(完整版)高中数学直线和圆知识点总结
高中数学直线和圆知识点复习总结
高中数学直线和圆知识点复习总结
高中数学中的直线和圆的总结有很多知识点,本文就针对这些知识点进行一个总结,同学们可以查阅,以便加深对直线和圆的理解。
首先,在直线方面需要知道的是什么?
一、直线的定义
直线是平面上双等距平行的两条线,可以用一元二次方程来表示。
二、直线的性质
1、平等的距离及同一平面的
直线的夹角相等,距离也相等,两直线交于一点,其中一条直线经过这一点,另一条不经过,而在同一平面上的两直线是相互垂直的。
2、直线的交点
当两条直线在有限空间内相交时,这种相交是称之为直线的交点。
三、直线的位置关系
1、平行
当两条直线从同一个方向平行可以认为这两条直线平行。
接下来,要总结一下圆知识点了。
圆是位于平面中心点到圆上任一点的距离相等的一种曲线,而圆的半径则是指这种距离。
1、圆心在圆的任一点的距离是一致的
2、圆的封闭图形
圆是一种封闭的曲线,无论是确定它的定义还是它的性质,都建立在它是一种封闭图形的基础之上。
1、圆内和内接四边形外接圆
内接四边形外接圆是指圆心和任意两个顶点形成的距离都相等的圆,这圆就是内接四边形外接圆。
当一条直线与圆的关系有六种:即相切、相交、内切、外切、内含和外公切线,因此理解这一关系也是重要的。
以上就是高中数学直线和圆知识点复习总结,希望可以帮助读者们更加深入理解这些概念,提升高中数学学习的能力,顺利通过高考。
(完整版)高中数学必修二直线与圆方面的知识点,推荐文档
高中数学必修2知识点——直线与圆整理徐福扬一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即。
斜率反映直tan k α=线与轴的倾斜程度。
当时,; 当时,; 当时,[) 90,0∈α0≥k () 180,90∈α0<k 90=α不存在。
k ②过两点的直线的斜率公式: )(211212x x x x y y k ≠--=注意下面四点:(1)当时,公式右边无意义,直线的斜率不21x x =存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k ,且过点)(11x x k y y -=-()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:,直线斜率为k ,直线在y 轴上的截距为b b kx y +=③两点式:()直线两点,112121y y x x y y x x --=--1212,x x y y ≠≠()11,y x ()22,y x ④截矩式:1x y ab+=其中直线与轴交于点,与轴交于点,即与轴、轴l x (,0)a y (0,)b l x y 的截距分别为。
,a b ⑤一般式:(A ,B 不全为0)0=++C By Ax注意:各式的适用范围 特殊的方程如:○1○2平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:b y =(a 为常数);a x =(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)0000=++C y B x A 00,B A 的直线系:(C 为常数)000=++C y B x A (二)过定点的直线系(ⅰ)斜率为k 的直线系:,直线过定点()00x x k y y -=-;()00,y x (ⅱ)过两条直线,的0:1111=++C y B x A l 0:2222=++C y B x A l 交点的直线系方程为(为参数),其中直线不在直线()()0222111=+++++C y B x A C y B x A λλ2l 系中。
高中数学直线和圆知识点总结
高中数学直线和圆知识点总结高中数学是许多学生感到头疼的科目之一,其中直线和圆的知识点又是必考内容。
本文将为大家总结一下高中数学中直线和圆的知识点,帮助大家更好地掌握这一部分内容。
一、直线1、定义:直线是不弯曲的线,它没有宽度,可以无限延伸。
2、性质:直线是平行的,没有交点,可以通过两点确定一条直线。
3、画法:在纸上绘制直线时,要确保线条平直,没有弯曲,且与坐标轴平行。
二、圆1、定义:圆是一个平面内到定点(F)的距离等于定长r的点的集合。
2、性质:圆具有旋转对称性,可以绕圆心旋转任意角度而不改变形状和大小。
圆的直径是最长的弦,直径所在的直线穿过圆心。
3、画法:在纸上绘制圆时,可以使用圆规来绘制,确保圆规的两只脚相等,并在画圆的过程中保持圆规稳定。
三、直线和圆的重要知识点1、点到直线的距离公式:假设点P(x0,y0)到直线Ax+By+C=0的距离为d,则d=|Ax0+By0+C|/√(A^2+B^2)。
2、圆的方程:假设圆心为(x0,y0),半径为r,则圆的方程为(x-x0)^2+(y-y0)^2=r^2。
