平面与平面垂直的判定 优秀教案
《平面与平面垂直的判定定理》教学设计
《平面与平面垂直的判定定理》教学设计一、本节内容分析本节内容按照直线与直线垂直、直线与平面垂直、平面与平面垂直的研究过程展开.对于直线与直线的垂直,首先定义异面直线所成的角,两条直线垂直包括共面垂直与异面垂直对于直线与平面的垂直、平面与平面的垂直主要研究它们的判定定理和性质定理.直线与平面垂直的判定定理是指一条直线与构成该平面的基本元素—直线满足什么条件才能使此直线与该平面垂直,而平面与平面垂直的判定定理是指构成其中一个平面的直线与另平面或这个平面内的直线具备什么条件才能使两个平面垂直,实际上是在寻找平面与平面垂直的充分条件.性质是指直线与平面垂直、平面与平面垂直时,其基本构成要素具有怎样的确定不变的关系,实际上是必要条件,性质和判定之间具有互逆的关系,这也是我们研究问题的一个自然的起点.本节内容的处理继续遵循“直观感知—操作确认—思辨论证”的认识过程展开.通过本节课的学习与研究,可进步完善学生的知识结构,更好地培养学生观察记忆、空间想象及推测解释能力,使其体会由特殊到一般、类比、归纳、猜想、化归等数学思想,提升直观想象、数学运算和逻辑推理核心素养.本节包含的核心知识和体现的核心素养如下:二、学情整体分析上一节,我们研究了空间直线与直线、直线与平面、平面与平面的平行关系,本节在上一节基础上研究空间直线、平面间的另一特殊位置关系——垂直.由于学生的知识积累、解决问题的方法都已较为丰富,所以本节内容的学习既要继续加强从“一般观念”上的引导,让学生明确“什么是空间直线、平面的垂直”以及“空间直线、平面垂直时,其要素(直线、平面)有什么确定的不变关系”;又要充分类比对空间直线、平面平行关系的研究方式,引导学生研究空间直线、平面之间的垂直关系.研究的对象尽量由学生去提出,研究的内容要学生去确定,研究的方法启发学生去寻找.学情补充:____________________________________________________________________ _________________________________________________________________________________ 三、教学活动准备【任务专题设计】1.平面与平面垂直【教学目标设计】1.通过实例直观感知“二面角”概念的形成过程,理解二面角的概念,掌握二面角的作法,理解并掌握两个平面互相垂直的概念,两个平面垂直的判定定理及其应用方法.2.发展学生的推测解释能力、观察记忆能力和空间想象力,培养学生的质疑思辨、创新的精神.【教学策略设计】1.在平面与平面垂直的实际教学中,建议采用启发引导、分组合作、讲练结合的教学方法,使学生形成“直观感知—操作确认—数学抽象—归纳猜想—严谨证明—灵活应用”的探究式学习方法,从而达到以学生为主体、教师为主导、师生共同发展的课堂教学效果.【教学方法建议】启发教学法、探究教学法、情境教学法,还有________________________________【教学重点难点】重点1.直观感知、操作确认,概括出平面与平面垂直的判定定理难点3.平面与平面垂直的判定定理的应用.【教学材料准备】1.常用材料:多媒体课件、计算机、实物模型、__________________________________2.其他材料:_____________________________________________________________四、教学活动设计教学导入探究1 平面与平面垂直的判定定理师:在工程建设中,建筑工人用一端系有铅锤的线来检查墙面与地面是否垂直,如果系有铅锤的细线紧贴墙面,则确定墙面与地面垂直,否则不垂直.为什么线要紧贴墙面?生:为了说明细线在墙面内,细线与地面垂直,墙面就和地面垂直.师:满足什么条件的时候,才能使平面与平面互相垂直?【师生活动】教师组织学生思考、讨论,归纳出下面的结论.生:如果一个平面内有一条直线垂直于另一个平面,则这两个平面垂直.师:如何用图形语言和符号语言描述平面与平面垂直的判定定理.【师生活动】教师指导学生画出图形并将文字语言转化成符号语言,并出示多媒体.【推测解释能力】通过对实际问题观察和理解,使学生形成面面垂直的判定定理,通过学生交流讨论,把实际问题抽象成数学符号的表达方式,培养学生严谨的数学思维习惯【要点知识】平面与平面垂直的判定定理⊥⎫lα【教师总结】这个定理说明,可以由直线与平面垂直,证明平面与平面垂直.师:门所在平面与地面始终垂直吗?大家将课本打开,直立放在桌面上,每页纸张与桌面是否垂直?为什么?【师生活动】教师组织学生讨论、交流,用面面垂直判定定理来解释现象.师:下面请看如何利用平面与平面垂直的判定定理来解决实际问题.【活动学习】通过用判定定理解释生活中的常见现象,让学生意识到数学来源于生活,服务于生活,也体现了从特殊到一般,再到特殊的知识认知过程,促进学生数学思想方法的形成,引导学生确实掌握“降维”的转化与化归的数学思想方法【说明论证能力】通过学生尝试用定理解决问题,从而加强对面面垂直判定定理的理解和掌握,巩固所学知识,进一步体会由证明面面垂直转化为证明线面垂直,提升学生的逻辑思维和分析问题、解决问題的说明论证能力【典型例题】平面与平面垂直的判定定理的应用例1 如图,在正方体ABCD-A'B'C'D'中,求证:平面A'BD⊥平面ACC'A'【师生活动】教师出示多媒体并读题,引导学生分析题意,梳理解题思路,得到要用面面垂直的判定定理证明两个平面垂直,关键是找到一个平面内有一条直线垂直于另一个平面.学生独立完成例题证明,教师巡视课堂,并适时给予学生指导,教师出示规范解答.【典例解析】平面与平面垂直的判定定理的应用分析:要证平面A'BD ⊥平面ACC'A',根据两个平面垂直的判定定理,只需证明平面A'BD 经过平面ACC'A'的一条垂线即可.这需要利用AC,BD 是正方形ABCD 的对角线.证明:ABCD-A'B'C'D'是正方体,AA'⊥平面ABCD ,AA'BD ⊥又BD AC ⊥,AA'AC=A ⋂,∴BD ⊥平面ACC'A',又BD ⊂平面A'BD ,平面A'BD ⊥平面ACC'A'.师:请看下一道例题.