七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年压轴题版

合集下载

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年填空题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年填空题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年填空题版答案解析答案解析答案解析答案解析2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题1.(2020苏州.七上期末) 将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=________°.考点: 翻折变换(折叠问题);2.(2020扬州.七上期末) 如图,一个宽度相等的纸条按如图所示方法折叠压平,则∠1的度数等于________°.考点: 翻折变换(折叠问题);3.(2020长清.七上期末)将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠CBD =66°,则∠ABE =________.考点: 翻折变换(折叠问题);4.(2020长兴.七上期末) 如图,射线OC 平分角形纸片的∠AOB ,若把∠AOB 沿射线OC 对折成∠COB(OA 与OB 重合),从点O 引一条射线OE ,使∠BOE= ∠EOC ,再沿射线OE 把角剪开,若把纸片展开后得到的3个角中最大的一个角为76°,则∠AOB= ________。

考点: 角的运算;翻折变换(折叠问题);5.(2020南京.七上期末) 把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62 ,则∠DEF =________ .答案解析答案解析答案解析答案解析6.(2019西湖.七上期末) 在数学拓展课上,小林发现折叠长方形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在CD 边上的点E 处,折痕为AF,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH,点H 在CD 边上.若AD=6,AB=则∠HAF=________,GE=________.考点: 角的大小比较;翻折变换(折叠问题);7.(2019鄞州.七上期末) 如图,将长方形纸片沿直线AB 折叠,若 ∠1=40° ,则∠2的度数是________.考点: 翻折变换(折叠问题);8.(2019铁西.七上期末) 如图,将长方形纸片沿AC 折叠,使点B 落在点 处,CF平分 则∠ACF 的度数为________.考点: 翻折变换(折叠问题);9.(2019皇姑.七上期末) 如图,把一张长方形纸条按如图的方式折叠后量得∠AOB '=110°,则∠B 'OC=________.考点: 翻折变换(折叠问题);10.(2019锦州.七上期末) 如图,将一张长方形纸片的角A ,角E 分别沿BC ,BD 折叠,点A 落在A′处,点E 落在边BA′上的E′处,则∠CBD 的度数是________.2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:。

2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版

对应,
A . 60° B . 65° C . 72° D . 75°
考点: 平行线的性质;翻折变换(折叠问题);
答案
~~第2题~~ (2020广西壮族自治区.中考模拟) 如图,在矩形ABCD中,AD= AB.将矩形ABCD对折,得到折痕MN;沿着CM折 叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下
中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版
2020年 中 考 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题
~~第1题~~ (2020海南.中考模拟) 如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折,A,D两点分别与 若∠1=2∠2,则∠AEF的度数为( )
考点: 等腰三角形的判定与性质;三角形中位线定理;翻折变换(折叠问题);
答案
~~第5题~~ (2020玉林.中考模拟) 如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的 值为( )
A. B. 叠问题);相似三角形的判定与性质;锐角三角函数的定义;
A.3B. C. D.1
考点: 角平分线的性质;翻折变换(折叠问题);特殊角的三角函数值;
答案
~~第8题~~ (2020广西壮族自治区.中考模拟) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠, 使点B落在矩形内点F处,连接CF,则CF的长为( )
A. B. C. D.
答案
~~第4题~~ (2020台州.中考模拟) 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠, 使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( )

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版答案答案答案答案2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题~~第1题~~(2020扬州.七上期末) 将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).A . 40°B . 45°C . 56°D . 37°考点: 正方形的性质;翻折变换(折叠问题);~~第2题~~(2020建邺.七上期末) 下列图形经过折叠不能围成棱柱的是( ) A . B . C . D .考点: 翻折变换(折叠问题);~~第3题~~(2020扬州.七上期末) 一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、C DGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A . nB . n (m ﹣n )C . n (m ﹣2n )D .考点: 翻折变换(折叠问题);~~第4题~~(2019天台.七上期末) 把一张长方形纸片按如图所示折叠2次,若∠1=50°,则∠2的度数为( )A .B .C .D .考点: 平行线的性质;翻折变换(折叠问题);~~第5题~~(2019黄岩.七上期末) 一张长为a ,宽为b 的长方形纸片(a >3b ),分成两个正方形和一个长方形三部分(如图①).现将左边两部分图形对折,使EF 与GH 重合,折痕为AB (如图②),再将右边两部分图形对折,使MN 与PQ 重合,折痕为C D (如图③),则图④中长方形ABCD 的周长为( )2答案答案答案答案A . 4b B . 2(a ﹣b ) C . 2a D . a+b考点: 列式表示数量关系;矩形的性质;正方形的性质;翻折变换(折叠问题);~~第6题~~(2019长春.七上期末) 如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,∠DBC =22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A . 6个B . 5个C . 4个D . 3个考点: 矩形的性质;翻折变换(折叠问题);~~第7题~~(2019大庆.七上期末) 如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )①DF 平分∠BDE ;②△BFD 是等腰三角形;;③△CED 的周长等于BC 的长.A . 0个;B . 1个;C . 2个;D . 3个.考点: 等腰直角三角形;翻折变换(折叠问题);~~第8题~~(2019牡丹江.七上期末) 如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD′=40°,那么∠EAD′的度数为( )A . 20B . 25°C . 40°D . 50°考点: 翻折变换(折叠问题);~~第9题~~(2019如皋.七上期末) 如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A'、B 与B'、C 与C'重合,若∠AED=25°,则∠BEF 的度数为( )A . 75°B . 65°C . 55°D . 50°答案答案考点: 翻折变换(折叠问题);~~第10题~~(2019句容.七上期末) 一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、C DGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A . nB . n (m ﹣n )C . n (m ﹣2n )D .考点: 列式表示数量关系;翻折变换(折叠问题);2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:D2.答案:B3.答案:A4.答案:B5.答案:A6.答案:B7.答案:C8.答案:B9.答案:B10.答案:A 2。

2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)

2020年中考数学专题复习学案:折叠类题目中的动点问题(含答案)

专题:折叠类题目中的动点问题折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。

此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。

类型一、求折叠中动点运动距离或线段长度的最值例1. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .图例1-1【答案】2.【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.图例1-2 图例1-3由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,A C==='4②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'PA的角平分线,与AD的交点即为点Q.由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形.所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【点睛】此类问题难度较大,主要考察学生的分析能力,作图能力。

2020中考数学 压轴专题:图形折叠(包含答案)

2020中考数学 压轴专题:图形折叠(包含答案)

2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。

20 专题二十:角度的计算(8)——折叠问题(方法专题);人教版七年级上学期培优专题讲练(含答案)

20 专题二十:角度的计算(8)——折叠问题(方法专题);人教版七年级上学期培优专题讲练(含答案)

专题二十:角度的计算(8)——折叠问题专题导入如图,将长方形ABCD折叠,使得点D与点B重合。

思考:①∠BEF与∠DEF的关系;②∠CFE与∠D’FE的关系。

方法点睛折叠的本质是轴对称,折叠前后的图形是“一样的”,所以有以下两个常用结论:①对应角相等;②对应边相等。

在折叠的图形中计算角度,必然用上对应角相等的性质。

典例精讲1.如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB.(1)判断∠FEA与∠A′EB的大小关系,并说明理由;(2)求∠FEB的度数.举一反三2.如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置,若∠DEF =75°,则∠AED′等于多少?3.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EC;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.(1)图中有哪几条角平分线,他们各是哪个角的平分线?(2)如果射线NA′平分∠DNE,那么射线CB′平分∠ECF吗?为什么?专题过关4.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB=1 2∠MFE.则∠AEN=()A.30°B.36°C.45°D.72°5.如图所示,把一张长方形的纸片按折痕EF那样折叠后,C、D两点分别落在N、M点处,若∠AEM=80°,则∠DEF的度数为.6.如图,将长方形纸片的两角分别折叠,使顶点B落在B′处,顶点A落在A′处,EC、ED为折痕,并且点E、A′、B′在同一条直线上.若∠BED=32°,求∠CED和∠AEC 的度数.7.如图1,将笔记本活页一角折过去,使角的顶点A落在点A'处,BC为折痕.(1)如图1,若∠1=25°,求∠A'BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA'重合,折痕为BE,如图2所示,求∠CBE的度数.8.如图,长方形纸片ABCD,点E在边AB上,M、N分别在射线BC和射线AD上,连接EM,EN,将三角形MBE沿EM折叠(把物体的一部分翻转和另一部分贴拢),点B落在点B′处;将三角形NAE沿EN折叠,点A落在点A′处.(1)若∠MEB=30°,∠NEA=45°,用直尺、量角器画出射线EB′与EA′;(2)若∠MEB=30°,∠NEA=45°,求∠A'EB'的度数;(3)若∠MEB=α,∠NEA=β,用含α、β的代数式表示∠A'EB'的度数.9.把一长方形(四个角为90°)纸片ABCD的一角折起来,折痕为AE,使∠EAB′=∠DAB′,如图1.(1)求∠EAD;(2)再沿AC对折长方形ABCD,使B点落在F点上,如图2.若∠EAF=80°,求∠CAB′.10.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN =°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.11.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.【参考答案】1.解:(1)∠FEA=∠A′EB,理由如下:由翻折的对称可得:∠FEA=∠FEA',∵EA′恰好平分∠FEB,∴∠FEA'=∠A′EB,∴∠FEA=∠A′EB;(2)由(1)可知,∠FEA=∠A′EB=∠FEA',又∵∠FEA+∠A′EB+∠FEA'=180°,∴∠FEA=∠A′EB=∠FEA'=60°,∴∠FEB=∠FEA'+∠A′EB=60°+60°=120°;2.解:由折叠可得,∠DEF=∠D'EF=75°,∴∠DED'=150°,∴∠AED'=180°﹣∠DED'=30°.3.解:(1)由翻折可得∠AEN=∠A′EN,∠ANE=∠A′NE,∠BCE=∠B′CE,∠BEC=∠B′EC,所以,NE是∠AEA′和∠ANA′的平分线,CE是∠BEB′和∠BCB′的平分线;(2)射线CB′平分∠ECF.理由如下:∵射线NA′平分∠DNE,∴∠DNA′=∠A′NE,∴∠ANE=13×180°=60°,在Rt△ANE中,∠AEN=90°﹣∠ANE=90°﹣60°=30°,∴∠BEC=12(180°﹣30°×2)=60°,在Rt△BCE中,∠BCE=90°﹣60°=30°,∴∠B′CD=90°﹣30°×2=30°,∴∠B′CD=∠B′CE,∴射线CB′平分∠ECF.4.B.5.50°.6.解:∵EC和ED是折痕,∴∠1=∠2,∠3=∠4,又∵∠1+∠2+∠3+∠4=180°,∴2(∠2+∠3)=180°,∴∠2+∠3=90°,即∠CED=90°.又∠2=∠1=32°,∴∠4=∠3=90°﹣∠1=90°﹣32°=58°,即∠AEC=58°.7.解:(1)∵角的顶点A落在点A'处,BC为折痕,∴∠1=∠ABC=25°.∴∠A'BD=180°﹣25°﹣25°=130°;(2)由折叠性质得∠1=∠ABC=12∠ABA′,∠2=∠DBE=12∠A'BD,∴∠1+∠2=12∠ABA′+12∠A'BD=12(∠ABA'+∠A'BD)=12×180°=90°.即∠CBE=90°.8.解:(1)图形如图1中所示:(2)与翻折可知:∠AEA′=2∠AEN=90°,∠BEB′=2∠BEM=60°,∴∠A′EB′=180°﹣90°﹣60°=30°.(3)当α+β≤90°时,∠A′EB′=180°﹣2(α+β),当α+β>90°时,∠A′EB′=2(α+β)﹣180°.9.解:(1)根据折叠可得:∠BAE=∠EAB′,∵∠EAB′=∠B′AD,∴∠BAE=90°÷3=30°,∴∠EAD=90°﹣30°=60°;(2)根据折叠可得:∠BAC=∠F AC,∵∠EAF=80°,∴∠BAF=80°+30°=110°,∴∠BAC=55°,∴∠CAB′=60°﹣55°=5°.10.解:(1)55,35,90.(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=12∠BEB′=12m°,∠AEN=∠A'EN=12∠AEA'=12(180°﹣m°),∴∠BEC+∠AEN=12m°+12(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=13×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=12∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°,∴∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°.11.解:(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧,∠FEG=180°﹣2α.。

