g(t)在(0,1)上单调递增,∴g(t)<g(1)=0在(0,1)上恒成立;③当m>2时,h(t)在(0,1)上单调递减,∵h(0)=1,h(1)=4﹣2m<0,∴存在t0∈(0,1),使得h(t0)=0,当t∈(0,t0)时,h(t)>0,g′(t)>0,当t∈(t0,1)时,h(t)<0,g′(t)<0,∴g(t)在(0,t0)上单调递增,在(t0,1)上单调递减,当t∈(t0,1)时,有g(t)>g(1)=0,∴g(t)<0在(0,1)上不恒成立.综上所述,m的取值范围为(﹣∞,2],m的最大值为2.6.(1)解:函数f(x)的定义域为(0,+∞),f′(x),当a≤0时,f′(x)>0,f(x)在定义域(0,+∞)上单调递增,f(x)无极值;当a>0时,由f′(x)=0,得x,当0<x<时,f′(x)>0,得f(x)的单调递增区间是(0,);当x>时,f′(x)<0,得f(x)的单调递减区间是(,+∞),故f(x)的极大值为f()=ln2,f(x)无极小值.(2)证明:当a=1时,函数g(x)=kx﹣1lnx,欲证对任意的k>0,函数g(x)有且只有一个零点,即证方程kx﹣1lnx=0有且只有一个正实数根,由kx﹣1lnx=0,得k(x>0),令φ(x)(x>0),则φ′(x)(x>0),令h(x)lnx﹣2,则h′(x)(x>0),由h′(x)=0,得x=16,当0<x<16时,h′(x)>0,则h(x)在(0,16)上单调递增;当x>16时,h′(x)<0,则h(x)在(16,+∞)上单调递减,所以h(x)≤h(16)=4(ln2﹣1)<0,于是φ′(x)<0,则φ(x)在(0,+∞)上单调递减.设p(x)lnx(x>0),则p′(x),由p′(x)=0,得x=4,当0<x<4时,p′(x)<0,则p(x)在(0,4)上单调递减;当x>4时,p′(x)>0,则p(x)在(4,+∞)上单调递增,所以p(x)≥p(4)=2﹣2ln2>0,即当x>0时,p(x)lnx>0,所以当x>0时,φ(x)>,对任意的k>0,有:①当k≥2时,0<x<<1,有φ(x)>>k;当x>1时,有φ(x)<φ(1)=2≤k,又φ(x)在(0,+∞)上单调递减,所以存在唯一的x1∈(,1],有φ(x1)=k;②当0<k<2时,0<x<(>),有φ(x)>>k,当x>>1(>)时,有φ(x)<k,又φ(x)在(0,+∞)上单调递减,所以存在唯一的x2∈(,),有φ(x2)=k,综上所述,对任意的k>0,方程kx﹣1lnx=0有且只有一个正实数根,即函数g(x)有且只有一个零点.7.解:(Ⅰ)f(x)的定义域(0,+∞),′..(2分)①若a≤0,则f'(x)>0恒成立,f(x)在(0,+∞)单调递增函数.②若a>0,令f'(x)=0解得x=a,则f(x)在(0,a)单调递减,在(a,+∞)单调递增;….(4分)(Ⅱ)证明:因为f(x)有两个不同的零点,由①知><>(6分)且0<x1<a<x2,要证>,即证lnx1+lnx2>2>>>由于a>x1,则2a﹣x1>a,即证f(x2)>f(2a﹣x1)f(x1)>f(2a﹣x1)…(8分)设g(x)=f(x)﹣f(2a﹣x),x∈(0,a),只需证g(x)>0即可,g(x)=(x﹣alnx)﹣[(2a﹣x)﹣aln(2a﹣x)],′<(10分)可知g(x)在x∈(0,a)是单调递减函数,故g(x)>g(a)=0,得证.>..(12分)8.(1)解:∵f(x)=me x,g(x)=x+3,m=1,∴f(x)=e x,g(x﹣2)=x+1,∴h(x)=f(x)﹣g(x﹣2)﹣2017=e x﹣x﹣2018.∴h'(x)=e x﹣1,由h'(x)=0得x=0.∵e是自然对数的底数,∴h'(x)=e x﹣1是增函数.∴当x<0时,h'(x)<0,即h(x)是减函数;当x>0时,h'(x)>0,即h(x)是增函数.∴函数h(x)没有极大值,只有极小值,且当x=0时,h(x)取得极小值.∴h(x)的极小值为h(0)=﹣2017.(2)证明:∵f(x)=me x,g(x)=x+3,∴φ(x)=f(x)+g(x)=m•e x+x+3,∴φ'(x)=m•e x+1.