3、圆的标准方程:假设圆心为(a,b),半径为r,则圆的标准方程为(x-a)^2+(y-b)^2=r^2。
四、总结高中数学中的直线和圆知识点是必考内容,需要大家熟练掌握。
在解决相关问题时,要注意直线的性质和点到直线的距离公式,以及圆的方程和标准方程的求解方法。
此外,还要注意圆和直线的位置关系,如相交、相切、内切等。
在学习过程中,可以通过多做练习题来加深对知识点的理解和掌握。
总之,直线和圆是高中数学中重要的知识点之一,需要大家认真学习和掌握。
希望本文的总结能够帮助大家更好地应对相关问题,提高数学成绩。
高考数学直线与圆归纳总结
高考数学直线与圆归纳总结直线与圆是高中数学中重要的几何概念。
在高考数学中,直线与圆的相关知识点常常出现,并且在解决几何问题时扮演着重要的角色。
下面将对高考数学中涉及直线与圆的知识进行归纳总结。
一、直线与圆的位置关系1. 直线和圆可能有三种位置关系:相离、相切和相交。
a. 如果直线和圆没有交点,则称直线和圆相离。
b. 如果直线与圆有且仅有一个交点,则称直线与圆相切。
c. 如果直线与圆有两个交点,则称直线与圆相交。
2. 判断直线与圆的位置关系的方法:a. 判断直线与圆相离:计算直线到圆心的距离是否大于圆的半径。
b. 判断直线与圆相切:计算直线到圆心的距离等于圆的半径。
c. 判断直线与圆相交:计算直线到圆心的距离小于圆的半径。
二、直线与圆的方程1. 直线的一般方程:Ax + By + C = 0。
直线的一般方程表示直线上的所有点 (x, y),满足方程左侧等式。
2. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2。
圆的标准方程表示平面上距离圆心 (a, b) 距离为半径 r 的点 (x, y)。
3. 直线与圆的方程应用:a. 直线与圆的相交问题可以通过联立直线和圆的方程求解。
b. 直线与圆的相切问题可以通过判断直线方程是否与圆方程有且仅有一个交点来确定。
三、直线与圆的性质1. 切线与半径的关系:切线与半径的夹角是直角,即切线垂直于半径。
2. 切线的性质:a. 切点:切线与圆的交点称为切点。
b. 切线长度:切点到圆心的距离等于半径的长度。
c. 外切线:若直线与圆内切于一点,则这条直线称为外切线。
d. 内切线:若直线切圆于两个相交点,则这条直线称为内切线。
3. 弦的性质:弦是圆上的两个点之间的线段。
弦的性质有:a. 弦长:弦长等于圆心到弦的距离的两倍。
b. 直径:直径是通过圆心的弦。
直径等于半径的两倍。
四、圆的位置关系1. 同心圆:具有共同圆心的多个圆称为同心圆。
2. 内切圆与外接圆:如果一个圆与另一个圆有且仅有一个切点,则这两个圆称为内切圆与外接圆。
数学高一直线与圆知识点
数学高一直线与圆知识点在高中数学学科中,直线与圆是重要的几何图形,它们的相互关系也是我们必须深入了解的知识点。
下面将从不同角度介绍直线与圆的相关知识。
一、直线的基本概念与性质直线是最常见的几何图形之一,它具有以下基本概念与性质。
1. 定义:直线是由无数个点连成的轨迹,它没有起点和终点,并且内部的任意两点可以连成一条直线。
2. 点斜式方程:直线可以通过点和斜率来表示,一般形式为y= kx + b,其中k为斜率,b为常量。
3. 平行与垂直线:两条直线平行的充要条件是它们的斜率相等;两条直线垂直的充要条件是它们的斜率的乘积为-1。
4. 直线与直线的位置关系:两条直线可能相交、平行或重合。
5. 直线与平面图形的关系:直线可以与平面图形相交于一个或多个点,通过这些交点可以研究直线与图形的性质。
二、圆的基本概念与性质圆是另一种重要的几何图形,它有独特的定义和性质。
1. 定义:圆是由一个不动定点到平面上所有距离相等于这个定点与平面上其他点的距离的轨迹。
这个不动定点称为圆心,所有距离相等的线段称为半径,常用r表示。
2. 圆的方程:圆的方程一般形式为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为半径的长度。
3. 弧长与扇形面积:圆上的弧可以通过圆心角来确定长度,圆心角为1弧度时所对应的弧长度等于半径的长度。
圆的扇形面积等于圆心角所对应的弧长除以圆的周长再乘以圆的面积。
4. 圆内接与外切:如果一个三角形的三边分别和一个圆相切,那么这个三角形叫做这个圆的内切三角形。
如果一个四边形的四边分别和一个圆相切,那么这个四边形叫做这个圆的内切四边形。
三、直线与圆的相交关系直线与圆的相交关系给了我们更多的图形特性来研究。
1. 直线与圆的位置关系:直线可以与圆相离、相切或相交于两个交点。
2. 切线定理:直线若与圆相切,那么切点和圆心连线垂直。
3. 弦:直线在圆内部所对应的线段称为弦,弦的中垂线通过圆心。
高三直线和圆知识点
高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。