2020中考数学压轴专题:图形折叠(含答案)

2020中考数学压轴专题:图形折叠(含答案)

2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。

2020学年七年级数学上册 与直角有关的折叠、旋转习题 (新版)鲁教版

2020学年七年级数学上册 与直角有关的折叠、旋转习题 (新版)鲁教版

3B 1A'30°B 1与直角有关的折叠、旋转(习题)例题示范例 1:将长方形纸片 ABCD 按如图所示方式折叠,AE ,EF 为折痕,∠BAE =30°,BE =1,折叠后点 C 落在 AD 边上的 C 1 处,并且点 B 落在 EC 1 上的 B 1 处,则 BC 的长为( ) A . B .2 C .3 D .2AC 1D FA C 1DFBECBEC思路分析:①在 Rt △ABE 中,由∠BAE =30°,BE =1 得 AB =,AE =2;②由折叠得∠AEB =∠AEB 1,结合背景图形是长方形得∠EAC 1=∠AEB 1,所以△AEC 1 是等腰三角形;③由∠EAC 1=60°得△AEC 1 是等边三角形,所以 EC 1=AE =2; ④由折叠得 EC =EC 1=2,所以 BC =BE +EC =3.巩固练习1.如图,在长方形 ABCD 中,E 是 AD 的中点,将△ABE 沿 BE折叠后得到△GBE ,延长 BG ,交 CD 边于点 F .若 DF =2FC , 则BC的值为 .ABAEDA PBF Q GBCODC第 1 题图第 2 题图2.已知一个长方形纸片 OABC ,OA =6,点 P 为 AB 边上一点,AP =2,将△OAP 沿 OP 折叠,点 A 落在点 A ′处,延长 PA ′交边 OC 于点 D ,经过点 P 再次折叠纸片,点 B 恰好与点 D 重合,则 AB 的长为 .33 3C339 3 O3.如图,在正方形纸片 ABCD 中,E ,F 分别是 AD ,BC 的中点, 沿过点 B 的直线折叠,使点 C 落在 EF 上,落点为 N ,折痕交 CD 边于点 M ,BM 与 EF 交于点 P ,再展开.有下列结论:①CM =DM ;②∠ABN =30°;③ AB 2 3CM 2;④△PMN 是等边三角形.其中正确结论的序号是.AE DB'MB FCAA'B第 3 题图第 4 题图4.如图,在 Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,将△ABC 绕点 C 逆时针旋转至△A ′B ′C ,使得点 A ′恰好落在 AB 上,连接 BB ′,则 BB ′的长为 . 5.如图,在 Rt △ABC 中,∠C =90°,∠B =70°,点 D 在 BC 边上, 且BD :DC =2: .将线段BD 绕点D 逆时针旋转m (0<m <180) 度后,若点 B 的对应点恰好落在△ABC 的边上,则 m 的值为 .AAO'BCCDB第 5 题图第 6 题图6.如图,O 是等边三角形 ABC 内一点,OA =3,OB =4,OC =5,将线段 BO 以点 B 为旋转中心逆时针旋转 60°得到线段 BO ′,连接AO′.有下列结论:①点 O 与点 O ′的距离为 4;②∠AOB =150°;③ S 四边形AOBO= 6 3 ;④S △AOC +S △AOB= 6 .其中正确结4论的序号是.NP7.如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.若AD=5,BD=12,求DE的长. ADEC B8.如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD.若四边形ABCD 的面积为24,求AC 的长.AD【参考答案】 1.2 36 2. 12 3. ②③④ 4. 5. 40 或 150 6. ①②④ 7. 13 8. 4 33。

七年级数学折叠问题(北师版)(专题)(含答案)

七年级数学折叠问题(北师版)(专题)(含答案)

折叠问题(北师版)(专题)一、单选题(共8道,每道12分)1.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若∠CDF=38°,则∠EFD的度数是( )A.72°B.64°C.48°D.52°答案:B解题思路:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.由题意知,折痕是EF,即EF是对称轴,由轴对称图形的性质,可得∠EFB=∠EFD.因为∠CDF=38°,∠C=90°,所以∠DFC=90°-38°=52°.所以∠EFB=∠EFD=.故选B.试题难度:三颗星知识点:略2.如图,将四边形ABCD沿AE向上折叠,使点B落在DC边上的点F处.若△AFD的周长为18,△ECF的周长为6,四边形纸片ABCD的周长为( )A.20B.24C.32D.48答案:B解题思路:由折叠的性质知,AF=AB,EF=BE.所以四边形纸片ABCD的周长等于△AFD和△ECF的周长和为18+6=24.故四边形纸片ABCD的周长为24.故选B.试题难度:三颗星知识点:略3.将正方形纸片ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.则下列说法错误的是( )A.AE⊥MNB.AM=EMC.∠BNO=∠FNOD.∠OEF=90°答案:D解题思路:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.正方形纸片ABCD折叠,折痕MN就是对称轴,点A与E是对应点,连接AE,则AE被MN垂直平分,所以AE⊥MN,AM=EM.∠BNO和∠FNO是对应角,∠BAM和∠FEM是对应角,所以∠BNO=∠FNO,∠BAM=∠FEM=90°,∠OEF=∠OAB<90°,所以D错误.故选D.试题难度:三颗星知识点:略4.如图,先将正方形ABCD对折,折痕为EF,将这个正方形展平后,再分别将A,B折叠到折痕EF,使点A,B都与折痕EF上的点G重合,则下列说法错误的是( )A.∠MGD=90°B.∠DGF=∠MGEC.DG=CGD.∠BCN=∠GCN答案:B解题思路:将A,B折叠到折痕EF,使点A,B都与折痕EF上的点G重合,则直线MD,NC分别是对称轴,根据轴对称图形中,对应线段相等,对应角相等,可得AD=BC=GD=GC,∠MAD=∠MGD=90°,∠BCN=∠GCN,但不能判定∠DGF=∠MGE,所以B错误.故选B.试题难度:三颗星知识点:略5.图1的长方形ABCD中,点E在AD边上,AD∥BC,∠A=∠D=90°,∠BEA=60°.现分别以BE,CE为折线,将A,D向BC的方向折过去,图2为对折后A,B,C,D,E五点在同一平面上的位置图.若,则∠BCE的度数为( )A.30°B.32.5°C.35°D.37.5°答案:D解题思路:分别以BE,CE为折线,将A,D向BC的方向翻折,则直线BE,CE分别是对称轴,根据轴对称的性质可知∠BEA′=∠BEA=60°,∠DEC=∠D′EC=∠D′ED,结合∠A′ED′=15°,可以得到∠BED′=∠BEA′-∠A′ED′=45°,因此∠AED′的度数为105°,进而得到∠D′ED的度数为75°,所以∠DEC=37.5°,由AD∥BC可得∠BCE=∠DEC=37.5°.故选D.试题难度:三颗星知识点:略6.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 于D,交AC于E,连接AD,若AE=4cm,则△ABD的周长是( )cm.A.26B.16C.18D.22答案:D解题思路:由题意知折痕是DE,即DE是对称轴,可得△ADE≌△CDE.由轴对称图形的性质,得AD=CD,AE=CE.△ABC的周长为30cm,即AB+BC+AC=30cm.因为AE=4cm,所以AC=8cm,AB+BC=22cm.所以△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=22cm.故选D.试题难度:三颗星知识点:略7.如图,在△ABC中,AB=AC=20cm,将△ABC对折,使A与B重合,折痕为DE,若△BCD 的周长为27cm,则BC的长为( )cm.A.10B.9C.7D.13答案:C解题思路:由题意知折痕是DE,即DE是对称轴.可得△ADE≌△BDE,所以AD=BD.△BCD的周长为BC+BD+CD=BC+AD+CD=BC+AC=27cm,而AC=20cm,所以BC=7cm.故选C.试题难度:三颗星知识点:略8.在Rt△ABC中,CD=3cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上,且与BE 重合,△ABD的面积是12cm2,则AB的长是( )cm.A.8B.4C.9D.3答案:A解题思路:由题意知折痕是BD,即BD是对称轴,可得△BCD≌△BED,所以CD=ED=3cm,∠C=∠BED=90°.又因为△ABD的面积是12cm2,所以,所以AB=8cm.故选A.试题难度:三颗星知识点:略。

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年解答题版

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年解答题版

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年解答题版答案答案2020年中考数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题~~第1题~~(2018威海.中考真卷) 如图,将矩形ABCD (纸片)折叠,使点B 与AD 边上的点K 重合,EG 为折痕;点C 与AD 边上的点K重合,FH 为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC 的长.考点: 等腰直角三角形;含30度角的直角三角形;勾股定理;翻折变换(折叠问题);~~第2题~~(2017滨海新.中考模拟) 将一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA=6,OC=10.(Ⅰ)如图①,在OA 上取一点E ,将△EOC 沿EC 折叠,使点O 落在AB 边上的D 点,求E 点的坐标;(Ⅱ)如图②,在OA 、OC 边上选取适当的点E′、F ,将△E′OF 沿E′F 折叠,使O 点落在AB 边上D′点,过D′作D′G ∥OA 交E′F 于T 点,交OC 于G 点,设T 的坐标为(x ,y),求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(Ⅲ)在(Ⅱ)的条件下,若OG=2 ,求△D′TF 的面积.(直接写出结果即可)考点: 翻折变换(折叠问题);相似三角形的判定与性质;~~第3题~~(2017河西.中考模拟) 如图,将一个正方形纸片OABC 放置在平面直角坐标系中,其中A (1,0),C (0,1),P 为A B 边上一个动点,折叠该纸片,使O 点与P 点重合,折痕l 与OP交于点M ,与 对角线AC 交于Q 点(Ⅰ)若点P 的坐标为(1, ),求点M 的坐标;(Ⅱ)若点P 的坐标为(1,t )①求点M 的坐标(用含t 的式子表示)(直接写出答案)②求点Q 的坐标(用含t 的式子表示)(直接写出答案)(Ⅲ)当点P 在边AB 上移动时,∠QOP 的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.答案答案答案考点: 坐标与图形性质;一次函数图象与几何变换;翻折变换(折叠问题);~~第4题~~(2017河西.中考模拟) 注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,A (0,0),B (4,0),D (0,3),M 是边CD 上一点,将△ADM 沿直线AM 折叠,得到△ANM .(Ⅰ)当AN 平分∠MAB 时,求∠DAM 的度数和点M 的坐标;(Ⅱ)连接BN ,当DM=1时,求△ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案)在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt △NAP ,…小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt △NAP ,…考点: 勾股定理;翻折变换(折叠问题);~~第5题~~(2017石家庄.中考模拟) 如图:△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D,交AC 边与点E ,连接AD ,若AE=4cm ,求△ABD 的周长.考点: 翻折变换(折叠问题);2020年中考数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)

自学初中数学资料 折叠问题 图形的翻折、轴对称(资料附答案)