∵m<﹣e2<0,∴φ'(x)=m•e x+1是减函数.由φ'(x)=m•e x+1=0解得.当∈∞,时,φ'(x)=m•e x+1>0,此时函数φ(x)是增函数,当∈,时,φ'(x)=m•e x+1<0,此时函数φ(x)是减函数,∴当时,函数φ(x)取得最大值,最大值为.∵m<﹣e2,∴2﹣ln(﹣m)<0,∴φ(x)<0,∴当m<﹣e2时,函数φ(x)没有零点.9.(1)证明:函数F(x)的定义域为(0,+∞),因为F(x)=x2e﹣x﹣xlnx,当0<x≤1时,F(x)>0,而<,所以F(x)在(1,2)存在零点.因为′,当x>1时,<,<,所以′<<,则F(x)在(1,+∞)上单调递减,所以F(x)在(0,+∞)上存在唯一零点.(2)解:由(1)得,F(x)在(1,2)上存在唯一零点x0,x∈(0,x0)时,f(x)>g(x);x∈(x0,+∞)时,f(x)<g(x),∴ℎ,∈,,∈,.当x∈(0,x0)时,由于x∈(0,1],h(x)≤0;x∈(1,x0)时,h'(x)=lnx+1>0,于是h(x)在(1,x0)单调递增,则0<h(x)<h(x0),所以当0<x<x0时,h(x)<h(x0).当x∈[x0,+∞)时,因为h'(x)=x(2﹣x)e﹣x,x∈[x0,2]时,h'(x)≥0,则h(x)在[x0,2]单调递增;x∈(2,+∞)时,h'(x)<0,则h(x)在(2,+∞)单调递减,于是当x≥x0时,h(x)≤h(2)=4e﹣2,所以函数h(x)的最大值为h(2)=4e﹣2,所以λ的取值范围为[4e﹣2,+∞).10.解:(1)函数f(x)定义域为R,f′(x)=x(e x﹣1+a),(i)若a≥0,当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)在(﹣∞,0)上单调递减,在(0,+∞)单调递增.(ii)若a<0,令f′(x)=0,得x=0或x=1+ln(﹣a),①a时,f′(x)≥0,所以函数f(x)在R上单调递增;②当<a<0时,1+ln(﹣a)<0,当x<1+ln(﹣a)或x>0时,f′(x)>0,当1+ln(﹣a)<x<0时,f′(x)<0,所以函数f(x)在(﹣∞,1+ln(﹣a)),(0,+∞)上单调递增,在(1+ln(﹣a),0)单调递减;③当a<时,1+ln(﹣a)>0,当x>1+ln(﹣a)或x<0时,f′(x)>0,当0<x<1+ln(﹣a)时,f′(x)<0,所以函数f(x)在(﹣∞,0),(1+ln(﹣a),+∞)上单调递增,在(0,1+ln(﹣a))单调递减;(2)当a=0时,函数f(x)只有一个零点x=1;当a>0时,由(1)得函数f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增,且f(0)<0,f(1)>0,取x0<﹣3且x0<1+lna,则f(x0)>(x0﹣1)a[3]>0,所以函数f(x)有两个零点;当a<0时,由(1)得函数f(x)在(0,+∞)单调递增,且f(0)<0,f(2)=e+2a>0,而x<0时,f(x)<0,所以函数f(x)只有一个零点.当﹣e≤a<时,由(1)得函数f(x)在(0,1+ln(﹣a))单调递减,在(1+ln(﹣a),+∞)上单调递增,且f(1+ln(﹣a))<f(0)<0,f(3)=2e2a≥2e2e>0,而x<0时,f(x)<0,所以函数f(x)只有一个零点.11.解:(I)由函数f(x)=x2﹣2lnx知其定义域为{x|x>0},∵f′(x)=2x,令f'(x)>0,解得:x>1;令f'(x)<0,解得:0<x<1∴函数f(x)单调增区间是(1,+∞);减区间是(0,1);(II)由f′(x)=0,解得:x=1或﹣1(舍),由(I)知f(x)在[,1]上递减,在[1,e]上递增,当x=1时,f(x)取最小值f(1)=1,又f()2,f(e)=e2﹣2,且e2﹣2>2,∴f(x)在[,e]上的最小值为1,最大值为e2﹣2;(III)方程f(x)=x2﹣x﹣a,即x﹣2lnx﹣a=0,记g(x)=x﹣2lnx﹣a,∵g′(x),由g′(x)>0,得x>2或x<0(舍去),g′(x)<0得0<x<2,∴g(x)在[1,2]上递减,在[2,3]上递增,为使方程f(x)=x2﹣x﹣a在区间[1,3]上恰好有两个相异的实根,只需g(x)=0在[1,2]和[2,3]上各有一个实根,于是<,即<,∴2﹣2ln2<a≤3﹣2ln3,即实数a的取值范围是(2﹣2ln2,3﹣2ln3].12.