本文将为大家详细介绍高三直线和圆的相关知识。
一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。
直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。
直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。
2. 直线上的任意一点,都在直线上。
二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。
这个距离称为圆的半径,通常用字母r表示。
圆心是与所有这些点距离相等的点。
直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。
圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。
2. 圆的直径是圆的最长直线段,且等于半径的两倍。
3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。
4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。
三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。
它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。
b) 直线与圆相离:直线与圆没有交点。
c) 直线与圆相交:直线与圆有两个交点。
2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。
b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。
3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。
b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。
高二数学直线与圆的知识点及公式
高二数学直线与圆的知识点及公式直线和圆是高二数学中的重要内容,它们在几何学和代数学中都有广泛的应用。
本文将介绍直线和圆的基本概念、性质以及相关的公式。
一、直线的知识点直线是由无数个点连成的轨迹,没有起点和终点。
在直线上可以确定无数个点,其中有一些特殊的点和直线的性质需要我们了解。
1. 直线的斜率直线的斜率是直线的重要性质之一,它表示了直线上各个点的变化率。
直线的斜率可以用以下公式表示:斜率k = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)是直线上两个不同的点的坐标。
2. 直线的截距直线的截距也是直线的一个重要性质,它表示了直线与坐标轴的交点位置。
设直线与x轴的交点为A,与y轴的交点为B,直线的截距可以用以下公式表示:x轴截距a = -y轴截距b = -c / b其中,c是直线的常数项。
3. 直线的方程直线可以由点斜式、一般式和截距式等不同的方程表示。
根据直线上已知的条件,我们可以选择适当的方程形式来表示直线。
下面是直线方程的一般形式:Ax + By + C = 0其中,A、B和C是常数,代表直线的斜率和截距。
二、圆的知识点圆是由平面内到一个固定点距离相等的所有点的轨迹,其中固定点称为圆心,距离称为半径。
圆的性质和相关公式如下:1. 圆的方程圆的方程可以表示为:(x - h)² + (y - k)² = r²其中,(h, k)是圆心的坐标,r是半径的长度。
2. 圆的直径圆的直径是通过圆心并且两端点处于圆上的一条线段。
圆的直径长度等于半径的2倍。
3. 圆的弦圆上任意两点之间所形成的线段称为圆的弦。
圆的直径是圆的一个特殊的弦,它同时也是最长的弦。
4. 圆的切线圆上的切线是与圆只有一个交点的直线。
切线和圆的半径垂直。
5. 圆的弧长和扇形面积圆的弧长可以用下面的公式计算:弧长 = 弧度 ×半径而圆的扇形面积则可以用以下公式计算:扇形面积 = 弧度 ×半径² / 2三、综合运用直线和圆在几何学和代数学中的运用非常广泛。
高中数学必修二直线与圆方面的知识点