自学资料一、图形的翻折、轴对称【知识探索】1.如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对称点.【说明】(1)两个图形关于一条直线成轴对称,这两个图形对应线段的长度和对应角的大小相等,它们的形状相同,大小不变;(2)在成轴对称的两个图形中,分别联结两对对应点,取中点,联结两个中点所得的直线就是对称轴.2.把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对称轴.【错题精练】第1页共26页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训例1.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP ,连接B′A ,则下列判断:①当AP=BP 时,AB′∥CP ;②当AP=BP 时,∠B′PC=2∠B′AC③当CP ⊥AB 时,AP=175;④B′A 长度的最小值是1.其中正确的判断是______ (填入正确结论的序号)【解答】解:①∵在△ABC 中,∠ACB=90°,AP=BP ,∴AP=BP=CP ,∠BPC=12(180°-∠APB′),由折叠的性质可得:CP=B′P ,∠CPB′=∠BPC=12(180°-∠APB′),∴AP=B′P ,∴∠AB′P=∠B′AP=12(180°-∠APB′),∴∠AB′P=∠CPB′,∴AB′∥CP ;故①正确;②∵AP=BP ,∴PA=PB′=PC=PB ,∴点A ,B′,C ,B 在以P 为圆心,PA 长为半径的圆上,∵由折叠的性质可得:BC=B′C , ∴BC ̂=B′C ̂,∴∠B′PC=2∠B′AC ;故②正确;③当CP ⊥AB 时,∠APC=∠ACB ,∵∠PAC=∠CAB ,∴△ACP ∽△ABC ,∴APAC =ACAB ,∵在Rt △ABC 中,由勾股定理可知:AC=√AB 2−BC 2=√52−32=4,∴AP=AC 2AB =165;故③错误;④由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∵AB'≥AC-CB'∴AB′的长度有最小值.AB′有最小值=AC-B′C=4-3=1.故④正确.故答案为:①②④.【答案】①②④例2.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化;(3)∠PBH=45°;(4)BP=BH.其中正确的命题是______.【解答】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.故(1)正确;(2))△PHD的周长不变为定值8.第3页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第4页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,在△ABP 和△QBP 中,{∠APB =∠BPH∠A =∠BQP BP =BP∴△ABP ≌△QBP (AAS ).∴AP=QP ,AB=BQ .又∵AB=BC ,∴BC=BQ .又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.故(2)正确;(3)解:∵△ABP ≌△QBP (AAS )、△BCH ≌△BQH .∴∠QBH=∠HBC ,∠ABP=∠PBQ ,∴∠PBH=∠PBQ+∠QBH=12∠ABC=45°.故(3)正确;(4)解:∵∠PBH=45°固定不变,∴当点P 在AD 上移动时,∠BPH 的度数不断发生变化,∴∠BPH 的度数与∠BHP 不一定相等,故BP 与BH 不一定相等.故答案为:(1)(2)(3).【答案】(1)(2)(3)例3.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A′点,D 点的对称点为D′点,若∠FPG =90°,△A′EP 的面积为4,△D′PH 的面积为1,则矩形ABCD 的面积等于【答案】例4.如图,在菱形紙片ABCD中,AB=2.将纸片折叠,使点B落在AD边上的点B′处(不与A,D重合),点C落在C′处,线段B′C′与直线CD交于点G,折痕为EF,则下列说法①若∠A=90,B′为AD中点时,AE=34②若∠A=60°,B′为AD中点时,点E恰好是AB的中点③若∠A=60°,C′F⊥CD时,CFFD =√3−12其中正确的是()第5页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第6页 共26页 自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌 非学科培训A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵∠A=90°,四边形ABCD 是菱形,∴四边形ABCD 是正方形,∴AB=AD ,∵B′为AD 中点时,∴AB'=1,设AE=x ,则B'E=BE=2-x ,在Rt △AB'E 中,由勾股定理得:12+x 2=(2-x )2,解得:x=34,①正确; ②连接BD 、BE',如图:∵∠A=60°,AB=AD ,∴△ABD 是等边三角形,∴∠ABD=60°,∵B′为AD 中点,∴∠AB'B=90°,∠ABB'=30°∵BE=B'E ,∴∠BB'E=∠ABB'=30°,∴∠AB'E=60°,∴△AB'E 是等边三角形,∴AE=B'E=BE ,∴点E 是AB 的中点,②正确;③设CF=x ,由折叠的性质得:C'F=CF=x ,∠C'=∠C=∠A=60°,∵C′F ⊥CD ,∴∠C'GF=30°,∴C'G=2C'F=2x ,GF=√3C'F=√3x ,∴DG=CD-GF-CF=2-√3x-x ,∵∠D=180°-∠A=120°,∠DGB'=∠C'GF=30°,∴∠DB'G=30°,∴DB'=DG ,设BD 交B'C'于H ,则B'H=GH=12B'G=12(2-2x )=1-x ,∴DG=2(1−x )√3,∴2(1−x )√3=2-√3x-x , 解得:x=4-2√3,∴CF=4-2√3,FD=2-(4-2√3)=2√3-2,∴CF FD =√3−12,③正确; 故选:D .【答案】D例5.如图,以半圆的一条弦BC为对称轴将弧BC折叠后与直径AB交于点D,若AD=4,BD=8,则CB的长为__________【解答】第7页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】例6.如图,矩形ABCD中,BC=3,且BC>AB,E为AB边上任意一点(不与A,B重合),设BE=t,将△BCE沿CE对折,得到△FCE,延长EF交CD的延长线于点G,则tan∠CGE= (用含t的代数式表示).【解答】解:如图连接BF交EC于O,作EM⊥CD于M,∵∠EMC=∠EBC=∠BCM=90°,∴四边形EBCM是矩形,∴CM=EB=t,EM=BC=3,在RT△EBC中,∵EB=t,BC=3,∴EC=√t2+32=√t2+9,∵EB=EF,CB=CF,∴EC垂直平分BF,∵12•EC•BO=12•EB•BC,∴BO=3t√t2+9,BF=2BO=6t√t2+9∵∠AEF+∠BEF=180°,∠BEF+∠BCF=180°,∴∠AEF=∠BCF,∵AB∥CD,∴∠BEC=∠ECG=∠CEF,∠AEF=∠G=∠BCF ∴GE=GC,∴∠GCE=∠GEC=∠CFB=∠CBF,∴△CBF∽△GCE,∴GCBC =ECBF,第8页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴GC=t 2+92t,GM=GC-CM=9−t22t,∴tan∠CGE=EMGM =6t9−t2.故答案为6t9−t2.【答案】6t9−t2例7.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为______;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长______(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD边长仍为2,改变∠ABC的大小,折痕EF的长为m.(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为______;(2)如图4,若∠ABC的大小为2α,则六边形AEFCHG的周长可表示为______.【解答】解:①如图1,当重合点在菱形的对称中心O处时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6;②如图2,当重合点在对角线BD上移动时,由题意可知△BEF和△DGH是等边三角形,∴EF+AE+AG+GH+CH+CF=BE+AE+AG+GD+DH+CH=2+2+2=6.∴六边形AEFCHG的周长为6.故六边形AEFCHG的周长不变.(1)如图3,若∠ABC=120°,由题意可知EF+GH=AC,则六边形AEFCHG的周长为2×2+2×sin60°×2=4+2√3;(2)如图4,若∠ABC的大小为2α,由题意可知EF+GH=AC,则六边形AEFCHG的周长可表示为2×2+2×sinα×2=4+4sinα.故答案为:①6;②不变.(1)4+2√3;(2)4+4sinα.第9页共26页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】6不变4+2√34+4sinα例8.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BECE=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【解答】(1)解:∵AB∥DF,∴ABCF =BECE,∵BE=2CE,AB=3,∴3CF =2CECE,∴CF=32;(2)解:①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3−x.又∵CF=1.5,∴AM=MF=92−x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(92−x)2,∴x=54,∴DM=54,AM=134,第10页共26页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴sin∠DAB1=DMAM =513;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴ADCE =DFFC,∴DF=FC=32,设DN=x,则AN=NF=x+32.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+32)2,∴x=94.∴DN=94,AN=154sin∠DAB1=DNAN=35;(3)解:若点E在线段BC上,y=9x2x+2,定义域为x>0;若点E在边BC的延长线上,y=9x−92x,定义域为x>1.【答案】(1)32;(2)①513,②35;(3)略.【举一反三】1.如图,已知△ABC中,AB=8,BC=7,AC=6,E是AB的中点,F是AC边上一个,综上所述,EF的长为72或143.72或1432.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD边的中点E处,折痕为FG,点F、G分别在边AB、AD上,则GE=______,EF=______.【解答】解:如图过点E作EH⊥AD于H,EN⊥AB于N,过点A作AM⊥CD于M∵ABCD是菱形,∴AB∥CD,AD=AB=CD=AB=4∴∠ADM=∠BAD=∠HDE=60°∵E是CD中点∴DE=2在Rt△DHE,中,DE=2,HE⊥DH,∠HDE=60°∴DH=1,HE=√3∵折叠∴AG=GE,AF=EF在Rt△HGE中,GE2=GH2+HE 2∴GE2=(4-GE+1)2+3∴GE=2.8在Rt△AMD中,AD=4,AM⊥DM,∠ADM=60°∴MD=2,AM=2√3∵AB∥CD,AM∥EN∴AMEN是平行四边形且AM⊥CD∴AMEN是矩形∴AN=ME=2+2=4,(即N与B重合)AM=EN=2√3在Rt△FBE中,EF2=EN2+FB 2EF2=(4-EF)2+12EF=3.5【答案】2.83.53.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√34.小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处, E 点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次折叠后, M 点正好在 ∠ NDG 的平分线上,那么矩形 ABCD 长与宽的比值为.【答案】√2:1 .5.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连接OG,DG,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是()A. CG=1B. 矩形ABCD的面积为6+4√3C. ∠ACB=30°D. AF=2√3【解答】解:如图,设⊙O 与BC 的切点为M ,连接MO 并延长MO 交AD 于点N ,∵将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,∴OG=DG ,∵OG ⊥DG ,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC ,在△OMG 和△GCD 中,{∠OMG =∠DCG =90°∠MOG =∠DGC OG =DG,∴△OMG ≌△GCD ,∴OM=GC=1,CD=GM=BC-BM-GC=BC-2.故A 正确,∵AB=CD ,∴BC-AB=2.设AB=a ,BC=b ,AC=c ,⊙O 的半径为r ,⊙O 是Rt △ABC 的内切圆可得r=12(a+b-c ),∴c=a+b-2.在Rt △ABC 中,由勾股定理可得a 2+b 2=(a+b-2)2,整理得2ab-4a-4b+4=0,又∵BC-AB=2即b=2+a ,代入可得2a (2+a )-4a-4(2+a )+4=0,解得a 1=1+√3,a 2=1-√3(舍去),∴a=1+√3,b=3+√3,∴S 矩形ABCD =AB•BC=6+4√3,故B 正确,∴tan ∠ACB=AB BC =√33,∴∠ACB=30°,故C 正确,再设DF=x ,在Rt △ONF 中,FN=3+√3-1-x ,OF=x ,ON=1+√3-1=√3,由勾股定理可得(2+√3-x )2+(√3)2=x 2,解得x=4-√3,∴AF=AD-DF=2√3-1,故D 错误,故选:D .【答案】D6.如图,在⊙O 中,将AB̂沿弦AB 翻折交半径AO 的延长线于点D ,延长BD 交⊙O 于点C ,AC 切ADB ̂所在的圆于点A ,则tan ∠C 的值是( )A. √3B. 43C. 2+√3D. 1+√2【解答】解:作点D关于AB的对称点H,连接AH,BH,CH.根据对称性可知,ADB̂所在圆的圆心在直线AH上,∵AC切ADB̂所在的圆于点A,∴AC⊥AH,∴∠CAH=90°,∴CH是⊙O的直径,∴∠CBH=90°,∴∠ABD=∠ABH=45°,∴∠AHC=∠ABC=45°,∴∠ACH=∠AHC=45°,∴AC=AH,∵OC=OH,∴AD垂直平分线段CH,∴DC=DH,∴∠DCH=∠DHC,∵BD=BH,∴∠BDH=∠BHD=45°,∵∠BDH=∠DCH+∠DHC,∴∠DCH=22.5°,∴∠ACD=∠CHB=67.5°,设BD=BH=a,则CD=DH=√2a,∴tan∠ACB=tan∠CHB=BCBH =a+√2aa=1+√2,故选:D.【答案】D7.半径为2的圆弧形纸片按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是______.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在Rt△AOC中,∵OA=2,OC=1,∴cos∠AOC=OCOA =12,AC=√OA2−OC2=√3∴∠AOC=60°,AB=2AC=2√3,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB=120π×22360-12×2√3×1=4π3-√3,S阴影=S半圆-2S弓形ABM=1 2π×22-2(4π3-√3)=2√3−23π.故答案为:2√3−23π.【答案】2√3−23π8.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.1.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则BC= .【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x×x=2,解得:x=1(负数舍去),故BC=2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故BC=1,综上所述:BC=2或1.故答案为:2或1.【答案】2或1̂沿BD翻折,点C的对称点C′恰好落在AB 2.如图,已知半圆的内接四边形ABCD,AB是直径,DCB上.若AC′=4,C′B=5,则BD的长是()A. 4√3B. 3√7C. 7D. 8【解答】解:作DE⊥AB于E,连接DC′,由折叠的性质可知,CD=C′D,∠CBD=∠C′BD,∴DA=DC,∴AD=C′D,又DE⊥AB,∴AE=EC′=2,∴EB=7,由射影定理得,DE2=AE•EB=14,在Rt△DEB中,BD2=DE2+BE2=63,∴BD=3√7,故选:B.【答案】B3.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC=910.其中正确的是()A. ①③B. ②③C. ①④D. ②④【解答】解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=13×3=1,CE=3-1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,{AG=AGAB=AF,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3-x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3-x)2+22,解得,x=32,∴CG=3-32=3 2,∴BG=CG=32,即点G是BC中点,故①正确;∵tan∠AGB=ABBG =332=2,∴∠AGB≠60°,∴∠CGF≠180°-60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;由(1)知Rt △ABG ≌Rt △AFG ,∴∠AGB=∠AGF=12∠BGF ,根据三角形的外角性质,∠GCF+∠GFC=∠AGB+∠AGF ,∴∠GCF=∠GFC=∠AGB ,∵AD ∥BC ,∴∠AGB=∠GAD ,∴与∠AGB 相等的角有4个,故③错误;△CGE 的面积=12CG•CE=12×32×2=32, ∵EF :FG=1:32=2:3,∴S △FGC =32+3×32=910,故④正确; 综上所述,正确的结论有①④.故选:C .【答案】C4.如图,在矩形ABCD 中,AB=2,AD=5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP=x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是______.【解答】解:如图;①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=2,则PC=√21;∴BP 的最小值为5-√21;②当E 、B 重合时,BP 的值最大;由折叠的性质可得AB=BP=2,即BP的最大值为2.所以x的取值范围是5-√21≤x≤2.故答案为:5-√21≤x≤2.【答案】5-√21≤x≤25.如图,现有边长为5的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF连结BP,BH.当AP=2时,PH=______.【解答】解:设AE=x,则BE=5-x.由翻折的性质可知:BE=PE=x,∠APG=∠ABC=90°.∴∠APE+∠DPH=90°.∵∠AEP+∠APE=90°,∴∠AEP=∠DPH.又∵∠A=∠D=90°,∴△APE∽△DHP.在Rt△APE中,PE2=AE2+AP2,即(5-x)2=x2+22,解得x=2.1.则PE=5-2.1=2.9.∵△APE∽△DHP,∴EPPH =AEPD,即2.9PH=2.13,解得:PH=297.故答案为:297.【答案】2976.如图,矩形纸片ABCD中,AD=15cm,AB=10cm,点P、Q分别为AB、CD的中点,E、G分别为BC、PQ上的点,将这张纸片沿AE折叠,使点B与点G重合,则△AGE的外接圆的面积为______.【解答】解:由翻折的性质得,AG=AB,∠GAE=∠BAE,∵点P、Q分别为AB、CD的中点,∴AP=12AB,∴AP=12AG,∴∠AGP=30°,∴∠PAG=90°-∠AGP=90°-30°=60°,∴∠BAE=12∠PAG=12×60°=30°,在Rt△ABE中,AE=AB÷cos30°=10÷√32=20√33cm,∴△AGE的外接圆的面积=π(AE2)2=π(12×20√33)2=1003πcm2.故答案为:1003πcm2.【答案】1003πcm27.如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为______.【解答】解:∵△ADE沿AE折叠,使点D落在点D′处,∴DE=D′E,AD=AD′=10,当∠DD′C=90°时,如图1,∵DE=D′E,∴∠1=∠2,∵∠1+∠4=90°,∠2+∠3=90°,∴∠3=∠4,∴ED′=EC,CD=4;∴DE=EC=12当∠DCD′=90°时,则点D′落在BC上,如图2,设DE=x,则ED′=x,CE=8-x,∵AD′=AD=10,∴在Rt△ABD′中,BD′=√102−82=6,∴CD′=4,在Rt△CED′中,(8-x)2+42=x2,解得x=5,即DE的长为5,综上所述,当△DD′C是直角三角形时,DE的长为4或5.故答案为4或5.【答案】4或5。