【意义学习】通过教师对证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯【典型例题】平面与平面垂直的判定定理的应用例2 如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于,A B 的任意一点.求证:平面PAC ⊥平面PBC .【师生活动】教师引导学生分析解题思路,鼓励学生交流、讨论,并请学生做板演,教师对学生的解答过程做评价,随后教师给出规范性解答.【典例解析】平面与平面垂直的判定定理的应用分析:要证明两个平面垂直,根据两个平面垂直的判定定理,只需证明其中一个平面内的一条直线垂直于另一个平面,而由直线和平面垂直的判定定理,还需证明这条直线和另一个平面内的两条相交直线垂直.在本题中,由题意可知BC AC ⊥,,BC PA AC PA A ⊥⋂=,从而BC ⊥平面PAC ,进而平面PAC ⊥平面PBC .证明:∵PA ⊥平面,ABC BC ⊂平面,ABC PA BC ∴⊥.∵点C 是圆周上不同于,A B 的任意一点,AB 是O 的直径,∴90BCA ∠=︒,即BC AC ⊥. 又∵,PA AC A PA ⋂=⊂平面,PAC AC ⊂平面,PAC BC ∴⊥平面PAC .又∵BC ⊂平面,PBC ∴平面PAC ⊥平面PBC .【深度学习】通过教师引导学生分析解题思路,使学生掌握判断面面垂直有两种方法:一种是定义法(证二面角的平面角是直角),一种是判定定理法(证一个平面过另个平面的一条垂线),深化学生对两种方法的掌握能力【说明论证能力】通过例题巩固所学知识,使学生能够熟练应用知识解决说明论证的问题【教师总结】从本节的讨论可以看到,由直线与直线垂直可以判定直线与平面垂直由直线与平面垂直的定义可以得到直线与直线垂直;由直线与平面垂直可以判定平面与平面垂直;而由平面与平面垂直的性质可以得到直线与平面垂直,这进一步揭示了直线平面之间的位置关系可以相互转化.师:通过这节课的学习,同学们都学到了哪些知识?【师生活动】教师引导学生归纳总结、完善本节课所学知识.【整体学习】引导学生学习直线与平面、平面与平面垂直的判定定理和性质定理之间的相互联系,进一步体会空间中直线与平面的位置关系之间的相互转化,培养学生对转化与化归数学思想方法的理解,发展学生的逻辑推理学科核心素养【课堂小结】平面与平面垂直1.判定平面与平面垂直的方法有哪些?判定平面与平面垂直的方法体现了什么数学思想?2.平面与平面垂直的判定定理是什么?能够解决哪些问题?3.如何实现空间垂直关系的相互转化?请指出下面图中空间垂直关系转化的依据.【设计意图】通过理解和掌握面面垂直的判定和性质,能够证明面面垂直和线面垂直,培养学生的推测解释、说明论证能力,提升逻辑推理核心素养【课后作业】教材P235练习3、4题教学评价垂直关系的相互转化:线线垂直、线面垂直、面面垂直是相互联系的,能够相互转化,转化的纽带是对应的定义、判定定理和性质定理在解决问题时,可以从条件入手,分析已有的垂直关系,再从结论探求所需的关系,从而架起条件与结论的桥梁.空间平行、垂直关系之间的转化:【设计意图】引导学生对线线垂直、线面垂直、面面垂直的判定和性质探究分析,帮助学生体会知识的生成、发展、完善的过程.通过具体知识点的演练,让学生在运用课程教学过程中所学到的学科能力(概括理解、推理解释、说明论证、猜想探究等)分析问题、解决问题,从而达到直观想象、逻辑推理、数学抽象核心素养目标要求【以学定教】根据学情,因材施教,以人为本,以生为本,根据学生逐步掌握的知识点和定理,依据生活实例和模型,采取不同探究式教学法,让学生逐步掌握线线垂直、线面垂直、面面垂直的知识教学反思本节的知识(直线与直线的垂直关系、直线与平面的垂直关系、平面与平面的垂直关系)与学生学习的生活联系密切,教师一方面引导学生从生活实际出发,把知识与周围的事物联系起来;另一方面,教师引导学生经历从现实的生活空间中抽象出空间图形的过程,注重探索空间图形位置关系的判定与性质的过程本节课教师特别注重数学中的文字语言与符号语言的相互转化,将空间问题向平面问题转化,有效地体现了转化与化归的数学思想.在判定定理的教学中,遵循了“直观感知、操作确认、归纳总结、初步运用”的认知过程,学生通过观察分析、自主探究,在教师的引导下,进行适当推理而归纳出判定定理关于判定和性质定理的应用,教师没有简单直接讲解,而是由学生先行自主探究,教师适时点拨,以增强学生自主学习的意识,再通过实物投影,来规范学生的解答过程,提高学生数学表达能力.【以学论教】对教学活动整个过程的学习情况进行追踪,根据学生实际学习情况和课堂效果使学生通过观察分析、自主探究学习和掌握空间线面的垂直关系。
平面与平面垂直的性质教案
一、教学目标1. 让学生理解平面与平面垂直的概念,掌握平面与平面垂直的性质。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容1. 平面与平面垂直的定义2. 平面与平面垂直的性质定理3. 平面与平面垂直的应用三、教学重点与难点1. 教学重点:平面与平面垂直的性质定理及其应用。
2. 教学难点:平面与平面垂直的性质定理的理解和运用。
四、教学方法1. 采用讲授法,讲解平面与平面垂直的定义、性质定理及应用。
2. 利用几何模型和实物模型,直观展示平面与平面垂直的现象,增强学生的空间想象力。
3. 开展小组讨论,让学生互相交流、探讨,加深对平面与平面垂直性质的理解。
4. 运用例题讲解,培养学生运用几何知识解决实际问题的能力。
五、教学步骤1. 导入新课:通过展示生活中的实例,引导学生思考平面与平面垂直的现象。
2. 讲解平面与平面垂直的定义,让学生理解垂直的概念。
3. 讲解平面与平面垂直的性质定理,引导学生通过图形进行验证。
5. 总结本节课的主要内容,布置课后作业。
教案仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学评价1. 课后作业:布置有关平面与平面垂直性质的习题,巩固所学知识。
2. 课堂练习:设置一些有关平面与平面垂直的应用题,检验学生对性质定理的掌握程度。
3. 学生互评:鼓励学生之间相互评价,提高学生的沟通能力。
七、教学拓展1. 探讨平面与平面垂直的其他性质定理。
2. 研究平面与平面垂直在实际工程中的应用。