中学数学必修2学问点——直线与圆整理 徐福扬一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特殊地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=留意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的依次无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标干脆求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x留意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)留意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:ax =(a 为常数);(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数) (二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
直线与圆知识点总结
直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
高中直线和圆数学知识点(详细)
高中直线和圆数学知识点(详细)高中直线和圆数学知识点1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。
而其到角是带有方向的角,范围是4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.5.圆的方程:最简方程 ;标准方程 ;6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”(1)过圆上一点圆的切线方程如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程, (为圆心到直线的距离).7.曲线与的交点坐标方程组的解;过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.高考数学答题有什么策略1.调适心理,增强信心(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;(2)合理安排饮食,提高睡眠质量;(3)保持良好的备考状态,不断进行积极的心理暗示;(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。
直线与圆知识点归纳高三
直线与圆知识点归纳高三直线与圆知识点归纳直线和圆是解析几何中常见的两种几何图形,它们有着丰富的性质和联系。
本文将对直线和圆的相关知识点进行归纳总结,帮助高三学生复习和掌握这一部分内容。
一、直线的定义和性质1. 直线的定义:直线是由无数个点连成的路径,它没有宽度和长度,可以无限延伸。
2. 直线的性质:(1) 直线上的任意两点可以确定一条直线;(2) 任意一条直线可以通过两个点确定;(3) 直线可以延伸到无穷远,也可以延伸到无穷近。
二、圆的定义和性质1. 圆的定义:圆是由平面上距离某一点固定距离的所有点构成的图形。
2. 圆的性质:(1) 圆上任意两点都在圆周上;(2) 圆心到圆周上的任一点的距离都相等,称为半径;(3) 圆的直径是通过圆心,并且两端点都在圆上的线段,长度为半径的两倍;(4) 圆的周长是圆周的长度,记作C,公式为C = 2πr,其中r 为半径;(5) 圆的面积是圆内部的所有点构成的区域,记作S,公式为S = πr²。
三、直线与圆的关系1. 直线与圆的位置关系:(1) 直线可与圆相交,相切或不相交;(2) 如果直线与圆相交,可能有两个交点,一个交点或没有交点;(3) 如果直线与圆相切,有且只有一个切点;(4) 如果直线不与圆相交或切,那么直线与圆之间的距离等于直线到圆心的距离。
2. 判断直线与圆的位置关系的方法:(1) 利用勾股定理:如果直线与圆的距离小于半径,那么直线与圆相交;如果直线与圆的距离等于半径,那么直线与圆相切;如果直线与圆的距离大于半径,那么直线与圆不相交也不相切。
(2) 利用方程求解:已知直线和圆的方程,将直线方程代入圆的方程中,求解得到交点或切点。
四、直线和圆的相关定理1. 直径定理:如果一条直线通过圆的圆心,并且两个端点都在圆上,那么这条直线的长度等于圆的直径。
2. 切线定理:过圆外一点引一条直线与圆相交,那么这条直线与圆的切点到圆心的线段垂直于直线。
3. 弦切角定理:相交弦所夹的圆心角等于它们所对的弧所夹的圆心角的一半。
高二数学知识点之直线与圆知识点总结
高二数学知识点之直线与圆知识点总结
整理了高二数学知识点之直线与圆,希望大家能帮到大家,在空余时间进行复习。
一、直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.
过两点(_1,y1),(_2,y2)的直线的斜率k=( y2-y1)/(_2-_1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为 ,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、,,① ∥ , ; ② .