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年综合题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年综合题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年综合题版答案解析答案解析答案解析2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题1.(2019.七上期末) 如图①,点O 为直线MN 上一点,过点O 作直线OC , 使∠NOC =60°.将一把直角三角尺的直角顶点放在点O 处,一边OA 在射线OM 上,另一边OB 在直线AB 的下方,其中∠OBA =30°(1) 将图②中的三角尺沿直线OC 翻折至△A ′B ′O ,求∠A ′ON 的度数;(2) 将图①中的三角尺绕点O 按每秒10°的速度沿顺时针方向旋转,旋转角为α(0<α<360°),在旋转的过程中,在第几秒时,直线OA 恰好平分锐角∠NOC ;(3) 将图①中的三角尺绕点O 顺时针旋转,当点A 点B 均在直线MN 上方时(如图③所示),请探究∠MOB 与∠AOC 之间的数量关系,请直接写出结论,不必写出理由.考点: 翻折变换(折叠问题);旋转的性质;2.(2019金湖.七上期末) 如图1,在长方形纸片ABCD 中,E 点在边AD 上,F 、G 分别在边AB 、CD 上,分别以EF 、EG 为折痕进行折叠并压平,点A 、D 的对应点分别是点A′和点D′,(1) 如图2中A′落在ED′上,求∠FEG 的度数;(2) 如图3中∠A′ED′=50°,求∠FEG 的度数;(3) 如图4中∠FEG =85°,请直接写出∠A′ED′的度数;(4) 若∠A′ED'=n°,直接写出∠FEG 的度数(用含n 的代数式表示).考点: 角的运算;翻折变换(折叠问题);3.(2019海安.七上期末) 如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF.将∠BEF 对折,点B 落在直线E F 上的点B′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A′处,得折痕EN.(1) 判断直线EN ,ME 的位置关系,并说明理由;(2) 设∠MEN 的平分线EP 交边CD 于点P ,∠MEN 的一条三等分线EQ 交边CD 于点Q.求∠PEQ 的度数.考点: 角的运算;角的平分线;翻折变换(折叠问题);4.(2019川汇.七上期末) 已知长方形纸片ABCD ,点E ,F ,G 分别在边AB ,DA ,BC 上,将三角形AEF 沿EF 翻折,点A 落答案解析答案解析在点 处,将三角形EBG 沿EG 翻折,点B 落在点处.(1) 点E, , 共线时,如图,求的度数;(2) 点E,, 不共线时,如图,设 ,,请分别写出 、 满足的数量关系式,并说明理由.考点: 角的大小比较;余角、补角及其性质;翻折变换(折叠问题);5.(2018普陀.七上期末) 如图,在△ABC 中,∠ACB=90°,BC=m ,AB=3m ,AC=n .(1) 将△ABC 绕点B 逆时针旋转,使点C 落在AB 边上的点C 处,点A 落在点A 处,在图中画出△A BC ;(2) 求四边形ACBA 的面积;(用m 、n 的代数式表示)(3) 将△A BC 沿着AB 翻折得△A BC ,A C 交AC 于点D ,写出四边形BCDC 与三角形ABC 的面积的比值.考点:翻折变换(折叠问题);作图﹣旋转;2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:1111111212112.答案:3.答案:4.答案:5.答案:。

折叠问题(原卷版)

折叠问题(原卷版)

决战2020年中考典型压轴题大突破模块二 中考压轴题几何变换综合专题考向导航在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题。

动手操作题是让学生在通过实际操作的基础上设计有关的问题。

这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念。

此类试题的显著特点是以动手为基础的手脑并用的形式,有助于创新能力的培养和实践能力的提高,改变了以往一只笔一张纸的学习方式,是新课程改革的基本理念之,在中考中越来越受到关注。

常见的有折叠、旋转和平移操作。

操作型问题是指通过动手测量作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情合理和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准,特别强调发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想因此,实验操作问题将成为今后中考的热点题型。

专题07 动手折叠问题方法点拨此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,住往与面积、对称性质联系在一起。

精典例题(2019•拱墅区二模)已知边长为3的正方形ABCD 中,点E 在射线BC 上,且BE =2CE ,连接AE 交射线DC 于点F ,若△ABE 沿直线AE 翻折,点B 落在点B 1处.(1)如图1,若点E 在线段BC 上,求CF 的长;(2)求sin ∠DAB 1的值;(3)如果题设中“BE =2CE ”改为“BECE =x ”,其它条件都不变,试写出△ABE 翻折后与正方形ABCD公共部分的面积y 与x 的关系式及自变量x 的取值范围(只要写出结论,不需写出解题过程).【分析】(1)利用平行线性质以及线段比求出CF的值;(2)本题要分两种方法讨论:①若点E在线段BC上;②若点E在边BC的延长线上.需运用勾股定理求出与之相联的线段;(3)本题分两种情况讨论:若点E在线段BC上,y=9x2x+2,x的范围为x>0;若点E在边BC的延长线上,y=9x−92x,x的范围为x>1.巩固突破1.(2019•昆明三模)如图①,将一个矩形纸片OABC放置在平面直角坐标系中,点A坐标是(3,0),点C坐标是(0,2),点O的坐标是(0,0),点E是AB的中点,在OA上取一点D,将△BDA沿BD 翻折,使点A落在BC边上的点F处.(1)求点E、F的坐标;(2)如图2,若点P是线段DA上的一个动点(点P不与点D,A重合),过P作PH⊥DB于H,设OP的长为x,△DPH的面积为S,试用关于x的代数式表示S.2.(2019•大庆三模)在矩形ABCD中,AB=10,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)求证:BP=BF;(2)当BP=8时,求BE•EF的值.3.(2019•兴庆区校级二模)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.4.(2019•南岗区校级二模)已知:在矩形ABCD中,E是AB上一点,连接CE,将△BCE沿CE翻折,使B落到F处,延长EF交CD延长线于G.(1)求证:EG=CG;(2)若BC=8,tan∠BEC=2,求GF的长.5.(2019•长春四模)探究:如图①点E、F分别在正方形ABCD的边BC、CD上,连结AE、AF、EF,将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若BE =2,DF=3,求AB的长;拓展:如图②点E、F分别在四边形BACD的边BC、CD上,且∠B=∠D=90°.连结AE、AF、EF 将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若∠EAF =30°,AB=4,则△ECF的周长是.6.(2019•临泽模拟)如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.7.(2019•无锡模拟)已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连结AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值.8.(2019•广陵区校级二模)如图,将矩形ABCD先过点A的直线L1翻折,点DA的对应点D′刚好落在边BC上,直线L1交DC于点F;再将矩形ABCD沿过点A的直线L2翻折,使点B的对应点G落在AD′上,EG的延长线交AD于点H.(1)当四边形AED′H是平行四边形时,求∠AD′H的度数.(2)当点H与点D刚好重合时,试判断△AEF的形状,并说明理由.9.(2019•海州区)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.10.(2019•广陵区校级模拟)发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC 折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.11.(2019•铜山区)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG.②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.12.(2019•道里区校级模拟)已知,如图1,在△ABC 和△ADC 中,AB =2AC ,∠ACD =90°,AD =BD ,(1)求证:∠BAC =2∠ABD .(2)如图2,当∠BAC =120°时,设AD 与BC 的交点为O ,将△ADC 沿CD 所在直线折叠,得到△EDC ,连接OE ,射线OM 交DE 于M ,交BD 的延长线于N ,且∠EON =∠ABD ,若MN =3,求:OE 的长.13.(2019•大连模拟)在Rt △ABC 中,∠A =90°,AB =AC ,点D 在线段BC 上,∠EDB =12∠C ,交AB于F ,BE ⊥DE 于E ,探究线段BE 与FD 的数量关系,并加以证明.小白的想法是,将△BDE 以直线DE 为对称轴翻折,再通过证明△GBH ≌△FDH 得到结论,请按照小白的想法完成此题解答.证明:延长BE 至点G ,使EG =EB ,连接GD 交AB 于点H .【解决问题】△ABC 中,∠C =2∠B ,点E 是线段BC 的延长线上一点,CE =kBC ,AD 平分∠BAC 交BC 于点D ,EF ⊥AD 于F ,交AC 于G ,求CD CG 的值.14.(209•鞍山二模)如图,正方形ABCD 中,AD =8,点F 是AB 中点,点E 是AC 上一点,DE ⊥EF ,连接DF 交AC 于点G .(1)求△DEF 的面积;(2)将△FEG 沿EF 翻折得到△EFM ,EF 交DM 于点N .①求证:点M在对角线BD上;②求MN的长度.15.(2019•江阴市)已知,如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,点D为AB的中点,点E为线段BC上的点,连接DE,把△BDE沿着DE翻折得△B1DE.(1)当A、D、B1、C构成的四边形为平行四边形,求DE的长;(2)当DB1⊥AC时,求△DEB1和△ABC重叠部分的面积.16.(2019•宝应三模)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D'处,折痕为EF.(1)求证:△ABE≌△AD'F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.17.(2019•深圳模拟)已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.。