解:(1)由f(x)>,f'(x)=x由f'(x)=0解得xf(x)与f'(x)在区间(0,+∞)上的情况如下:所以,f(x)的单调递增区间为(,),单调递减区间为(0,);f(x)在x处的极小值为f(),无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f().因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且>,<,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.13.解:(1)当a时,g(x)=lnx k,g'(x)0解方程得方程的根为:x1=2,x2由g(x)定义域可知x>0;∵当0<x<时g'(x)>0,g(x)增函数,当<x<2时g'(x)<0,g(x)减函数,当x>2时g'(x)>0,g(x)增函数,∴f(x)的极大值是,极小值是∴g(x)在x处取得极大值3﹣ln2﹣k,在x=2处取得极小值ln2﹣k;∵函数g(x)=f(x)﹣k仅有一个零点∴当3﹣ln2﹣k<0或ln2﹣k>0时g(x)仅有一个零点,∴k的取值范围是k>3﹣ln2或<.(2)当a=2时,,定义域为(0,+∞),令ℎ,∵ℎ′>,∴h(x)在(0,+∞)是增函数∵h(1)=0∴①当x>1时,h(x)>h(1)=0,即f(x)>1;②当0<x<1时,h(x)<h(1)=0,即f(x)<1;③当x=1时,h(x)=h(1)=0,即f(x)=1.。
高中数学导数与不等式的证明及函数零点方程根的问题精品PPT课件
热点一 利用导数证明不等式 【例 1】 (2014·潍坊模拟)已知函数 f(x)=x3-x- x.
(1)令 g(x)=faxx2++axx+ln x,若函数 y=g(x)在0,1e内有极值, 求实数 a 的取值范围; (2)在(1)的条件下,对任意 t∈(1,+∞),s∈(0,1),求证:g(t) -g(s)>e+2-1e.
• 第5讲 • 导数与不等式的证明及函数零点、方程根的问题
真题感悟·考点
热点聚焦·题
归 专纳题总训结练·思对
• 高考定位 以解答题的形式考查利用导数证 明不等式或利用导数解决有关函数零点、方 程根的个数问题,难度较大.
真题感悟·考点
热点聚焦·题
归 专纳题总训结练·思对
[真题感悟] (2014·新课标全国卷Ⅰ)设函数 f(x)=aexln x+bexx-1,曲线 y= f(x)在点(1,f(1))处的切线方程为 y=e(x-1)+2. (1)求 a,b; (2)证明:f(x)>1.
热点聚焦·题
归 专纳题总训结练·思对
安全文明网 2016安全文明驾驶常识模拟考试 安全文明驾驶常识2016年安全文明驾驶常识 模拟 2016文明驾驶 2016文明驾驶考题 安全文明网 科四安全文明驾驶考试
安全文明网 c1安全文明驾驶考试 安全文明网 b2安全文明驾驶考试 安全文明网 a1安全文明驾驶考试 科目4考试 a2安全文明驾驶考试 科目四考试 安全文明驾驶常识考试
• 又当x∈(0,x1)时,g′(x)>0,g(x)单调递增 ,x∈(x1,1)时,g′(x)<0,g(x)单调递减.
真题感悟·考点
热点聚焦·题
归 专纳题总训结练·思对
由(1)可知 x1+x2=2+a,x1x2=1,x1∈0,1e,x2∈(e,+∞), 因此:g(t)-g(s)≥g(x2)-g(x1), =ln x2+x2-a 1-ln x1-x1-a 1=ln xx21+x2-a 1-x1-a 1 =lnx22+x2-x12(x2>e), 设 k(x)=ln x2+x-1x=2ln x+x-1x,k′(x)=2x+1+x12>0, ∴k(x)在(e,+∞)单调递增,故 k(x)>k(e)=2+e-1e, 即 g(t)-g(s)>e+2-1e.