八、教学反思1. 教师在课后要对课堂进行反思,总结教学过程中的优点和不足。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
九、课后作业1. 习题:完成教材后的相关习题,加深对平面与平面垂直性质的理解。
2. 实践作业:观察生活中的平面与平面垂直现象,拍摄图片,进行简要描述。
十、教学进度安排1. 本节课计划用2课时完成,第1课时讲解平面与平面垂直的定义和性质定理,第2课时进行应用讲解和课后作业布置。
平面与平面垂直的性质定理教学设计及平面与平面垂直的判定与性质教案完美版
平面与平面垂直的性质定理教学设计及平面与平面垂直的判定与性质教案完美版教学设计:一、教学目标:1.知识目标:掌握平面与平面垂直的性质定理,了解平面与平面垂直的判定方法。
2.能力目标:能够正确判断平面与平面是否垂直,并运用性质定理求解问题。
3.情感目标:培养学生对几何知识的兴趣,提高解决几何问题的能力。
二、教学内容:1.平面与平面垂直的性质定理。
2.平面与平面垂直的判定方法。
三、教学步骤:1.导入新知识(10分钟)教师引入本节课的知识内容,告诉学生本节课要学习平面与平面垂直的性质定理和判定方法,并和学生一起回顾正交的概念,引发学生的思考。
2.学习性质定理(30分钟)教师通过多个例子,引导学生观察和总结平面与平面垂直的性质定理。
-性质定理一:如果两个平面的法向量相互垂直,则这两个平面垂直。
-性质定理二:如果两个平面中的各一条直线互相垂直,则这两个平面垂直。
教师先给出性质定理一的证明过程,再由学生自行推导性质定理二的证明过程。
学生在学习性质定理的过程中,教师可以组织学生进行小组讨论,让学生互相讨论并分享自己的理解和想法。
3.学习判定方法(30分钟)教师介绍平面与平面垂直的判定方法:-判定方法一:如果两个平面的法向量相互垂直,则这两个平面垂直。
-判定方法二:如果两个平面中的各一条直线互相垂直,则这两个平面垂直。
教师给出一些实际应用的例子,引导学生通过观察图形来判断两个平面是否垂直。
4.综合练习(20分钟)教师设计一些相关练习题,让学生通过运用刚刚学习的性质定理和判定方法来解决问题。
5.总结和课堂小结(10分钟)教师总结本节课学习的内容,提醒学生注意关键点,并给出总结性的提问,激发学生思维。
四、教学手段:1.教师板书法通过板书法概括和总结平面与平面垂直的性质定理和判定方法。
2.多媒体教学法运用多媒体教学展示相关的图片和视频,帮助学生更好地理解和掌握平面与平面垂直的性质定理和判定方法。
3.讨论和合作学习通过讨论和合作学习的方式,激发学生思维,增加学生的参与感和主动性。
平面与平面垂直的教案
8.6.3 平面与平面垂直——平面与平面垂直的性质一、教学目标1.掌握平面与平面垂直的性质定理;2.学会运用平面与平面垂直的性质定理解决一些简单的问题;3.通过对平面与平面垂直性质定理的学习,培养学生数学抽象、逻辑推理、直观想象等数学素养.二、教学重难点1.掌握平面与平面垂直的性质定理;2.会运用平面与平面垂直的性质定理解决一些简单的问题。
三、教学过程:1、复习回顾(1)怎样找二面角的平面角?在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.平面角是直角的二面角叫做直二面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.2、探究新知如果两个平面互相垂直,根据已有的研究经验,我们可以先研究其中一个平面内的直线与另一个平面具有什么位置关系.【探究活动】如图,已知平面α⊥平面β,α∩β=a ,则β内任意一条直线b 与a 是什么位置关系?相应地,b 与α是什么位置关系?为什么?由此:猜想:,,,.a b b a b αβαβαα⊥=⊂⊥⇒⊥证明:如图,设b ∩a =A ,过点A 在α内作直线c ⊥a ,则直线b,c 所成的角就是二面角a αβ--的平面角.由α∠β,故b∠c .又因为b∠a ,a∩c =A ,所以b∠α.3.得出定理平面与平面垂直的性质定理两个平面垂直,如果一个平面内有一条直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.图形表示:符号语言:,,,.a b b a b αβαβαα⊥=⊂⊥⇒⊥4.定理应用【例1】判断下列命题是否正确.(1)若平面α⊥平面β,则平面α内所有直线都垂直于平面β.(2)若平面α⊥平面β,则平面α内一定存在直线平行于平面β.(3)若平面α不垂直平面β,则平面α内一定不存在直线垂直于平面β.答案:(1)错;(2)对;(3)对.【例2】已知:如图,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥平面PAB.证明过程略。
《平面与平面垂直的判定》教案、导学案、课后作业
《8.6.3 平面与平面垂直》教案第1课时平面与平面垂直的判定【教材分析】在平面与平面的位置关系中,垂直是一种非常重要的关系,本节内容是直线与平面垂直关系延续和提高.通过本节使学生对整个空间中的垂直关系有一个整体的认知,线线垂直、线面垂直、面面垂直是可以相互转化的.【教学目标与核心素养】课程目标1.理解二面角的概念,并会求简单的二面角;2.理解直二面角与面面垂直的关系,理解平面和平面垂直的判定定理并能运用其解决相关问题.3.通过面面垂直定理的理解及运用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳平面和平面垂直的判定定理,找垂直关系;2. 数学运算:求二面角;3.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:平面与平面垂直的判定定理及其应用.难点:平面与平面垂直的判定定理,找垂直关系.【教学过程】一、情景导入我们知道如果两个平面的二面角是直角,那么这两个平面一定垂直.那么有没有更简单的方法证明两个平面垂直?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本155-158页,思考并完成以下问题1、什么是二面角?