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年综合题版

中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年综合题版

(1) 如图1,若点A′恰好落在边AB上,且AN= AC,求AM的长; (2) 如图2,若点A′恰好落在边BC上,且A′N∥AC. ①试判断四边形AMA′N的形状并说明理由;
②求AM、MN的长;
(3) 如图3,设线段NM、BC的延长线交于点P,当

时,求CP的长.
考点: 菱形的判定;翻折变换(折叠问题);
(1) 用含a的代数式表示点C的坐标. (2) 如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.
(3) 设
的面积为S1,
的面积为S2,若
,求a的值.
考点: 待定系数法求二次函数解析式;翻折变换(折叠问题);相似三角形的判年 中 考 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题 答 案
(1) 连结AF,若AF∥CE.证明:点E为AB的中点;
(2) 证明:GF=GD;
(3) 若AD=5,设EB=x,GD=y,求y与x的函数关系式.
考点: 正方形的性质;翻折变换(折叠问题);
答案
~~第3题~~ (2020绍兴.中考模拟) 如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连 接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.
第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3
第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的 虚线为折痕.
问题解决:
(1) 在图5中,∠BEC的度数是, 的值是;
(2) 在图5中,请判断四边形EMGF的形状,并说明理由;

2020年中考数学一轮复习冲刺专题动点与折叠问题练习(含答案)

2020年中考数学一轮复习冲刺专题动点与折叠问题练习(含答案)

2020 中考数学冲刺专题动点与折叠问题(含答案)1)动点问题1. 如图①,在平行四边形ABCD 中,∠ABC=120°,动点P从点B 从发,沿着B→C→D→A 方向运动至点 A 处停止,设点P运动的路程为x,△ABP 的面积为y,如果y 关于x 的函数图象如图②所示,则下列说法不正确的是( )B. 平行四边形ABCD 的面积是24 3D. 当y=8 3时,x=4答案:D2. 如图,在Rt△ABC中,AB=AC=4 cm,∠A=90°,点O是BC的中点.动点 D 从点 B 出发沿BA 方向向 A 匀速运动,运动速度为 1 cm/s,连接DO ,过点O 作OE⊥DO,交AC于点E,连接DE.设运动时间为x,△DOE的面积为y,则y(cm)关于x(s)的函数图象大致是( )第 2 题图答案:D3. 如图①,在等边△ ABC中,动点P 从点A出发,沿三角形的边以每秒1 个单位长度的速度沿A→C→ B匀速运动,设点P运动的时间为x,△ABP 的面积为y,把y 看作x 的函数,函数的图象如图②所示,则t=6 s时,△ ABP 的面积为( )A. 当x=2 时,y=4 3C. 当x=10 时,y=123第 3 题图A. 2 3B. 4 3C. 4D. 8 答案:A4. 如图,在Rt△ABC中,∠ ACB=90°,点P以 2 cm/s的速度从点A出发,沿折线AC→CB运动,到点B停止.过点P作PD⊥AB,垂足为D,若AC=6 cm,BC=8 cm.当点P运动 5 s时,线段PD 的长为cm.第 4 题图答案: 2.45. 如图,矩形ABCD 的对角线AC、BD 交于点O,点P 是边AD 上的一个动点,PE⊥AC于E,PF⊥BD 于F,AC=10,则PE+PF的最大值为.第 5 题图6. 如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q 分别在BD、AD 上,则AP+PQ 的最小值为.第 9 题图第 6 题图答案: 3 37. 如图,正方形 ABCD 的边长为 2,点 E 为边 BC 的中点,点 P 在对角线第 7 题图答案: 58. 如图,边长为 2 3的菱形 ABCD 中, AE ⊥BC 于点 E ,且点 E 是 BC的中 点.连接 BD ,交 AE 于点 F ,点 M 是 AD 上的一个动点,连接 MF ,MC ,则 MF + MC 的最小值是 _____第 8 题图答案: 2 79. 如图, O 为矩形 ABCD 对角线 AC 、BD 的交点, AB =6,M 、N 是 BC 边 上的动点,且 MN =2,则 OM +ON 的最小值是.BD 上移动,则第 2 题图答案: 2 1010. 如图,等腰△ ABC 的底边 BC 的长为 4 cm ,面积是 12 cm 2,腰 AB 的垂 直平分线 EF 交AC 于点F ,若D 为BC 上的中点,M 为线段 EF 上一动点,则△ BDM周长的最小值为 ______ cm.第 10 题图答案:8(2)几何图形的折叠1. 如图,在矩形 ABCD 中,把△ ABF 翻折,点 B 落在 CD 边上的点 E 处, 折痕为 AF.把△ ADH 翻折,点 D 落在 AE 边上的点 G 处,折痕为 AH ,点 H 在 CD 边上,则∠ HAF = .第 1 题图45°2. 如图,把矩形纸片 ABCD 沿 EF 翻折,点 A 恰好落在 BC 边上的 A ′处,若 AB = 3,∠ EFA = 60°,则四边形 A ′B ′EF 的周长是.第 5 题图答案: 5+33. _____ 在如图所示的 ?ABCD 中,AB =2,AD =3,将△ ACD 沿对角线 AC 折叠, 点 D 落在△ ABC 所在平面内的点 E 处,且 AE 过 BC 的中点 O ,则△ ADE 的周长 等于 .答案: 10 4. 如图,在矩形纸片 ABCD 中,AB =6,BC =10,BC 边上有一点 E ,BE = 4,将纸片折叠,使 A 点与 E 点重合,折痕 MN 交 AD 于点 M ,则线段 AM 的长 为 .35. 如图,在△ ABC 中,AB =AC =8,cosB =4,点 D 在 BC 边上,将△ ABD 沿直线 AD 翻折得到△ AED ,点 B 的对应点为点 E ,AE 与BC 边交于点 F.若 BD =2,那么 EF = __ .答案: 13 2第 3 题图第 4 题图答案:31256. 如图,在矩形ABCD 中,点 F 在AD 上,点 E 在BC 上,把这个矩形沿EF 折叠后,使点 D 恰好落在BC 边上的G 点处,若矩形面积为 4 3且∠AFG=60°,GE=2BG,则折痕EF的长为.第 6 题图答案:27. 如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ ECD的位置,连接AE.若DE∥AC,则AE 的长为第7 题图答案: 2 38. 如图,将面积为32 2的矩形ABCD 沿对角线BD 折叠,点A的对应点为点P,连接AP 交BC 于点 E.若BE=2,则AP 的长为.答案:16329.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△ DEC 沿线段DE翻折,点C恰好落在线段AE上的点 F 处.若AB=6,BE∶EC=4∶1,则线段DE 的长为.第9 题图答案: 2 1010. 如图,在矩形纸片ABCD 中,AB=9,BC=6,在矩形边上有一点P,且DP=3,将矩形纸片折叠,使点 B 与点P重合,折痕所在直线交矩形两边于点E,F,则EF 长为______答案:6 2或 2 10第10 题图。

部编数学七年级上册专题13与角相关的旋转(翻折)问题专项讲练(解析版)含答案

部编数学七年级上册专题13与角相关的旋转(翻折)问题专项讲练(解析版)含答案

专题13 与角相关的旋转(翻折)问题专项讲练与角有关的旋转(翻折)问题属于人教版七年级上期必考压轴题型,是尖子生必须要攻克的一块重要内容,对考生的综合素养要求较高。

绝大部分学生对角度旋转问题信心不足,原因就是很多角度旋转问题需要自己画出图形,与分类讨论思想、数形结合思想等结合得很紧密,思考性强,难度大。

本专题重点研究与角有关的旋转问题(求值问题;定值问题;探究问题;分类讨论问题)和与角有关的翻折问题。

【与角相关的旋转问题】【解题技巧】1、角度旋转问题解题步骤:①找——根据题意找到目标角度;②表——表示出目标角度:1)角度一边动另一边不动,角度变大:目标角=起始角+速度×时间;2)角度一边动另一边不动,角度变小:目标角=起始角—速度×时间;3)角度一边动另一边不动,角度先变小后变大:变小:目标角=起始角—速度×时间;变大:目标角=速度×时间—起始角③列——根据题意列方程求解。