直线与直线的位置关系:
(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0
5、点到直线的距离公式 ;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离② 相切③ 相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长
以上就是高二数学知识点之直线与圆,希望能帮助到大家。
高中数学直线和圆的方程知识点总结
高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
高中数学直线与圆知识点
直线与圆一.直线的倾斜角:1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;2.倾斜角的范围[)π,0。
如(1)直线023cos =-+y x θ的倾斜角的范围是(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______二.直线的斜率:1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k≠--=;3.直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? 4.应用:证明三点共线:AB BC k k =。
如(1) 两条直线钭率相等是这两条直线平行的____________条件 (2)实数,x y 满足3250x y --= (31≤≤x ),则xy的最大值、最小值分别为______三.直线的方程:1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x轴的直线。
2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
4.截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。
高二数学知识点汇总-直线与圆
直线与圆知识点1直线的方程1、直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π).2、直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是π2的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.3、直线方程的五种形式形式几何条件方程适用范围点斜式过一点(x 0,y 0),斜率k y -y 0=k (x -x 0)与x 轴不垂直的直线斜截式纵截距b ,斜率k y =kx +b 与x 轴不垂直的直线两点式过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线截距式横截距a ,纵截距bx a +y b=1不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内所有直线【注意】“截距”是直线与坐标轴交点的坐标值,它可正、可负,也可以是零,而“距离”是一个非负数.知识点2两条直线的位置关系1、两条直线平行与垂直的判定(1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.(2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2、两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 21x +B 1y +C 1=0,2x +B 2y +C 2=0的解.3、三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|= x 2-x 1 2+ y 2-y 1 2.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4、直线系方程的常见类型(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数且λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).知识点3圆的方程1、圆的定义及方程2点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.理论依据点到圆心的距离与半径的大小关系三种情况(x 0-a )2+(y 0-b )2=r 2⇔点在圆上(x 0-a )2+(y 0-b )2>r 2⇔点在圆外(x 0-a )2+(y 0-b )2<r 2⇔点在圆内3、二元二次方程与圆的关系不要把形如x 2+y 2+Dx +Ey +F =0的结构都认为是圆,一定要先判断D 2+E 2-4F 的符号,只有大于0时才表示圆.若x 2+y 2+Dx +Ey +F =0表示圆,则有:(1)当F =0时,圆过原点.(2)当D =0,E ≠0时,圆心在y 轴上;当D ≠0,E =0时,圆心在x 轴上.(3)当D =F =0,E ≠0时,圆与x 轴相切于原点;E =F =0,D ≠0时,圆与y 轴相切于原点.(4)当D 2=E 2=4F 时,圆与两坐标轴相切.知识点4直线与圆、圆与圆的位置关系1、直线与圆的位置关系及判断(1)三种位置关系:相交、相切、相离.(2)两种判断方法:①代数法――――――――――――――――联立方程得方程组消去x 或y得一元二次方程,Δ=b 2-4ac >0⇔相交=0⇔相切<0⇔相离②几何法――――――――――――圆心到直线的距离为d半径为r<r ⇔相交=r ⇔相切>r ⇔相离2、圆的切线与切线长(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ar d.【注意】过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数.3、圆的弦长直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|.4、圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)相离外切相交内切内含图形量的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|【注意】涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.一、直线的倾斜角与斜率范围的求法1、求倾斜角的取值范围的一般步骤(1)求出斜率k =tan α的取值范围.(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.