什么是直二面角?2、平面与平面平行的判定定理是什么?3、怎样用符号语言表示平面与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图中的二面角可记作:二面角α-AB-β或α-l-β或P-AB-Q.(2)二面角的平面角:如图,在二面角α-l-β的棱l 上任取一点O,以点O 为垂足,在半平面α和β内分别作垂直与直线l 的射线OA,OB,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.平面角是直角的二面角叫做直二面角.2.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与β垂直,记作 α⊥β.(2)判定定理四、典例分析、举一反三题型一 对面面垂直判定定理的应用例1 如图,是的直径,点是上的动点,垂直于所在的AB O ⊙C O ⊙PA O ⊙平面.证明:平面平面. 【答案】证明见解析.【解析】证明:∵是的直径,点是上的动点, ∴,即.又∵垂直于所在平面,平面 ∴. ∴ ∴平面. 又平面, ∴平面平面.解题技巧(判定两个平面垂直的常用方法)(1)定义法:即说明两个平面所成的二面角是直二面角;(2)判定定理法:其关键是在其中一个平面内寻找一直线与另一个平面垂直,即把问题转化为“线面垂直”;(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.跟踪训练一1、如图所示,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M.ABC PAC ⊥PBC AB O ⊙C O ⊙90ACB ∠=︒BC AC ⊥PA O ⊙BC ⊂O ⊙PA BC ⊥PA AC A =BC ⊥PAC BC ⊂PCB PAC ⊥PBC【答案】证明见解析.【解析】证明由长方体的性质可知,A1B1⊥平面BCC1B1,又BM⊂平面BCC1B1,所以A1B1⊥BM.又CC1=2,M为CC1的中点,所以C1M=CM=1.在Rt△B1C1M中,B1同理又B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M.又A1B1∩B1M=B1,所以BM⊥平面A1B1M.因为BM⊂平面ABM,所以平面ABM⊥平面A1B1M.题型二求二面角例2如图所示,在正方体ABCD-A′B′C′D′中:(1)求二面角D′-AB-D的大小;(2)若M是C′D′的中点,求二面角M-AB-D的大小.【答案】(1) 45°.(2)45°.【解析】(1)在正方体ABCD-A′B′C′D′中,AB⊥平面ADD′A′,所以AB⊥AD′,AB⊥AD,因此∠D′AD为二面角D′-AB-D的平面角,在Rt△D′DA中,∠D′AD=45°.所以二面角D′-AB-D的大小为45°.(2)因为M 是C′D′的中点,所以MA=MB,取AB 的中点N,连接MN,则MN ⊥AB.取CD 的中点H,连接HN,则HN ⊥AB.从而∠MNH 是二面角M-AB-D 的平面角.∠MNH=45°. 所以二面角M-AB-D 的大小为45°. 解题技巧: (作二面角的三种常用方法)(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB 为二面角α-l-β的平面角.(2)垂直法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB 为二面角α-l-β的平面角.(3)垂线法:过二面角的一个面内异于棱上的一点A 向另一个平面作垂线,垂足为B,由点B 向二面角的棱作垂线,垂足为O,连接AO,则∠AOB 为二面角的平面角或其补角.如图③,∠AOB 为二面角α-l-β的平面角.跟踪训练二1、如图,在三棱锥P-ABC 中,PA ⊥平面PBC,PA=PB=2,PC=4,BC=2√3 . (1)求证:平面PAB ⊥平面ABC;(2)E 为BA 的延长线上一点,若二面角P-EC-B 的大小为30°,求BE 的长.【答案】证明见解析【解析】(1)证明:因为PA ⊥平面PBC,所以PA ⊥PC,PA ⊥PB. 经计算,得所以AB 2+BC 2=AC 2,故BC ⊥AB.又PA ⊥平面PBC,所以PA ⊥BC.因为PA∩AB=A,所以BC ⊥平面PAB. 又BC ⊂平面ABC,故平面PAB ⊥平面ABC. (2)如图,取AB 的中点F,连接PF.因为PA=PB,所以PF ⊥AB.由(1)知平面PAB ⊥平面ABC, 又平面PAB∩平面ABC=AB,PF ⊂平面PAB, 所以PF ⊥平面ABC,PF ⊥EC. 过F 作FG ⊥EC 于G,连接PG. 因为PF ⊥EC,PF∩FG=F, 所以EC ⊥平面FPG. 因为PG ⊂平面FPG, 所以EC ⊥PG.于是∠PGF 是二面角P-EC-B 的平面角, 因此,∠PGF=30°. 又所以设由(1)知BC ⊥AB, 所以△EFG ∽△ECB,得=.因此,即x 2解得舍去).所以五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计FG BCEF EC七、作业课本158页练习,162页习题8.6的3、6、7、8题.【教学反思】学生了解两个平面垂直的判定,但在问题中应用的时候就不够灵活或找不到需要的条件.为此,本节的课堂中心是判定定理的引入与理解,判定定理的应用及立体空间感、空间观念的形成与逻辑思维能力的培养.《8.6.3 平面与平面垂直》导学案第1课时平面与平面垂直的判定【学习目标】知识目标1.理解二面角的概念,并会求简单的二面角;2.理解直二面角与面面垂直的关系,理解平面和平面垂直的判定定理并能运用其解决相关问题.3.通过面面垂直定理的理解及运用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳平面和平面垂直的判定定理,找垂直关系;2. 数学运算:求二面角;3.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:平面与平面垂直的判定定理及其应用.【学习难点】:平面与平面垂直的判定定理,找垂直关系.【学习过程】一、预习导入阅读课本155-158页,填写。
平面与平面垂直的判定 优秀教案
平面与平面垂直的判定
【教学目标】
1.知识与技能