2023年新高考数学一轮复习4-4 导数的综合应用(知识点讲解)解析版
专题4.4 导数的综合应用(知识点讲解)【知识框架】【核心素养】1. 考查利用导数研究函数的单调性、极值与最值、函数的零点,凸显数学运算、逻辑推理的核心素养.2.考查利用导数不等式的证明、方程等,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)函数零点 1.方程()0f x =有实根函数()y f x =的图象与x 轴有交点函数()y f x =有零点.2.函数()y f x =的零点就是()0f x =的根,所以可通过解方程得零点,或者通过变形转化为两个熟悉函数图象的交点横坐标.(二)导数解决函数的零点问题1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点个数(或方程根的个数)问题的一般思路(1)可转化为用导数研究其函数的图象与x 轴(或直线y =k)在该区间上的交点问题;(2)证明有几个零点时,需要利用导数研究函数的单调性,确定分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数值等性质,进而画出函数的大致图象.再利用零点存在性定理,在每个单调区间内取值证明f (a)·f (b)<0.2.证明复杂方程在某区间上有且仅有一解的步骤第一步,利用导数证明该函数在该区间上单调;第二步,证明端点的导数值异号. 3.已知函数有零点求参数范围常用的方法(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f (x)中分离出参数,然后利用求导的方法求出构造的新函数的最值,最后根据题设条件构建关于参数的不等式,确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围. (三)导数证明不等式(1)直接转化为函数的最值问题:把证明f (x )<g (a )转化为f (x )max <g (a ).(2)移项作差构造函数法:把不等式f (x )>g (x )转化为f (x )-g (x )>0,进而构造函数h (x )=f (x )-g (x ). (3)构造双函数法:若直接构造函数求导,难以判断符号,导函数零点不易求得,即函数单调性与极值点都不易获得,可转化不等式为f (x )>g (x )利用其最值求解.(4)换元法,构造函数证明双变量函数不等式:对于f (x 1,x 2)≥A 的不等式,可将函数式变为与x 1x 2或x 1·x 2有关的式子,然后令t =x 1x 2或t =x 1x 2,构造函数g (t )求解.(5)适当放缩构造函数法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),xx +1≤ln(x +1)≤x (x >-1).(6)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数等.把不等式左、右两边转化为结构相同的式子,然后根据“相同结构”,构造函数.(7)赋值放缩法:函数中对与正整数有关的不等式,可对已知的函数不等式进行赋值放缩,然后通过多次求和达到证明的目的.(四)利用导数研究不等式恒(能)成立问题 1.分离参数法一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围. 2.构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.【常考题型剖析】题型一:利用导数研究函数的零点或零点个数例1.(2012·天津·高考真题(理))函数在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【答案】B 【解析】 【详解】2()2ln 23,(0,1)()0x f x x f x +''=>在上恒成立,所以单调递增,(0)10,(1)10,f f =-<=>故函数在区间(0,1)内的零点个数1个.例2.(2019·全国高考真题(理))已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析 【解析】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫ ⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点例3.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x x x x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增即()(1)0g x g >=,所以1ee 0xx x x->令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭ 所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 【总结提升】利用导数研究函数零点或方程根的方法 (1)通过最值(极值)判断零点个数的方法.借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点.对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围. (3)构造函数法研究函数零点.①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.题型二:与函数零点有关的参数(范围)问题例4.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则( ) A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b 1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .例5.