注:①注意题中是否确定旋转方向,未确定时要分顺时针与逆时针分类讨论;②注意旋转角度取值范围。

常见的三角板旋转的问题:三角板有两种,一种是等腰直角三角板(90°、45°、45°),另一种是特殊角的直角三角板(90°、60°、30°)。

三角板的旋转中隐藏的条件就是上面所说的这几个特殊角的角度。

总之不管这个角如何旋转,它的角度大小是不变的,旋转的度数就是组成角的两条射线旋转的度数(角平分线也旋转了同样的度数)。

抓住这些等量关系是解题的关键,三角板只是把具体的度数隐藏了起来。

【重要题型】题型1:求值问题例1.(2022·江苏·七年级期中)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).【答案】(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ =50°,故答案为:50°;②解:∵∠AOB =60°,∠BOC =α=80°,∴∠AOC =140°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =70°,∵∠COD =40°,∠BOC =α=80°,且OQ 平分∠BOD ,同理可求∠DOQ =60°,∴∠COQ =∠DOQ -∠DOC =20°,∴∠POQ =∠POC -∠COQ =70°-20°=50°;③解:补全图形如图3所示,∵∠AOB =60°,∠BOC =α=130°,∴∠AOC =360°-60°-130°=170°,∵OP 平分∠AOC ,∴∠POC =12∠AOC =85°,∵∠COD =40°,∠BOC =α=130°,且OQ 平分∠BOD ,同理可求∠DOQ =85°,∴∠COQ =∠DOQ -∠DOC =85°-40°=45°,∴∠POQ =∠POC +∠COQ =85°+45°=130°;(2)当∠AOB =m °,∠COD =n °时,如图2,∴∠AOC = m °+ a °,∵OP 平分∠AOC ,∴∠POC =12(m °+ a °),同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)- n °=12(-n °+ a °),∴∠POQ =∠POC -∠COQ =12(m °+ a °)-12(-n °+ a °) =12m °+12n °,当∠AOB =m °,∠COD =n °时,如图3,∵∠AOB =m °,∠BOC =α,∴∠AOC =360°-m °-a °,∵OP 平分∠AOC ,∴∠POC =12∠AOC =180°12-(m °+ a °),∵∠COD =n °,∠BOC =α,且OQ 平分∠BOD ,同理可求∠DOQ =12(n °+ a °),∴∠COQ =∠DOQ -∠DOC =12(n °+ a °)-n °=12(-n °+ a °),∴∠POQ =∠POC +∠COQ =180°12-(m °+ a °)+12(-n °+ a °) =180°-12m °-12n °,综上所述,若∠AOB =m °,∠COD =n °,则∠POQ =12m °+12n °或180°-12m °-12n °.故答案为:12m °+12n °或180°-12m °-12n °.【点睛】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.变式1.(2022•高新区期末)已知∠AOB =90°,∠COD =60°,按如图1所示摆放,将OA 、OC 边重合在直线MN 上,OB 、OD 边在直线MN 的两侧:(1)保持∠AOB 不动,将∠COD 绕点O 旋转至如图2所示的位置,则①∠AOC +∠BOD = ;②∠BOC ﹣∠AOD = .(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.【解题思路】(1)①将∠AOC+∠BOD拆分、转化为∠COD+∠AOB即可得;②依据∠BOC=∠AOB﹣∠AOC、∠AOD=∠COD﹣∠AOC,将原式拆分、转化为∠AOB﹣∠COD计算可得;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,只需表示出∠AOD即可得出答案,而∠AOD在OD与OA相遇前、后表达式不同,故需分OD与OA相遇前后即0<t≤20和20<t≤36两种情况求解;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,再分①射线OE、OF在射线OB同侧,在直线MN同侧;②射线OE、OF在射线OB异侧,在直线MN同侧;③射线OE、OF在射线OB异侧,在直线MN异侧;④射线OE、OF在射线OB同侧,在直线MN异侧;四种情况分别求解.【解答过程】解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC 绕点O 逆时针旋转n °,则OD 也绕点O 逆时针旋转n °,①0<n °≤150°时,如图4,射线OE 、OF 在射线OB 同侧,在直线MN 同侧,∵∠BOF =12[90°﹣(n ﹣60°)]=12(150﹣n )°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE ﹣∠BOF =15°;②150°<n °≤180°时,如图5,射线OE 、OF 在射线OB 异侧,在直线MN 同侧,∵∠BOF =12(n−150)°,∠BOE =(90−12n )°=12(180﹣n )°,∴∠EOF =∠BOE +∠BOF =15°;③180°<n °≤330°时,如图6,射线OE 、OF 在射线OB 异侧,在直线MN 异侧,∵∠DOF =12(n−150)°,∠COE =12(360−n)°,∴∠EOF =∠DOF +∠COD +∠COE =165°;④330°<n °≤360°时,如图7,射线OE 、OF 在射线OB 同侧,在直线MN 异侧,∵∠DOF =12[360﹣(n ﹣150)]°=12(510﹣n )°,∠COE =12(360−n)°,∴∠EOF =∠DOF ﹣∠COD ﹣∠COE =15°;综上,∠EOF =15°或165°.变式2.(2022•浙江七年级期中)如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30M Ð=°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180°.)(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转.如图2,经过t 秒后,AON Ð=______度(用含t 的式子表示),若OM 恰好平分BOC Ð,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC Ð=______度(用含t 的式子表示)若OC 平分MON Ð,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM Ð?(直接写结果)【答案】(1)3t ,5;(2)306t +,5;(3)经过703秒OC 平分BOM Ð【解析】(1)3AON t Ð=,∵30AOC Ð=°,∴150BOC Ð=°∵OM 平分BOC Ð,90MON Ð=°,∴75COM Ð=°,∴15CON Ð=°∴301515AON AOC CON Ð=Ð-Ð=-=°°°,解得:1535t =¸=°°秒(2)()306AOC t Ð=+度∵90MON Ð=°,OC 平分MON Ð,∴45CON COM Ð=Ð=°∴45AOC AON CON Ð-Ð=Ð=°,∴306345t t +-=解得:5t =秒(3)如图:∵90AON BOM Ð+Ð=°,BOC COMÐ=Ð由题可设AON Ð为3t ,AOC Ð为()306t +°,∴()19032COM BOC t Ð=Ð=-°∵180BOC AOC Ð+Ð=°,()()130********t t ++-=,解得:703t =秒答:经过703秒OC 平分BOM Ð.题型2:定值问题(角度不变问题)例2.(2022·江苏南京·七年级期末)如图,两条直线AB ,CD 相交于点O ,且∠AOC =∠AOD ,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15°/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12°/s ,运动时间为t 秒(0<t <12,本题出现的角均小于平角)(1)图中一定有 个直角;当t=2时,∠MON的度数为 ,∠BON的度数为 ;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMONÐ+ÐÐ是定值时,求t的取值范围,并求出这个定值.变式1.(2022•渝中区七年级期中)如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC= °;(2)如图2,∠COD从第(1)问中的位置出发,绕点O 逆时针以每秒4°的速度旋转;当OC与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.【解题思路】(1)根据角平分线的定义结合图形根据已知条件求角的大小;(2)①分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t 表示出角的度数,列出等量关系式求出t ;②分类讨论顺时针、逆时针转两种情况,当C ′在B 下方时,当C ′在B 上方时,根据角平分线的定义用t 表示出角的度数,求在某个时间段使得|∠BOP ﹣∠MON ′|的值不变,求出这个定值及其对应的t 的取值范围.【解答过程】解:(1)∵OM 为∠AOB 的角平分线、∠AOB =40°,∴∠MOB =20°.∵∠MON =70°,∴∠BON =∠MON ﹣∠MOB =50°.∵ON 为∠BOD 的角平分线,∴∠BON =∠DON =50°.∴∠CON =∠COD ﹣∠DON =10°∴∠BOC =∠DON ﹣∠CON =40°.故答案为:40°.(2)如图①:①逆时针旋转时:当C ′在B 上方时,根据题意可知,∠BOC ′=40°﹣4t ,∠BOD ′=∠BOD ﹣4t =100°﹣4t .∠BON ′=12∠BOD ′=12(100°−4t)=50°﹣2t ,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,即40°﹣4t =12(50°﹣2t ),解得:t =5(s ).当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.顺时针旋转时:如图②,同理当C ′在B 下方时,此时C ′也在N ′下方,此时不存在OC ′平分∠BON ′.当C ′在B 上方时,即OC ′与OB 重合,由题意可求OC ′与OB 重合用的时间=∠AOC ÷4+∠AOB ÷6=(∠AOB +∠BOC )÷4+∠AOB ÷6=803(s ).∴OC ′与OB 重合之后,∠BOC ′=6(t −803)(s ).∴∠BOD ′=∠BOC ′+60°=6(t −803)+60°=6t ﹣100°.∴∠BON ′=12∠BOD′=12(6t ﹣100°)=3t ﹣50°,∵OC ′平分∠BON ′,∴∠BOC ′=12∠BON′,∴6(t −803)=12(3t ﹣50°),解得:t =30(s )综上所述t 的值为5或30.②逆时针旋转时:当C ′在B 上方时,如图③根据①可知,∠BOC ′=40°﹣4t ,∠BOD ′=100°﹣4t ,∠BON ′=50°﹣2t .∴∠AOD ′=∠AOB +∠BOD ′=140°﹣4t ,∴∠AOP =12∠AOD′=12∠(140°−4t)=70°﹣2t ,∴∠BOP =∠AOP ﹣∠AOB =30°﹣2t ,∵∠MON ′=∠MOB +∠BON ′=70°﹣2t ,∴|∠BOP ﹣∠MON ′|=|30°﹣2t ﹣70°+2t |=40°,此段时间0≤t ≤10s ;如图④当C ′在B 下方时,设经过OB 后运动时间为t 2,同理可知,∠BOC ′=4t 2,∠BOD ′=60°﹣4t 2,∴∠MON′=12∠BON′=30−2t 2,∴∠AOD ′=∠AOB +∠BOD ′=100°﹣4t 2,∴∠AOP =12∠AOD′=50°−2t 2,∴∠BOP =∠AOP ﹣∠AOB =10°﹣2t 2,∵∠MON ′=∠MOB +∠BON ′=50°﹣2t 2,∴|∠BOP﹣∠MON′|=|10°﹣2t2﹣50°+2t2|=40°.此时:10<t≤20;顺时针旋转时:当C′在B下方时,如图⑤,设经过OB后运动时间为t1,同理可知:∠BOC′=40°﹣6t1,∠BOD′=20°+6t1,∴∠BON′=12∠BOD′=10°+3t1,∴∠AOD′=60°+6t1,∠AOP=30°+3t1,∴∠BOP=∠AOP﹣∠AOB=3t1﹣10°,∵∠MON′=∠MOB+∠BON′=30°﹣3t1,∴|∠BOP﹣∠MON′|=|3t1﹣10°﹣30°﹣3t1|=40°,此时:20<t≤803;当C′在B上方时,如图⑥,设经过OB后运动时间为t3,同理可知:,∠BOC′=60°+6t3,∠BOD′=100°+6t3,∴∠BON′=12∠BON′=50°+3t3,∴∠AOD′=140°+6t3,∴∠AOP=70°+3t3,∴∠BOP=∠AOP﹣∠AOB=30°+3t3,∵∠MON′=∠MOB+∠BON′=70°+3t3,∴|∠BOP﹣∠MON′|=|30°+3t3﹣70°﹣3t3|=40°,此时:803<t≤50.综上所述:存在且定值为40°,0≤t≤50.变式2.(2022•碑林区七年级开学)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请直接写出结论:直线ON 平分 (平分或不平分)∠AOC.(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 10或40 .(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究,当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解题思路】(1)设ON的反向延长线为OD,由角平分线的性质和对顶角的性质可求得∠BON=∠AOD=∠COD=30°;(2)由直线ON恰好平分锐角∠AOC可知旋转60°或240°时直线ON平分∠AOC,根据旋转速度可求得需要的时间;(3)由∠MON=90°,∠AOC=60°,可知∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,最后求得两角的差,从而可做出判断.【解答过程】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∠BOC=120°,∠BOC=60°,∴∠MOC=∠MOB=12又∠MOD=∠MON=90°,∴∠COD=90°﹣∠MOC=30°,∵∠AOC=180°﹣∠BOC=60°,∠AOC,∴OD平分∠AOC,∴∠COD=12即直线ON平分∠AOC,故答案为:平分;(2)∵∠BOC=120°,∴∠AOC=60°.∴∠BON=∠COD=30°.即旋转60°或240°时直线ON平分∠AOC.由题意得,6t=60或240.解得:t=10或40,故答案为:10或40;(3)∠AOM﹣∠NOC的差不变.∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON.∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.∴∠AOM与∠NOC的差不变,这个差值是30°.题型3:探究类问题(判断角的数量之间的关系)例3.(2022·四川·成都市七年级期末)如图所示:点P是直线AB上一点,∠CPD是直角,PE平分∠BPC.(1)如图1,若∠APC=40°,求∠DPE的度数;(2)如图1,若∠APC=a,直接写出∠DPE的度数(用含a的代数式表示);(3)保持题目条件不变,将图1中的∠CPD按顺时针方向旋转至图2所示的位置,探究∠APC和∠DPE的度数之间的关系,写出你的结论,并说明理由.变式1.(2022·广东七年级期中)如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB等于多少;若∠ACB=130°,则∠DCE等于多少;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.【答案】(1)∠ACB=155°;∠DCE=50°;(2)∠ACB+∠DCE=180°,理由见解析;(3)∠DAB+∠CAE=120°,理由见解析;(4)∠AOD+∠BOC=α+β,理由见解析.【分析】(1)先求出∠BCD,再代入∠ACB=∠ACD+∠BCD求出即可;先求出∠BCD,再代入∠DCE=∠BCE﹣∠BCD求出即可;(2)根据∠ACB=∠ACE+∠DCE+∠DCE求出即可;(3)根据∠DAB=∠DAE+∠CAE+∠CAB求出即可;(4)根据∠AOD=∠AOC+∠COB+∠BOD求出即可.【详解】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.【点睛】本题考查了角的运算,理解角的和差运算是解题的关键.变式2.(2022•喀喇沁旗七年级期中)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使点N在OC的反向延长线上,请直接写出图中∠MOB 的度数;(2)将图1中的三角板绕点O顺时针旋转至图3,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(3)将图1中的三角尺绕点O顺时针旋转至图4,使ON在∠AOC内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.【解题思路】(1)根据对顶角求出∠BON ,代入∠BOM =∠MON ﹣∠BON 求出即可;(2)求出∠BOC =120°,根据角平分线定义请求出∠COM =∠BOM =60°,代入∠CON =∠MON +∠COM 求出即可;(3)用∠AOM 和∠CON 表示出∠AON ,然后列出方程整理即可得解.【解答过程】解:(1)如图2,∵∠AOC =60°,∴∠BON =∠AOC =60°,∵∠MON =90°,∴∠BOM =∠MON ﹣∠BON =30°,故答案为:30°;(2)∵∠AOC =60°,∴∠BOC =180°﹣∠AOC =120°,∵OM 平分∠BOC ,∴∠COM =∠BOM =60°,∵∠MON =90°,∴∠CON =∠MON +∠COM =90°+60°=150°;(3)∠AOM ﹣∠NOC =30°,理由是:∵∠MON =90°,∠AOC =60°,∴∠AON =90°﹣∠AOM ,∠AON =60°﹣∠NOC ,∴90°﹣∠AOM =60°﹣∠NOC ,∴∠AOM ﹣∠NOC =30°,故∠AOM 与∠NOC 之间的数量关系为:∠AOM ﹣∠NOC =30°.题型4:分类讨论问题例4.(2022·成都市七中育才学校七年级月考)一副三角板(直角三角板OAB 和直角三角板OCD )如图1所示放置,两个顶点重合于点O ,OC 与OB 重合,且60AOB Ð=°,30A Ð=°,45OCD ODC Ð=Ð=°,90COD ABO Ð=Ð=°.将三角板OCD 绕着点O 逆时针旋转一周,旋转过程中,OE 平分BOC Ð,OF 平分AOD Ð,(AOD Ð和BOC Ð均是指小于180°的角)探究EOF Ð的度数.(1)当三角板OCD 绕点O 旋转至如图2的位置时,OB 与OD 重合,AOC Ð=______°,EOF Ð=______°.(2)三角板OCD 绕点O 旋转过程中,EOF Ð的度数还有其他可能吗?如果有,请研究证明结论,若没有,请说明理由.(3)类比拓展:当COD Ð的度数为a ()0180a °<<°时,其他条件不变,在旋转过程中,请直接写出EOF Ð的度数.(用含a 的式子来表示)【答案】(1)150;75 (2)有,105° (3)1302EOF a =°+或11502a °-【分析】(1)利用两个角的和的定义,角的平分线的定义计算即可; (2)利用分类思想, 确定不同方式计算即可;(3)利用特殊与一般的思想,分类将问题抽象即可.【详解】(1)如图,由OB 与OD 重合,∵60AOB Ð=°,90COD BOC Ð=Ð=°,∴6090150AOC AOB BOC Ð=Ð+Ð=°+°=°.又∵OE 平分BOC Ð,OF 平分AOD Ð,∴1452BOE BOC Ð=Ð=°,1302DOF AOD Ð=Ð=°,∴453075EOF BOE EOF Ð=Ð+Ð=°+°=°.故答案为:150°;75°;(2)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°()13602COD AOD =°-Ð-Ð+30°()1360902AOC =°-°-Ð+30°()12702AOD =°-Ð+30°11652AOD =°-Ð.∴EOF BOE AOF AOB Ð=Ð+Ð-Ð,∴111656010522EOF AOD AOD Ð=Ð+°-Ð-°=°.(3)如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()1111++2222AOF AOD COD AOC AOC a Ð=Ð=ÐÐ=Ð,∴EOF AOF AOB BOE Ð=Ð+Ð-Ð=11+22AOC a Ð+60°-1-302AOC а=1302a °+;如图,∵OE 平分BOC Ð,OF 平分AOD Ð,∴12BOE BOC Ð=Ð()12AOC AOB =Ð+Ð()1602AOC =Ð+°1302AOC =Ð+°,()()1111136036018022222AOF AOD COD AOC AOC AOC a a Ð=Ð=°-Ð-Ð=°--Ð=°--Ð∴EOF BOE AOF AOB Ð=Ð+Ð-Ð111130180601502222AOC AOC a a =Ð+°+°--Ð-°=°-.综上所述,1302EOF a Ð=°+或11502a °-.【点睛】本题考查了两个角的和,角的平分线,周角的定义,灵活运用分类思想,角的平分线定义,角的和,差定义计算是解题的关键.变式1.(2022•广东七年级期末)如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB a Ð=,BOC b Ð=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40a =°,70b =°时,COM Ð=______,CON Ð=______,MON Ð=______;②MON Ð=______(用含有a 或b 的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有a 或b 的代数式表示)(3)如图(4),当40a =°,70b =°时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?【答案】(1)135,55,20,2°°°a ;(2)12a ,11802a °-;(3)48分钟时,∠MON 的度数是40°【解析】(1)①Q OM 平分∠BOC ,ON 平分∠AOC ,当40a =°,70b =°时,COM Ð=113522BOC Ð=b =°,CON Ð=()111()55222AOC AOB BOC Ð=Ð+Ð=a +b =°,MON Ð=()11120222CON COM a b b a Ð-=+-==°②MON Ð()111222CON COM =Ð-=a +b -b =a ,故答案为:135,55,20,2°°°a (2)①Q OM 平分∠POB ,ON 平分∠POA ,\()12MON POB POA Ð=Ð+Ð 1122AOB =Ð=a ②Q OM 平分∠QOB ,ON 平分∠QOA ,\()12MON BOQ QOA Ð=Ð+Ð()1136018022AOB =°-Ð=°-a 故答案为:12a ,11802a °-(3)根据题意POQ BOC Ð=Ð=bQ OM 平分∠POQ ,113522POM POQ \Ð=Ð=b =°如图,当OP 在AOB Ð的外部时,Q MON 的度数是40°MON PON POM Ð=Ð+Q 5PON \Ð=°Q ON 平分∠POA ,210POA PON \Ð=Ð=°,120POC \Ð=°,则OP 旋转了360120240°-°=°240548\¸=分,即48分钟时,∠MON 的度数是40°如图,OP 在AOB Ð的内部时,MON POM PON Ð=Ð-ÐQ 即4035PON °=°-Ð5PON \Ð=-°此情况不存在,综上所述,48分钟时,∠MON 的度数是40°变式2.(2022·成都市七年级阶段练习)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角,如图1,若12COD AOB Ð=Ð,则COD Ð是ACB Ð的内半角.(1)如图1,已知80AOB °Ð=,25AOC °Ð=,COD Ð是AOB Ð的内半角,则BOD Ð=________;(2)如图2,已知68AOB °Ð=,将AOB Ð绕点O 按顺时针方向旋转一个角度()060a a °<<得COD Ð,当旋转的角度a 为何值时,COB Ð是AOD Ð的内半角;(3)已知30AOB °Ð=,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.如图2,∵BOC Ð是AOD Ð的内半角,AOC BOD a Ð=Ð=,如图4,∵AOD Ð是BOC Ð的内半角,360AOC BOD a Ð=Ð=-,【折叠(翻折)问题】【解题技巧】折叠前后对应角、对应边相等;出现角的比值或无角的具体度数却求度数常设x 列方程。