求倾斜角时要注意斜率是否存在.2、斜率取值范围的2种求法(1)数形结合法:作出直线在平面直角坐标系中可能的位置,借助图形,结合正切函数的单调性确定;(2)函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,反之亦可三、由一般式方程确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0),l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件A 1A 2+B 1B 2=0l 1与l 2平行的充分条件A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0)l 1与l 2相交的充分条件A 1A 2≠B 1B 2(A 2B 2≠0)l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0)四、两条直线的交点与距离问题1、求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程,也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.2、点到直线、两平行线间的距离公式的使用条件(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.五、对称问题的求解方法1、点关于点:点P (x ,y )关于点Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .2、线关于点:直线关于点的对称可转化为点关于点的对称问题来解决.3、点关于线:点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),六、求圆的方程的两种方法1、几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2、待定系数法:(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.七、解决有关弦长问题的常用方法及结论1、几何法:如图所示,设直线l 被圆C 截得的弦为AB ,圆的半径为r ,圆心到直线的距离为d ,则有关系式:|AB |=2r 2-d 22、代数法:若斜率为k 的直线与圆相交于A (x A ,y A ),B (x B ,y B )两点,则|AB |=1+k 2· x A +x B 2-4x A x B =1+1k2y A -y B |(其中k ≠0).特别地,当k =0时,|AB |=|x A -x B |;当斜率不存在时,|AB |=|y A -y B |,八、求过一点(x 0,y 0)的圆的切线方程的方法1、几何法:当斜率存在时,设为k ,则切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程,当斜率不存在时,要进行验证;2、代数法:当斜率存在时,设为k ,则切线方程为y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0,求得k ,切线方程即可求出,当斜率不存在时,要进行验证九、求与圆有关的轨迹问题的方法1、直接法:直接根据题目提供的条件列出方程;2、定义法:根据圆、直线等定义列方程;3、几何法:利用圆的几何性质列方程;4、代入法:找到要求点与已知点的关系,代入已知点满足的关系式。
高一直线与圆的知识点总结
高一直线与圆的知识点总结直线和圆是几何学中的基本概念和重要对象,它们在高一数学课程中占据了重要的位置。
本文将对高一直线与圆的相关知识点进行总结,包括直线的性质、直线与圆的关系以及解题技巧等内容。
一、直线的性质直线是最简单的几何对象之一,具有以下性质:1. 直线没有端点,可以无限延伸。
2. 直线上的两点可以确定一条直线。
3. 直线上任意三点不共线。
4. 直线可以垂直于另一条直线。
垂直直线之间的夹角为90度。
5. 直线可以平行于另一条直线。
平行直线之间的夹角为零度。
二、圆的性质圆是由平面上所有与圆心的距离相等的点组成的集合,具有以下性质:1. 圆心到圆上任意一点的距离相等。
2. 圆上任意两点可确定圆心的连线,称为弦。
3. 圆心到圆弧的距离称为半径,全等圆的半径相等。
4. 圆上的弦垂直于弦所对应的弧。
5. 圆的弧度表示圆弧的长度与半径的比值。
一个圆的弧度为2π。
三、直线与圆的关系1. 直线与圆相切:直线与圆仅有一个公共点。
2. 直线与圆相交:直线与圆有两个不重合的交点。
3. 直线与圆相离:直线与圆没有公共点。
4. 切线的性质:与圆相切的直线称为切线,切线与以切点为圆心的圆相切于切点。
四、解题技巧在解决与直线和圆相关的问题时,以下是一些常用的解题技巧:1. 利用直线和圆的性质进行推导和证明。
2. 利用圆的切线性质求解问题。
3. 利用角的概念和相关定理进行证明和计算。
4. 利用勾股定理和相似三角形的性质进行计算和推理。
5. 运用代数的工具,如坐标系和方程,进行解题。
五、实例分析为了更好地理解直线与圆的知识点,以下是一个示例问题的分析:问题:已知直线AB与圆O相交于点C,连接CO并延长至点D,若∠CAB=60度,求证∠COD=120度。
解析:根据题目信息,我们可以得知∠CAB为60度,即直线AB与圆O相交于点C的切线。
我们希望证明∠COD为120度。
首先,连接OA和OD,因为OC是圆O的半径,所以OC=OD。
(完整版)高中数学直线和圆知识点总结
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,)2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+ (3)两点式:121121x x x x y y y y --=-- (4)截距式:1x y a b+= (5)一般式:0C =++By Ax3.距离公式(1)点111(,)P x y ,222(,)P x y之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212 k k b b == 相交:12k k ≠平行:1212 k k b b =≠ 垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A A B B += 相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系 当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);3.圆和圆的位置关系 判断圆心距12d OO =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系 当12d R R >+时,两圆相离,有4条公切线; 当12d R R =+时,两圆外切,有3条公切线; 当1212R R d R R -<<+时,两圆相交,有2条公切线; 当12d R R =-时,两圆内切,有1条公切线; 当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =。