(2015·安徽·高考真题(理))设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】1,3,4,5 【解析】 【详解】令3()f x x ax b =++,求导得2'()3f x x a =+,当0a ≥时,'()0f x ≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以3()f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则2'()333(1)(1)f x x x x =-=+-,易知,()f x 在(,1),(1,)-∞-+∞上单调递增,在[1,1]-上单调递减,所以()=(1)132f x f b b -=-++=+极大,()=(1)132f x f b b =-+=-极小,要使方程仅有一根,则()=(1)1320f x f b b -=-++=+<极大或者()=(1)1320f x f b b =-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实 根的是①③④⑤.例6.(2020·全国高考真题(文))已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞. 【解析】(1)当1a =时,()(2)xf x e x =-+,'()1xf x e =-, 令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e +∞.【总结提升】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.题型三:与不等式恒成立、有解、无解等问题有关的参数范围问题例7.(2019·天津高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【答案】C【解析】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C.例8.(2021·江苏省前黄高级中学高三开学考试)已知函数2()2sin 341x f x x x =+-+,则(2)(2)f f +-=_________;关于x 的不等式2()(23)2f x f x +-≥的解集为____________.【答案】2 3,12⎡⎤-⎢⎥⎣⎦【分析】根据解析式直接求(2)(2)f f +-的值,易知()f x 关于(0,1)对称,可将题设不等式变形为2(23)()f x f x -≥-,再利用导数判断()f x 的单调性,由单调性列不等式求解集. 【详解】232(2)(2)2sin 262sin 2621717f f +-=+-+-+=, 由()()22222sin 32sin 341414141x x x x f x f x x x x x --+-=+-+-+=+=++++2(41)41x x ++2=, ∴()f x 关于(0,1)对称,故()2()f x f x =--,∴22()(23)2()(23)2f x f x f x f x +-=--+-≥,即2(23)()f x f x -≥-, 又124ln 2()2cos 30(41)x xf x x +'=-+-<+,故()f x 单调递减, ∴223x x -≤-,即223(23)(1)0x x x x +-=+-≤,解得312x -≤≤.∴不等式解集为3,12⎡⎤-⎢⎥⎣⎦. 故答案为:2;3,12⎡⎤-⎢⎥⎣⎦. 例9.(2021·全国高三月考)已知函数2()ln f x x mx =+.(1)探究函数()f x 的单调性;(2)若关于x 的不等式()1(12)f x m x ≤++在(]0,e 上恒成立,求实数m 的取值范围.【答案】(1)答案见解析;(2)12e 2⎡⎤-⎢⎥-⎣⎦,. 【分析】(1)求导,对参数m 分类讨论,由导函数的符号可得函数的单调性;(2)将不等式()1(12)f x m x ≤++化为()2ln 1210x mx m x +-+-≤,再构造函数()2()ln 121g x x mx m x =+-+-,利用导数求出函数()g x 的最大值,由max ()0g x ≤可求出结果.【详解】(1)由2()ln f x x mx =+,得2121()2(0)mx f x mx x x x +'=+=>, ①若0m ≥,则()0f x '>,()f x 在()0,∞+上单调递增;②若0m <,则2121()22x x mx f x mx m x x x⎛ +⎝⎭⎝⎭'=+==⋅,当0x <<时,()0f x '>;当x >()0f x '<; 所以()f x在区间0,⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. 综上所述:当0m ≥时,()f x 在()0,∞+上单调递增;当0m <时,()f x在区间⎛⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. (2)不等式()1(12)f x m x ≤++在(]0,e 上恒成立,相当于()2ln 1210x mx m x +-+-≤在(]0,e 上恒成立,令()2()ln 121g x x mx m x =+-+-, 则212(21)1(21)(1)()221mx m x mx x g x mx m x x x-++--'=+--==, ①当0m ≤时,210mx -<,由()0g x '<,得1e x <≤,由()0g x '>,得01x <<,所以()g x 在(0,1)上单调递增,在(1,e]上单调递减,所以max ()(1)2g x g m ==--,所以20m --≤,解得20m -≤≤. ②当102em <≤时,因为022e x <≤,所以021mx <≤,所以210mx -≤, 所以当01x <<时,()0g x '≥,当1e x <≤时,()0g x '≤,所以()g x 在(0,1)上递增,在(1,e]上递减,所以max ()(1)20g x g m ==--≤,解得2m ≥-,又102e m <≤,所以102em <≤; ③当112e 2m <<时,1(1)()2()2x x m g x m x--'=⋅,此时11e 2m <<, 由()0g x '>,得01x <<或1e 2x m <≤,由()0g x '<,得112x m <<, 所以()g x 在(0,1)和1(,e]2m 上递增,在1(1,)2m 上递减,所以11,2x x m==分别是函数()g x 的极大值点和极小值点, 因此有()(1)2011(e)e e 1202e 21122g m g m m m m e⎧⎪=--≤⎪=--≤⇒<<⎨⎪⎪<<⎩; ④当12m =时,()21()0x g x x-'=≥,所以()g x 在(]0,e 上单调递增,所以(e)0g ≤, 即1e 2m ≤-,所以12m =; ⑤当12m >时,1(1)()2()2x x m g x m x--'=⋅,此时1012m <<, 由()0g x '>,得102x m <<或1e x <≤,由()0g x '<,得112x m <<, 所以()g x 在1(0,)2m 和(1,e]上递增,在1(,1)2m 上递减, 所以112x x m==,分别是函数()g x 的极大值点和极小值点,因此有()1()02(e)e e 12012g m g m m m ⎧≤⎪⎪=--≤⇒⎨⎪⎪>⎩1ln 22041e 212m m m m ⎧---≤⎪⎪⎪≤⎨-⎪⎪>⎪⎩112e 2m ⇒<≤-; 综上可知,实数m 的取值范围是12e 2⎡⎤-⎢⎥-⎣⎦,. 