(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;
(2)使学生掌握两个平面垂直的判定定理及其简单的应用;
(3)使学生理会“类比归纳”思想在教学问题解决上的作用。
2.过程与方法
(1)通过实例让学生直观感知“二面角”概念的形成过程;
(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3.情态、态度与价值观
通过揭示概念的形成、发展和应有和过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
【教学重难点】
重点:平面与平面垂直的判定;
难点:如何度量二面角的大小。
【教学方法】
实物观察、类比归纳、语言表达,讲练结合。
的求法与画法
AB .面分别为、
在半平面α和内分别作垂直于棱l 的射线OA 和αβ
β
与垂直,记作α⊥
把这个正方形折成一个
备选例题
例1 如图,四棱锥P –ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD .
证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°。
【分析】由△PAD ≌ △PCD ,可利用定义法构造二面角的平面角,证明所成角的余弦值恒小于零即可。
【评析】求二面角的大小应注意作(找)、证、求、答。
平面与平面垂直的判定教案
平面与平面垂直教学目标1.知识与技能(1)使学生正确理解和掌握“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理、性质定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.教学重点:平面与平面垂直的判定;教学难点:平面与平面垂直的判定。
一.复习引入:二.新课探知:1、平面与平面垂直的定义2、平面与平面垂直的判定定理(1)探究问题:如何检测所砌的墙面和地面是否垂直?(2)平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直.线面垂直⇒面面垂直例1、如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC.练习:1、A是ΔBCD所在平面外一点,AB=AD,BC=CD,E是BD的中点,求证:平面AEC⊥平面BCD2、已知Rt∆ABC中,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC成直角。
求证:1、平面ABD⊥平面BDC,平面ACD⊥平面BDC2、∠BAC=6003、两平面垂直的性质定理:例2、已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD的长。
练习1.已知如图AB⊥平面BCD ,BC⊥CD,求证:平面ACD⊥平面ABC.A巩固练习:一、选择题1.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l()A.必相交B.必为异面直线C.垂直D.无法确定2.下列命题①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.其中,正确的命题有()A.1个B.2个C.3个n 4个3.在下列四个命题中,假命题为()A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直B.垂直于三角形两边的直线必垂直于第三边C.过点A垂直于直线a的所有直线都在过点A垂直于a的平面内D.如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面4.已知P是四边形ABCD所在平面外一点且P在平面ABCD内的射影在四边形ABCD内,若P到这四边形各边的距离相等,那么这个四边形是()A.圆内接四边形B.矩形C.圆外切四边形D.平行四边形5.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离等于()A.5B.52C.35D.45二、填空题6.AB是平面α的斜线段,其长为a,它在平面α内的射影A′B的长为b,则垂线A′A_________.7.如果直线l、m与平面α、β、γ满足:l=β∩γ,l⊥α,m α和m⊥γ,现给出以下四个结论:①α∥γ且l⊥m;②αγ且m∥β③αβ且l⊥m;④αγ且l⊥m;其中正确的为“________”.(写出序号即可)8.在空间四面体的四个面中,为直角三角形的最多有____________个.9.如图,正方形ABCD,P是正方形平面外的一点,且PA⊥平面A BCD则在△PAB、△PBC、△PCD、△PAD、△PAC及△PBD中,为直角三角形有_________个.三、解答题10.已知直线a∥平面α,直线b⊥平面α,求证:a⊥b.11.如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过B l作B1⊥BC1交CC1于E,交BC1于Q,求证:AC⊥平面EB l D112.如图在△ABC中,已知∠ABC=90°,SA⊥△ABC所在平面,又点A在SC和SB上的射影分别是P、Q.求证:PQ⊥SC.。
平面与平面垂直的判定教案
平面与平面垂直的判定教案教学目标:1. 理解平面的概念及性质,掌握平面与平面垂直的判定方法。
2. 能运用平面与平面垂直的判定方法解决实际问题,提高空间想象能力和逻辑推理能力。
3. 通过对平面与平面垂直的判定方法的学习,培养学生数学思想和方法的应用意识。
教学重、难点:1. 教学重点:平面与平面垂直的判定方法及其应用。
2. 教学难点:如何灵活运用平面与平面垂直的判定方法解决实际问题。
教学准备:1. 多媒体课件:包含判定定理的证明过程、图形示例等内容的PPT 或视频资料。
2. 几何画板:学生可利用几何画板进行自主探究和实践,绘制相关图形,加深理解。
3. 白板讲解:利用白板或黑板进行现场讲解和互动问答,提高教学效果。
4. 学生练习册:根据教学目标和内容,设计相应的练习册或习题集,供学生练习使用。