高二数学直线与圆知识点总结
高二数学直线与圆知识点总结
1.直线与圆的关系:①直线与圆有三种关系:①相切、②相离、
③相交;②直线和圆的交点可为两个或一个;③当直线表示的是圆的
切线时,它和圆的距离为零;
2.圆心角、切线:①圆心角是指以圆心为顶点,两条分别经过圆上两
点的弧所构成的角,不大于180°,称为圆心角;②切线是指与圆关于圆上一点的切点由圆内一条直线经过圆上若干点所成的线;
3.圆的方程:①圆的标准方程为:(x-a)^2+(y-b)^2=r^2,其中a,b,r 分别是圆心坐标和半径;②将圆的方程以直线的斜截式中某点及斜率
表示:点到圆心距离=斜率^2*半径;
4.圆的分类:根据中心点是否相同,可将圆分类为同心圆和不同心圆;根据两条切线平行情况,可将圆分类为内切圆、外切圆和相切圆;根
据圆心角是否相等,可将圆分类为同方圆和不同方圆。
高中数学解析几何(直线和圆、圆锥曲线)知识点总结(非常全)
相交 ⇔
k1 ≠ k2
A1 ≠ B1 A2 B2
垂直 ⇔
k1 ⋅ k2 = −1
A1 A2 + B1B2 = 0
2
设两直线的方程分别为:
l1 l2
: :
y y
= =
k1x + b1 k2 x + b2
或
l1 l2
: :
A1x + B1 y + C1 = 0 A2 x + B2 y + C2 = 0
高中数学解析几何
第一部分:直线 一、直线的倾斜角与斜率 1.倾斜角α (1)定义:直线 l 向上的方向与 x 轴正向所成的角叫做直线的倾斜角。
(2)范围: 0° ≤ α < 180°
2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.
k = tanα
(1).倾斜角为 90° 的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于 x 轴时,
线方程: y = kx + b ;特别地,斜率存在且经过坐标原点的直线方程为: y = kx
注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过 (x1, y1 ) 和 (x2 , y2 ) 两点,且( x1 ≠ x2 , y1 ≠ y2 则直线的方程:
6(选修
4-4)参数式
x y
= =
x0 y0
+ +
at bt
(
t
参数)其中方向向量为
(a, b)
,
单位向量
a ,
a2 + b2
b a2 +
高中数学必修二直线与圆方面的知识点
高中数学必修二直线与圆方面的知识点RUSER redacted on the night of December 17,2020高中数学必修2知识点——直线与圆整理 徐福扬一、直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x=x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+=其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线和圆
一.直线
1.斜率与倾斜角:tan k θ=,[0,)θπ∈
(1)[0,)2π
θ∈时,0k ≥;
(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;
当倾斜角从90︒增加到180︒
时,斜率从-∞增加到0
2.直线方程
(1)点斜式:)(00x x k y y -=-
(2)斜截式:y kx b =+ (3)两点式:1
21121x x x x y y y y --=-- (4)截距式:1x y a b
+= (5)一般式:0C =++By Ax
3.距离公式
(1)点111(,)P x y ,222(,)P x y
之间的距离:12PP =
(2)点00(,)P x y 到直线0Ax By C ++=
的距离:d =
(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=
的距离:d =
4.位置关系
(1)截距式:y kx b =+形式
重合:1212 k k b b == 相交:12k k ≠
平行:1212 k k b b =≠ 垂直:121k k ⋅=-
(2)一般式:0Ax By C ++=形式
重合:1221A B A B =且1221A C A C =且1212B C C B =
平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠
垂直:12120A A B B += 相交:1221A B A B ≠
5.直线系
1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )
二.圆
1.圆的方程
(1)标准形式:222
()()x a y b R -+-=(0R >)
(2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩
(θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.
(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=
2.位置关系
(1)点00(,)P x y 和圆222
()()x a y b R -+-=的位置关系:
当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部
当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上
当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:
判断圆心(,)O a b 到直线0Ax By C ++=
的距离d =
R 的大小关系 当d R <时,直线和圆相交(有两个交点);
当d R =时,直线和圆相切(有且仅有一个交点);
当d R <时,直线和圆相离(无交点);
3.圆和圆的位置关系 判断圆心距12d OO =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系 当12d R R >+时,两圆相离,有4条公切线; 当12d R R =+时,两圆外切,有3条公切线; 当1212R R d R R -<<+时,两圆相交,有2条公切线; 当12d R R =-时,两圆内切,有1条公切线; 当120d R R ≤<-时,两圆内含,没有公切线;
4.当两圆相交时,两圆相交直线方程等于两圆方程相减
5
.弦长公式:l =。