【总结提升】1.不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x a f x a f x a ⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解2.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.题型四:利用导数证明不等式例10.(2022·北京·高考真题)已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有.【答案】(1)(2)在上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,()e ln(1)x f x x =+()y f x =(0,(0))f ()()g x f x '=()g x [0,)+∞,(0,)s t ∈+∞()()()f s t f s f t +>+y x =()g x [0,)+∞()()()m x f x t f x =+-(,0)x t >()(0)m x m >()m x即得证.(1)解:因为,所以,即切点坐标为,又, ∴切线斜率∴切线方程为:(2)解:因为, 所以, 令, 则, ∴在上单调递增,∴∴在上恒成立,∴在上单调递增.(3)解:原不等式等价于,令,,即证,∵,, 由(2)知在上单调递增, ∴,∴∴在上单调递增,又因为, ()e ln(1)x f x x =+()00f =()0,01()e (ln(1))1x f x x x=+++'(0)1k f '==y x =1()()e (ln(1))1x g x f x x x=++'=+221()e (ln(1))1(1)x g x x x x =++-++'221()ln(1)1(1)h x x x x =++-++22331221()01(1)(1)(1)x h x x x x x +=-+=>++++'()h x [0,)+∞()(0)10h x h ≥=>()0g x '>[0,)+∞()g x [0,)+∞()()()(0)f s t f s f t f +->-()()()m x f x t f x =+-(,0)x t >()(0)m x m >()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+e e ()e ln(1)e ln(1)()()11x t xx t x m x x t x g x t g x x t x++=+++-+-=+-++'+1()()e (ln(1))1x g x f x x x =++'=+[)0,∞+()()g x t g x +>()0m x '>()m x ()0,∞+,0x t >∴,所以命题得证.例11.(2021·全国·高考真题(理))设函数,已知是函数的极值点. (1)求a ;(2)设函数.证明:. 【答案】(1);(2)证明见详解【解析】【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,,又是函数的极值点,所以,解得;(2)[方法一]:转化为有分母的函数由(Ⅰ)知,,其定义域为. 要证,即证,即证. (ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以. (ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.综合(ⅰ)(ⅱ)有.[方法二] 【最优解】:转化为无分母函数由(1)得,,且, ()(0)m x m >()()ln f x a x =-0x =()y xf x =()()()x f x g x xf x +=()1g x <1a ='y a ()()ln 1()ln 1x x g x x x +-=-1x <0x ≠()0,1x ∈(),0x ∈-∞()1g x <()()ln 1ln 1x x x x +->-()0,1x ∈(),0x ∈-∞()()()n 1'l a f x a x f x x ⇒==--()()'ln x y a x x ay xf x ⇒=-=+-0x =()y xf x =()'0ln 0y a ==1a =ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x (,0)(0,1)-∞()1g x <111ln(1)+<-x x 1111ln(1)-<-=-x x x x(0,1)x ∈10ln(1)<-x 10x x-<ln(1)1->-x x x ()ln(1)1=---x F x x x 2211()01(1)(1)--=-=>--'-x F x x x x ()F x (0,1)()(0)0F x F >=(,0)x ∈-∞10ln(1)>-x 10x x ->ln(1)1->-x x x ()F x (,0)-∞()(0)0F x F >=()1g x <()()ln 1f x x =-()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-1x <0x ≠当 时,要证,, ,即证,化简得;同理,当时,要证,, ,即证,化简得;令,再令,则,, 令,,当时,,单减,故;当时,,单增,故;综上所述,在恒成立.[方法三] :利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以. (ⅰ)当时,,所以,即,所以. (ⅱ)当时,,同理可证得. 综合(ⅰ)(ⅱ)得,当且时,,即. 