教学方法和手段:1. 课堂讲解:教师精讲判定定理及其应用,注意逻辑清晰,表达准确。
2. 小组讨论:学生针对课堂练习或实际问题的讨论,促进互相学习和交流。
3. 互动问答:教师鼓励学生提问,通过回答问题了解学生对知识的掌握情况,并及时调整教学策略。
4. 多媒体辅助:使用多媒体课件展示图形和实例,增强视觉效果,帮助学生更好地理解。
5. 工具应用:引导学生使用几何画板等工具进行自主探究和实践,提高教学效率。
教学过程:1.概念讲解教师引导学生复习平面的概念及性质,强调平面的基本属性,为后续学习做好铺垫。
2. 定理介绍教师介绍平面与平面垂直的判定方法,即“一面四点两线”判定定理。
指出定理的现代形式如下:如果一个平面内的四条直线与另一个平面内的四条直线对应平行,那么这两个平面垂直。
并深入讲解该定理的证明过程及应用范围。
3. 范例分析教师通过实例讲解如何运用判定方法解决实际问题。
如:通过观察教室墙面和地面的关系,引导学生用判定方法判断两个平面是否垂直,并指导学生在练习本上画出相应的图形,锻炼学生的实际应用能力。
4. 课堂练习教师布置与课堂内容同步的作业,学生完成后进行展示和交流。
平面与平面垂直的性质教案
平面与平面垂直的性质教案
教学目标:
1. 理解平面与平面垂直的定义。
2. 能够判断两个给定平面是否垂直。
3. 掌握判断平面与平面垂直的性质。
教学步骤:
步骤一:引入话题
教师可以将两本垂直放置的书本放在桌上,并问学生这两本书是不是垂直的。
引导学生思考垂直关系的定义。
步骤二:引入平面与平面垂直的定义
通过上述引入,教师可以引申出平面与平面垂直的定义:两个平面相交且交线为垂直线时,这两个平面称为垂直平面。
步骤三:判断平面与平面是否垂直
教师可以给出一些示例,要求学生根据定义判断两个给定的平面是否垂直。
步骤四:讨论垂直平面的性质
4.1 垂直平面的法线相互垂直
教师可以引导学生思考:如果两个平面是垂直平面,这两个平面的法线是否相互垂直?
4.2 垂直平面的法线在同一平面
教师可以引导学生思考:两个平面是垂直平面,这两个平面的法线是否在同一平面内?
步骤五:实例练习
教师可以给出一些实例让学生判断给定的平面是否垂直,同时让学生根据垂直平面的性质进行论证。
步骤六:总结
教师与学生共同总结平面与平面垂直的定义以及判断垂直平面的性质。
步骤七:作业布置
布置一些作业题,让学生通过练习巩固所学知识。
扩展思考:
1. 如何判断三个平面是否两两垂直?
2. 平面与直线是否可以垂直?如何证明?。
《平面与平面垂直的性质》教学设计(5篇范文)
《平面与平面垂直的性质》教学设计(5篇范文)第一篇:《平面与平面垂直的性质》教学设计《平面与平面垂直的性质》教学设计一、教材分析:直线与平面垂直问题是直线与平面的重要内容,也是高考考查的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。
通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。
二、学情分析:1.学生思维活跃,参与意识和自主探究能力较强,故采用启发、探究式教学方法;通过一系列的问题及层层递进的的教学活动,引导学生进行主动的思考、探究。
帮助学生实现从具体到抽象、从特殊到一般的过度,从而完成定义的建构和定理的发现。
2.学生抽象概括能力和空间想象能力有待提高,故采用多媒体辅助教学。
让学生在认知过程中,着重掌握原认知过程,使学生把独立思考与多向交流相结合。
三、根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定了以下教学目标:(1)知识与技能目标:①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;②能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念.(2)过程与方法目标:①了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用.②通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力。
③发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神.(3)情感、态度与价值观目标:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣.四、教学重点与难点:(1)教学重点:理解掌握面面垂直的性质定理和内容和推导。
(2)教学难点:运用性质定理解决实际问题。
五、教学设计思路:1、复习导入:(1)线面垂直判定定理:如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.(2)面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.2、探究发现:(1)创设情境:已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!设计说明:感知在相邻的两个相互垂直的平面内,有哪些特殊的直线和平面关系,然后通过操作,确定两个平面垂直的性质定理的合理性,引导学生通过模型观察,讨论在两个平面相互垂直的情况下,能够推出一些什么样的结论。
平面与平面垂直的判定优秀教案
2.3.2 平面与平面垂直的判定教材分析在空间,平面与平面之间的位置关系中,垂直是一种非常重要的位置关系它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的定义是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面互相垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培养学生的创新精神.教材目标1.探究平面与平面垂直的判定定理,二面角的定义及应用,培养学生的归纳能力.2.掌握平面与平面垂直的判定定理的应用,培养学生的空间想象能力.3.引导学生总结求二面角的方法,培养学生归纳问题的能力.重点难点教学重点:平面与平面垂直的判定.教学难点:平面与平面垂直的判定和求二面角.教学过程复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.推进新课新知探究提出问题①二面角的有关概念暍画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理棳并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角αAB β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角PABQ.教材P51 练习学生独立完成后教师检查、指导(三)归纳整理、整体认识(四)作业1、让学生回去整理这三节课的内容,理清脉络。