2020中考数学 压轴专题 三大几何变换之折叠问题(含答案)

2020中考数学 压轴专题 三大几何变换之折叠问题(含答案)

2020中考数学压轴专题三大几何变换之折叠问题(含答案)1. 如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折.得到四边形EFC′D′,ED′交BC于点G,则△GEF的周长为()A. 6B. 12C. 18D. 24第1题图C2. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. 53 B.52 C. 4 D. 5第2题图C3. 如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=23,则∠A=()A. 120°B. 100°C. 60°D. 30°第3题图A【解析】如解图,连接AC,则两条对角线交于点O,∵点A沿EF折叠与点O重合,∴EF垂直平分AO,∵AO⊥BD,AO⊥EF,∴EF∥BD,∴EF是△ABD的中位线,∴EF=12BD,∴BD=43,∴BO=DO=12BD=23,∵AB=4,∴cos∠ABO=BOAB=234=32,∴∠ABO=30°,∴∠BAO=60°,∵四边形ABCD是菱形,∴AC平分∠BAD,∴∠A=120°,故选A.第3题解图4. 如图的实线部分是由Rt △ABC 经过两次折叠得到的,首先将Rt △ABC 沿BD 折叠,使点C 落在斜边上的点C ′处,再沿ED 折叠,使点A 落在DC ′的延长线上的点A ′处,若图中∠C =90°,∠A =30°,BC =5 cm ,则折痕DE 的长为________.第4题图103【解析】∵∠A =30°,∠C =90°,∴∠ABC =180°-∠C -∠A =60°,根据折叠的性质可得,∠DBC ′=∠DBC =12∠ABC =12×60°=30°,在Rt △BCD 中,cos ∠DBC =BCBD ,∴BD =BC cos ∠DBC =5cos30°=1033,∵∠CDB =180°-∠C -∠DBC =180°-90°-30°=60°,∴∠BDA ′=∠CDB =60°,∴∠ADA ′=180°-∠CDB -∠BDA ′=180°-60°-60°=60°,∵DE 是折痕,根据折叠的性质可得,∠EDA ′=12∠ADA ′=12×60°=30°,∴∠BDE =∠BDA ′+∠EDA ′=60°+30°=90°,在Rt △BED 中,DE =BD ·tan30°=1033×33=103.5. 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为________.第5题图23 【解析】∵四边形AECF 是菱形,AB =6,假设BE =x ,则AE =6-x ,∴CE =6-x ,∵四边形AECF 是菱形,∴∠FCO =∠ECO ,∵∠ECO =∠ECB ,∴∠ECO =∠ECB =∠FCO =30°,2BE =CE ,∴CE =2x ,∴2x =6-x ,解得:x =2,∴CE =4,利用勾股定理得出:BC 2+BE 2=EC 2,BC =EC 2-BE 2=42-22=2 3.6. 用剪刀将形状如图①所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中点M 为AD 的中点.用这两部分纸片可以拼成图②所示的Rt △BCE .若Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB =a ,BC =b ,且a 、b 满足关系式a +b =m -1,ab =m +1,则点D 到CM 的距离为________.第6题图2 【解析】∵Rt △BCE 是等腰直角三角形,M 为AD 的中点,∴b =2a .∵a +b =m -1,∴a +2a =m -1,∴a =m -13,b =2(m -1)3,∵ab =m +1,∴m -13·2(m -1)3=m +1,整理得2m 2-13m -7=0,解得m =-12(舍去)或m =7,∴a =2,b =4,AM =MD =2,在Rt △MCD 中 ,CM =22+22=22,∴点D 到CM 的距离为2×222= 2.7. 将一个矩形纸片ABCD 放置到平面直角坐标系中,点A 、B 恰好落在x 轴的正、负半轴上,若将该纸片沿AF 折叠,点B 恰好落在y 轴上的点E 处,设OA =1.(1)如图①,若OB =1,则点F 的坐标为________; (2)如图②,若OB =2,求点F 的坐标; (3)若OB =n ,请直接写出点F 的坐标.第7题图解:(1)(1,233)【解法提示】由折叠的性质可知AE =AB =2, ∠EAF =∠BAF ,∵OA =1,AE =2,∠AOE =90°,∴∠AEO =30°,∴∠EAO =60°,∴∠F AB =30°,∴BF =AB ·tan ∠F AB =233,则点F的坐标为(1,233).(2)如解图,作FM ⊥y 轴于点M ,∴∠AEF =∠ABF =90°,FM ⊥y 轴,∴∠AEO +∠FEM =90°,∠FEM +∠EFM =90°, ∴∠AEO =∠EFM ,∵sin ∠AEO =AO AE =13,第7题解图∴sin ∠EFM =13.设EM =x ,则EF =3x ,由勾股定理得MF =22x ,OE =22, ∵OB =2, ∴22x =2, 解得x =22, ∴OM =OE -EM =322,∴点F 的坐标为(2,322);(3)(n ,n 2+nn 2+2n). 【解法提示】如解图,作FM ⊥y 轴于点M , 同理∠AEO =∠EFM ,∵sin ∠AEO =AO AE =1n +1,∴sin ∠EFM =1n +1,设EM =x ,则EF =(n +1)x ,由勾股定理得MF =n 2+2n x ,OE =n 2+2n , ∵OB =n , ∴n 2+2n x =n .解得x =nn 2+2n ,∴OM =OE -EM =n 2+2n -nn 2+2n =n 2+n n 2+2n, ∴点F 的坐标为(n ,n 2+nn 2+2n).8. 如图,将一个正方形纸片AOCD 放置在平面直角坐标系中,点A (0,4),点O (0,0),点D 在第一象限,点P 为正方形AD 边上的一点(不与点A 、点D 重合),将正方形纸片折叠,使点O 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接OP ,OH .设P点的横坐标为m.(1)若∠APO=60°,求∠OPG的大小;(2)当点P在边AD上移动时,△PDH的周长l是否发生变化?若变化,用含m的式子表示l;若不变化,求出周长l;(3)设四边形EFGP的面积为S,当S取得最小值时,求点P的坐标(直接写出结果即可).第8题图解:(1)∵折叠正方形纸片,使点O落在点P处,点C落在点G处,∴∠POC=∠OPG,∵四边形AOCD是正方形,∴AD∥OC,∴∠APO=∠POC,∴∠APO=∠OPG,∵∠APO=60°,∴∠OPG=60°;(2)△PDH的周长不发生变化,理由:如解图①,过点O作OQ⊥PG,垂足为点Q,则∠DAO=∠PQO=90°.第8题解图①由(3)知∠APO=∠OPG,又∵OP=OP,∴△AOP≌△QOP,∴AP=QP,AO=QO,∵AO=OC,∴OC=OQ,∵∠OCD=∠OQH=90°,OH=OH,∴Rt△OCH≌Rt△OQH,∴CH=QH,∴△PDH 的周长l =PD +DH +PH =PD +DH +PQ +QH =PD +PQ +DH +QH =PD +AP +DH +CH =AD +CD =8,∴△PDH 的周长l 不发生变化,周长l 为定值8; (3)当S 取得最小值时,点P 的坐标为(2,4).【解法提示】如解图②,过点F 作FM ⊥OA 于点M ,设EF 与OP 交于点N ,第8题解图②由折叠的性质知△EON 与△EPN 关于直线EF 对称, ∴△EON ≌△EPN ,∴ON =PN ,EP =EO ,EN ⊥PO ,∵∠OAP =∠ENO ,∠AOP =∠NOE , ∴△POA ∽△EON , ∴PO EO =P A EN =OAON①, 设P A =x , ∵点A (0,4), ∴OA =4,∴OP =OA 2+P A 2=16+x 2,∴ON =12OP =1216+x 2,将OP ,ON 代入①式得,OE =PE = 18(16+x 2), ∵∠EFM +∠OEN =90°, ∠AOP +∠OEN =90°, ∴∠EFM =∠AOP , 在△EFM 和△POA 中, ⎩⎪⎨⎪⎧∠EFM =∠AOP FM =OA ∠OAP =∠EMF, ∴△EFM ≌△POA (ASA), ∴EM =P A =x ,∴FG =CF =OM =OE -EM = 18(16+x 2)-x =18x 2-x +2,∴S=S梯形EFGP=S梯形OCFE=12(FC+OE)·OC=12[18x2-x+2+18(16+x2)]×4=12(x-2)2+6,∴当x=2时,S最小,即AP=2,∴点P的坐标是(2,4).。