【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定()0,1x ∈()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x >-<()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->(),0x ∈-∞()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x <->()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->()()()1ln 1h x x x x =+--1t x =-()()0,11,t ∈+∞1x t =-()1ln t t t t ϕ=-+()1ln 1ln t t t ϕ'=-++=()0,1t ∈()0t ϕ'<()t ϕ()()10t ϕϕ>=()1,t ∈+∞()0t ϕ'>()t ϕ()()10t ϕϕ>=()()ln 1()1ln 1x x g x x x +-=<-()(),00,1x ∈-∞()ln (1)ϕ=--x x x 11()1x x x x ϕ-'=-=()ϕx (0,1)(1,)+∞()(1)0x ϕϕ≤=ln 1≤-x x 1x =1x <0x ≠101x >-111x≠-11ln 111<---x x ln(1)1--<-x x x ln(1)1->-x x x (0,1)x ∈0ln(1)1>->-x x x 1111ln(1)-<=--x x x x 111ln(1)+<-x x ()1g x <(,0)x ∈-∞ln(1)01->>-x x x ()1g x <1x <0x ≠ln(1)1ln(1)+-<-x x x x ()1g x <(0,1)x ∈ln(1)1->-x x x (,0)x ∈-∞ln(1)1->-x x x ()0,1x ∈()()1ln 10x x x +-->(),0x ∈-∞()()1ln 10x x x +-->()ln (1)ϕ=--x x x ln 1≤-x x 1x =ln(1)1->-x x x的巧合性.例12.(2021·全国高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设,原不等式等价于,前者可构建新函数,利用极值点偏移可证,后者可设,从而把转化为在上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为,又,当时,,当时,,故的递增区间为,递减区间为.(2)因为,故,即, 故, 设,由(1)可知不妨设. 因为时,,时,,故.先证:,若,必成立.若, 要证:,即证,而,故即证,即证:,其中.()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<()f x ()0,1()1,+∞1211,x x a b==122x x e <+<21x tx =12x x e +<()()1ln 1ln 0t t t t -+-<()1,+∞()0,∞+()1ln 1ln f x x x '=--=-()0,1x ∈()0f x '>()1,+x ∈∞()0f x '<()f x ()0,1()1,+∞ln ln b a a b a b -=-()()ln 1ln +1b a a b +=ln 1ln +1a b a b+=11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1211,x x a b ==1201,1x x <<>()0,1x ∈()()1ln 0f x x x =->(),x e ∈+∞()()1ln 0f x x x =-<21x e <<122x x +>22x ≥122x x +>22x <122x x +>122x x >-2021x <-<()()122f x f x >-()()222f x f x >-212x <<设,则,因为,故,故,所以,故在为增函数,所以,故,即成立,所以成立,综上,成立.设,则,结合,可得:, 即:,故,要证:,即证,即证, 即证:,即证:, 令,则, 先证明一个不等式:.设,则, 当时,;当时,,故在上为增函数,在上为减函数,故,故成立由上述不等式可得当时,,故恒成立, 故在上为减函数,故,故成立,即成立.综上所述,. 【总结提升】1.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最()()()2,12g x f x f x x =--<<()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦12x <<()021x x <-<()ln 20x x -->()0g x '>()g x ()1,2()()10g x g >=()()2f x f x >-()()222f x f x >-122x x +>122x x +>21x tx =1t >ln 1ln +1a b a b +=1211,x x a b==()()11221ln 1ln x x x x -=-()111ln 1ln ln x t t x -=--11ln ln 1t t t x t --=-12x x e +<()11t x e +<()1ln 1ln 1t x ++<()1ln ln 111t t t t t --++<-()()1ln 1ln 0t t t t -+-<()()()1ln 1ln ,1S t t t t t t =-+->()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭()ln 1x x ≤+()()ln 1u x x x =+-()1111x u x x x -'=-=++10x -<<()0u x '>0x >()0u x '<()u x ()1,0-()0,+∞()()max 00u x u ==()ln 1x x ≤+1t >112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭()0S t '<()S t ()1,+∞()()10S t S <=()()1ln 1ln 0t t t t -+-<12x x e +<112e a b<+<值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.2.利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.3.不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.。
导数与函数的零点问题考点与题型归纳
导数与函数的零点问题考点与题型归纳且f(1)=0,所以当x≥1时,f(x)≥XXX成立。