平面与平面垂直的判定 优秀教案
平面与平面垂直的判定(2)[课题]平面与平面垂直的判定[教学目标](1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用[教学重点]平面与平面垂直的判定;二面角的平面角。
[教学难点]判定定理的应用;如何度量二面角的大小。
[教学突破点]两个平面垂直是两个平面相交的特殊情况,通过引导学生观察教室相邻的两个墙面与地面构成的二面角的大小,从而引出两个平面垂直的位置关系。
)ABC是正三角形;角。
则其中正确的有______2.3-11,已知一。
选择题(共6小题,每小题6分,共36分)1.一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角 ( ).A 相等 .B 互补 .C 关系无法确定 D 。
相等和互补 2.对于直线,m n 和平面,αβ,能得出αβ⊥的一个条件是 ( ).A ,//,//m n m n αβ⊥ .B ,,m n m n αβα⊥=⊂.C //,,m n n m βα⊥⊂ D 。
//,,m n m n αβ⊥⊥3。
已知直线,a b 与平面,,,αβγ能使αβ⊥的条件是 ( ).A ,αγβγ⊥⊥ .B ,,a b a b αββ=⊥⊂ .C //,a αβα⊥ D 。
//,a a αβ⊥4。
下列命题是真命题的为 ( ) A .二面角的大小范围是大于00且小于090;B 。
一个二面角的平面角可以不相等 C .二面角的平面角的顶点可以不在棱上;D 。
二面角的棱和二面角的平面角所在平面垂直 5。
在正方体1111ABCD A BC D -中,二面角11D AC B --的余弦值为 ( )A .13 B 。
3C 。
12D 。
1 6.在正方体ABCD 中,以BD 为棱折成直二面角A-BD-C ,E 为CD 的中点,则AED ∠的大小为 ( )A .045B 。
平面与平面垂直的判定教学设计
课堂教学设计评选2.3.2平面与平面垂直的判定的教学设计高一数学徐坡2.3.2平面与平面垂直的判定的教学设计普通高中课程标准实验教科书学2必修人民教育出版社A版【授课教师】徐坡【教学目标】知识与技能①体会二面角的概念与度量;②归纳两个平面垂直的判定定理;③应用判定定理证明一些空间位置关系的简单命题.过程与方法①通过二面角的概念的探索过程,渗透类比迁移的思想;②通过归纳两个平面垂直的判定定理内容,提高学生抽象概括能力;③通过运用定理的过程,提高学生类比化归能力,培养学生降低空间维数的化归与转化的数学思想.情感态度与价值观直观感知,操作确认数学定理,通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力.教学重点:两个平面垂直的判定定理及应用;教学难点:二面角角的概念及度量方法,两个平面垂直的判定定理的归纳概括.【学法与教学用具】学法:实物观察,直观感知,操作确认,类比归纳,语言表达.教学用一:二面角模型长方体模型折叠纸,多媒体软硬件设备等.【教学基本流程(总体设计)】从人类生产实践的需要引入二面角的有关概念!构建二面角的的平面角概念!二面角的平面角!探究平面与平面垂直的判定方法!平面与平面垂直的判定定理的应用!课堂梳理!布置作业【教学情景设计】角的平面角的概念吗?在二面角。
一1—6的棱l上任取一点O,以点O为垂足,在半平面。
和B内分别作垂直于棱1的射线OA和OB,则射线OA和OB构成的NAOB叫做二面角的平面角。
4.提高学生数学表达、归纳能力.问题4:二面角的平面角所确定的平面和二面角的棱的关系?注:(1)二面角是用它的平面角来度量的,一个二面角的平面角多大,就说这个二面角是多少度的二面角。
(2)平面角是直角的二面角叫做直二面角。
探究两个平面垂直的判定定理观察:教室里的墙面所在平面与地面所在平面相交,它们所成的二面角及其度数.问题1:类比线线垂直的定义,如何用二面角的平面角的大小给面面垂直下一个定义?(用多媒体展示线线垂直的定义)引导学生归纳面面垂直的定义。
平面与平面垂直的判定教学设计
空间直线、平面的垂直第4课时平面与平面垂直的判定(一)教学内容二面角及相关概念、两个平面互相垂直的定义、判定定理.(二)教学目标1.理解二面角的有关概念,会求简单的二面角的大小.2.理解两平面垂直的定义,掌握两平面垂直的判定定理;并能用文字、符号和图形语言描述定理,并能运用其证明有关的垂直问题.3.在发现、推导和应用两个平面垂直的判定定理的过程中,发展学生的数学抽象素养、逻辑推理素养和直观想象素养.(三)教学重点与难点教学重点:两平面垂直的判定定理.教学难点:两平面垂直的判定定理的应用.(四)教学过程设计一、引入新课情境:修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为了解决实际问题,人们需要研究两个平面所成的角.设计意图:通过实际的问题背景,让学生感知研究两个平面所成的角的必要性,为讲解新知铺垫.二、课堂探究问题1:如何刻画两个平面所形成的角呢?答案:引入二面角的概念.一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都称为半平面.当其中一个半平面绕着这条直线旋转时,两个半平面就形成了一定的“角度”.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.