北师大版数学七升八暑假作业专题复习提升专题七 折叠问题(含答案)

北师大版数学七升八暑假作业专题复习提升专题七 折叠问题(含答案)

北师大版数学七升八暑假作业专题复习提升-专题七折叠问题折叠是一种对称变换,属于轴对称,对称轴所在直线是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决这些问题的基本方法是精确找出折叠前后相等的边与角,以及结合图形的性质把边角的关系联系起来,同时结合方程思想、数形结合思想等数学思想进行解题.类型一平行线中的折叠问题1.如图,将一个对边平行的纸条沿AB折叠一下,若∠1=130∘,则∠2的大小为.2. 如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处.若α+β=119∘,则∠EMF的度数为()A. 57∘B. 58∘C. 59∘D. 60∘3. 将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=64∘,则∠1的度数为()第3题图A. 52∘B. 62∘C. 64∘D. 42∘4. 如图,将矩形ABCD沿对角线BD折叠,使点C落在点F处,BF交AD于点E.若∠BDC=62∘,则∠FDE的度数为()第4题图A. 28∘B. 62∘C. 34∘D. 24∘5.如图1,已知长方形纸带ABCD,将纸带沿EF折叠后,点C,D分别落在H,G的位置,再沿BC折叠成图2.若∠DEF=72∘,则∠GMN=∘.6. 如图1是长方形纸带,∠CFE=55∘,将纸带沿EF折叠成图2,再沿GE折叠成图3,则图3中∠DEF的度数是.7. 如图,四边形ABCD为一长方形纸片,AD//BC,∠DAB=∠ABC=∠C=∠ADC =90∘,E为BC上一点,将纸片沿AE折叠,B点落在长方形外的F点,连接BD.若∠CBD=20∘,且AF//BD,求∠BAE的度数.类型二三角形中的折叠问题8. 如图,在△ABC中,M,N分别是边AB,BC上的点,将△BMN沿MN折叠,使点B落在点B′处.若∠B=35∘,∠BNM=28∘,则∠AMB′的度数为()第8题图A. 30∘B. 37∘C. 54∘D. 63∘9.如图,在Rt△ABC中,∠BAC=90∘,∠C=40∘,点D为BC上一点,把△ABD 沿AD折叠到△AB′D,点B的对应点B′恰好落在边BC上,则∠CAB′的度数为()第9题图A. 10∘B. 20∘C. 30∘D. 40∘10. 如图1,已知三角形纸片ABC,AB=AC=6,BC=4,将其折叠,如图2,使点A与点B重合,折痕为ED,点E,D分别在AB,AC上,则△BCD的周长为.11. 将纸片△ABC沿DE折叠使点A落在点A′处.若∠1=80∘,∠2=28∘,则∠A的度数为.12. 定义:如果一个三角形的两个内角α与β满足2α+β=90∘,那么我们称这样的三角形为“准直角三角形”.如图,将三角形纸片ABC沿着EF折叠,使得点A落在BC边上的点D处.已知∠A=∠B=35∘,设∠BED=x∘,当△BED和△CDF同时成为“准直角三角形”时,求x的值.13. 探究:(1)如图1,∠1+∠2与∠B+∠C有什么关系?为什么?当∠A=40∘时,∠B+∠C+∠1+∠2=∘.(2)把图1中△ABC沿DE折叠得到△A′DE,如图2.填空:∠1+∠2∠B+∠C;(选填“>”“<”或“=”)如果∠A=30∘,则∠A′DB+∠A′EC=;猜想∠A′DB,∠A′EC与∠A的关系为,并说明理由.(3)如图3,把△ABC沿着DE折叠得到△A′DE,A′D与AC相交于点F,则∠A′DB,∠A′EC与∠A的关系为,并说明理由.答案专题七折叠问题类型一平行线中的折叠问题1.115∘2.B3.A4.C5.726.15∘7.解:∵AD//BC,∠CBD=20∘,∴∠ADB=∠CBD=20∘.∵AF//BD,∴∠ADB=∠FAD.∵∠DAB=90∘,∴∠BAF=∠DAB+∠FAD=110∘.∵纸片沿AE折叠,∴∠BAE=∠FAE,∴∠BAE=1∠BAF=55∘.2类型二三角形中的折叠问题8.C9.A10.1011.26∘12.20【解析】∵将纸片沿着EF折叠,使得点A落在BC边上的点D处,∠A=∠B=35∘,∴∠EDF=∠A=35∘,当△BED为“准直角三角形”时,2∠DEB+∠B=90∘或∠DEB+2∠B=90∘,∴2x+35=90或x+2×35=90,∴x=27.5或x=20.①当x=27.5时,即∠DEB=27.5∘,∴∠CDE=∠DEB+∠B=27.5∘+35∘=62.5∘,∴∠CDF=∠CDE−∠EDF=62.5∘−35∘=27.5∘,∴∠CFD=180∘−∠C−∠CDF=180∘−110−27.5∘=42.5∘,此时2∠CDF+∠CFD=2×27.5∘+42.5∘=97.5∘,2∠CFD+∠CDF=2×42.5∘+27.5∘=112.5∘,∴△CDF不是“准直角三角形”;②当x=20时,即∠DEB=20∘,∴∠CDE=∠DEB+∠B=20∘+35∘=55∘,∴∠CDF=∠CDE−∠EDF=55∘−35∘=20∘,∴∠CFD=180∘−∠C−∠CDF=180∘−110∘−20∘=50∘,此时2∠CDF+∠CFD=90∘,∴△CDF是“准直角三角形”;综上所述,能使△BED和△CDF同时成为“准直角三角形”的x值为20.13.(1)280【解析】∠1+∠2=∠B+∠C∵∠A+∠1+∠2=180∘,∠A+∠B+∠C=180∘,∴∠1+∠2=∠B+∠C.当∠A=40∘时,∠B+∠C=180∘−40∘=140∘,∠1+∠2=180∘−40∘=140∘,∴∠B+∠C+∠1+∠2=280∘.故答案为: 280.(2)=;60∘;∠A′DB+∠A′EC=2∠A;解:由(1)得∠ADE+∠AED=∠B+∠C.由翻折变换的性质可知,∠1+∠2=∠ADE+∠AED,∴∠1+∠2=∠B+∠C.由翻折变换的性质可知,∠ADE=∠A′DE,∠AED=∠A′ED,∠ADE+∠AED=180∘−∠A,∠ADA′+∠AEA′=360∘−2∠A,∠A′DB+∠A′EC=360∘−(360∘−2∠A)=2∠A.当∠A=30∘时,∠A′DB+∠A′EC=60∘.故答案为:=;60∘;∠A′DB+∠A′EC=2∠A.(3)∠A′DB=∠A′EC+2∠A;∵∠A′DB=∠A+∠AFD,∠AFD=∠A′+∠A′EC,∴∠A′DB=∠A′EC+2∠A.故答案为:∠A′DB=∠A′EC+2∠A.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案解析
5. (2016海珠.七上期末) 如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线 EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.
(1) 若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN=°. (2) 若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由. (3) 将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′. 考点: 翻折变换(折叠问题);
(1) 点E, , 共线时,如图 ,求
的度数;
(2) 点E, , 不共线时,如图
,设

说明理由.
考点: 角的大小比较;余角、补角及其性质;翻折变换(折叠问题);
,请分别写出 、 满足的数量关系式,并 答案解析
2. (2019金湖.七上期末) 如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为 折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,
3.
(2019.七上期末) 如图①,点O为直线MN上一点,过点O作直线OC , 使∠NOC=60°.将一把直角三角尺的直角顶点 放在点O处,一边OA在射线OM上,另一边OB在直线AB的下方,其中∠OBA=30°
(1) 将图②中的三角尺沿直线OC翻折至△A′ቤተ መጻሕፍቲ ባይዱ′O,求∠A′ON的度数;
(2) 将图①中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转,旋转角为α(0<α<360°),在旋转的过程中,
2020年 七 上 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题 答 案
1.答案:
答案解析
2.答案:
3.答案:
4.答案: 5.答案:
七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年压轴题版
2020年 七 上 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题
1. (2019川汇.七上期末) 已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落 在点 处,将三角形EBG沿EG翻折,点B落在点 处.
(1) 如图2中A′落在ED′上,求∠FEG的度数; (2) 如图3中∠A′ED′=50°,求∠FEG的度数; (3) 如图4中∠FEG=85°,请直接写出∠A′ED′的度数; (4) 若∠A′ED'=n°,直接写出∠FEG的度数(用含n的代数式表示). 考点: 角的运算;翻折变换(折叠问题);
答案解析
(1) 将△ABC绕点B逆时针旋转,使点C落在AB边上的点C1处,点A落在点A1处,在图中画出△A1BC1;
(2) 求四边形ACBA1的面积;(用m、n的代数式表示)
(3) 将△A1BC1沿着AB翻折得△A2BC1,A2C1交AC于点D,写出四边形BCDC1与三角形ABC的面积的比值.
考点: 翻折变换(折叠问题);作图﹣旋转;
在第几秒时,直线OA恰好平分锐角∠NOC;
(3) 将图①中的三角尺绕点O顺时针旋转,当点A点B均在直线MN上方时(如图③所示),请探究∠MOB与∠AOC
之间的数量关系,请直接写出结论,不必写出理由.
考点: 翻折变换(折叠问题);旋转的性质;
答案解析
4. (2018普陀.七上期末) 如图,在△ABC中,∠ACB=90°,BC=m,AB=3m,AC=n.
相关文档
最新文档