2)解:由题可知,x--f(x)=x3-2ex2+tx,即f(x)=x--x3+2ex2-tx。
设g(x)=f'(x)=1-2x+2ex-t,求g(x)的零点。
当x1时,g(x)>0.所以f(x)在[0,1)上是单调减函数,在(1,+∞)上是单调增函数。
又因为f(0)=0,当x→+∞时,f(x)→+∞,所以方程x--f(x)=x3-2ex2+tx的根有且只有一个。
给定函数$f(x)=e^x-ax^2$,其中$a>0$。
1) 当$a=1$时,证明对于$x\geq 0$,有$f(x)\geq 1$。
证明:当$a=1$时,$f(x)\geq 1$等价于$(x^2+1)e^{-x}-1\leq 0$。
设$g(x)=(x^2+1)e^{-x}-1$,则$g'(x)=-e^{-x}(x^2-2x+1)=-e^{-x}(x-1)^2$。
当$x\neq 1$时,$g'(x)<0$,因此$g(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减。
而$g(0)=0$,因此对于$x\geq 0$,有$g(x)\leq 0$,即$f(x)\geq 1$。
2) 若$f(x)$在$(0,+\infty)$只有一个零点,求$a$。
设$h(x)=1-ax^2e^{-x}$。
由于$f(x)$在$(0,+\infty)$只有一个零点,因此$h(x)$在$(0,+\infty)$只有一个零点。
i) 当$a\leq \frac{1}{e}$时,$h(x)>0$,因此$h(x)$没有零点。
ii) 当$a>\frac{1}{e}$时,$h'(x)=a(x-2)e^{-x}$。
当$x\in(0,2)$时,$h'(x)0$。
因此$h(x)$在$(0,2)$上单调递减,在$(2,+\infty)$上单调递增。
导数中两种零点问题解决方法
导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。
一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。
例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x=-只有一个实数根,求a 的值。
二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。
在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。
例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e上有两个不同零点,求实数b 的取值范围。
例4.已知函数32()f x x ax b =++(1)讨论()f x 的单调性;(2)若b c a =-,当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-⋃⋃+∞,求c 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数函数与零点及交点和方程的根问题
21.[2014·新课标全国卷Ⅱ] 已知函数f(x)=x 3-3x 2+ax +2,曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.
(1)求a ;
(2)证明:当k <1时,曲线y =f(x)与直线y =kx -2只有一个交点.
2015年出题动向:利用导数作为解题工具,解决函数的零点问题。
同时掌握函数与方程、数形结合、化归的数学思想方法.
练习:1.设a 为实数,函数32()f x x x x a =--+.
(Ⅰ)求()f x 的极值;
(Ⅱ)当a 在什么范围内取值时,曲线()y f x =
与x 轴仅有一个交
点
变式一、(引入参数)
讨论函数()()R a a x x x x f ∈--+-=109623零点的个数?
变式二、(方程问题)若方程[]31109623,在a x x x =-+-上有实数解,求a 的取值范围.
2已知函数2()8,()6ln .f x x x g x x m =-+=+
(I )求()f x 在区间[],1t t +上的最大值();h t (II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。
3.(本小题满分12分)已知函数3()31,0f x x ax a =--≠
()I 求()f x 的单调区间;
()II 若()f x 在1x =-处取得极值,
直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。
4、设函数
321()223
f x x ax ax =-+--(a 为常数),且()f x 在[1,2]上单调递减。
(1)求实数a 的取值范围;
(2)当a 取得最大值时,关于x 的方程2()7f x x x m =--有3个
不同的根,求实数m 的取值范围。
4. 已知函数ƒ(x )=2
-x e x (1)求ƒ(x )的单调区间
(2)判断关于x 的方程e x =k(x-2)(k ∈R)的解的情况
5.已知函数()1x a f x x e =-+
(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;
(2)求函数()f x 的极值;
(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =
没有公共点,求k 的最大值.
7.[2014·陕西卷] 设函数f(x)=ln x +m x
,m ∈R. (1)当m =e(e 为自然对数的底数)时,求f(x)的极小值;
(2)讨论函数g(x)=f′(x)-x 3
零点的个数;
1.求证:函数1)(23++=x x x f 在区间(-2,-1)上存在零点。
2、证明:函数225()1
x f x x -=
+在区间(2,3)上至少有一个零点。
3、已知函数2()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程22ln 23++-=x y . (Ⅰ)求b a ,的值;
(Ⅱ)若方程()0f x m +=在1[,]e e 内有两个不等实根,求m 的取值范
围(其中e 为自然对数的底数);
6..[2014·福建卷]已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.
(1)求a 的值及函数f(x)的极值;
(2)证明:当x >0时,x 2<e x。