如图,以直线AB为棱、半平面α,β为面的二面角,记作二面角α−AB−β.有时为了方便,也可以在α,β内(棱以外的半平面部分)分别取点P,Q,将这个二面角记作二面角P−AB−Q.如果棱记作l,那么这个二面角记作二面角α−l−β,P−l−Q.问题2:日常生活中,我们常说:“把门开大一些”是指哪个角大一些?答案:通过观察可以得到,随着门开口的增大,∠POQ在逐渐的增大,当二面角α−AB−β确定时,∠POQ也随之确定.追问1:受此启发,你认为应该怎样刻画二面角的大小呢?答案:在二面角α−l−β的棱l上任取一点O,以点O垂足,在半平面α,β内分别作垂直于棱l的射线OA,OB,则射线OA,OB构成的∠AOB叫做二面角的平面角.追问2:∠AOB的大小与点O在直线l上的位置有关吗?为什么?答案:如图,∠AOB是二面角α−l−β的平面角,在l上任取异于O的点O′,分别作A′O′和B′O′与l垂直.∵A′O′⊥l,AO⊥l,∴AO∥A′O′,同理BO∥B′O′.又∠AOB与∠A′O′B′方向相同,∴∠AOB=∠A′O′B′.故二面角的平面角的大小,与棱上点的选择无关.追问3:二面角的棱与其平面角所在平面之间是什么关系?答案:如图,∠AOB是二面角α−l−β的平面角,∴AO⊥l,BO⊥l,又AO∩BO=O,AO⊂α,BO⊂β,∴l⊥平面ABO.追问4:二面角的平面角的取值范围是多少?答案:二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.我们约定,二面角α的大小范围是0°≤α≤180°.当平面角为0°时,两半平面重合;当平面角为180°时,两半平面共面,组成整个平面.说一说:教室的墙面与地面构成二面角,分别指出构成二面角的面、棱、平面角及其度数.答案:二面角的面:墙面和地面;二面角的棱:墙面与地面的交线;二面角的平面角:如图,∠AOB;∠AOB的度数:90°.一般地,两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.平面α与β垂直,记作α⊥β.注意:画两个互相垂直的平面时,通常把表示平面的两个平行四边形的一组边画成互相垂直的.设计意图:结合实际场景,引出二面角的概念,并进一步讨论二面角的平面角及其取值范围,并用二面角的平面角定义两个平面互相垂直.问题3:除了根据定义外,还有其他方法判断两个平面互相垂直吗?探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直.如果系有铅锤的细线紧贴墙面,工人师傅就认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?答案:这种方法告诉我们,如果墙面经过地面的垂线,那么墙面与地面垂直.类似的结论也可以在长方体中发现,如上图,在长方体ABCD−A′B′C′D′中,平面ABB′A′经过平面ABCD的一条垂线AA′,此时,平面ABB′A′垂直于平面ABCD.由此,我们就得到了:两个平面互相垂直的判定定理:如果一个平面过另一个平面的垂线,那么这两个平面垂直.符号语言:若l⊥α,l⊂β,则α⊥β.这个定理说明,可以由直线与平面垂直证明平面与平面垂直.追问:你能解释为什么教室的门转到任何位置时,门所在的平面都与地面垂直吗?答案:不管门如何旋转,门所在的平面始终经过地面的垂线(门轴所在的直线),由面面垂直的判定定理可得,门所在的平面始终与底面垂直.设计意图:通过观察生活实例及常见的长方体,让学生理解两个平面互相垂直的判定定理,并用其解释生活中的现象,加深理解.三、知识应用例1 如图,在正方体ABCD − A′B′C′D′中,求证:平面A′BD⊥平面ACC′A′.分析:要证平面A′BD⊥平面ACC′A′,根据两个平面垂直的判定定理,只需证明平面A′BD经过平面ACC′A′的一条垂线即可,这需要利用AC,BD是正方形ABCD的对角线.例2 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点.求证:平面PAC⊥平面PBC.分析:要证明两个平面垂直,根据两个平面垂直的判定定理,只需证明其中一个平面内的一条直线垂直于另一个平面.而由直线和平面垂直的判定定理,还需证明这条直线和另一个平面内的两条相交直线垂直,在本题中,由题意可知BC⊥AC,BC⊥PA,AC∩PA=A,从而BC⊥平面PAC,进而平面PAC⊥平面PBC.证明:∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC.∵点C是圆周上不同于A,B的任意一点,AB是⊙O的直径,∴∠BCA =90°,即BC⊥AC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴BC⊥平面PAC.又BC⊂平面PBC,∴平面PAC⊥平面PBC.总结:证明平面与平面垂直的两种常用方法(1)利用定义:证明二面角的平面角为直角,其判定的方法是:①找出两相交平面的平面角;②证明这个平面角是直角;③根据定义,这两个相交平面互相垂直.(2)利用面面垂直的判定定理:要证面面垂直,只要证线面垂直.即在其中一个平面内寻找一条直线与另一个平面垂直.这是证明面面垂直的常用方法,其基本步骤是:①定思路:分析题意,根据题目条件选择证明哪个平面的垂线;②证线面:选择恰当的方法证明线面垂直;③证面面:根据面面垂直的判定定理证明.设计意图:通过例题,考查学生对两个平面互相垂直的判定定理的应用,加深对知识的理解.四、课堂练习1.如图,在正方体ABCD−A′B′C′D′中:(1)求二面角D′−AB−D的大小;(2)求二面角A′−AB−D的大小.2.如图,在四棱锥PABCD中,若P A⊥平面ABCD,且四边形ABCD是菱形.求证:平面P AC⊥平面PBD.3.如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:(1)P A∥平面BDE;(2)平面P AC⊥平面PBD.参考答案:1.解:(1)在正方体ABCD−A′B′C′D′中,AB⊥平面AD′,所以AB⊥AD′,AB⊥AD.因此,∠D′AD为二面角D′−AB−D的平面角.在Rt△D′AD中,∠D′AD=45°,所以二面角D′−AB−D的大小为45°.(2)同理,∠A′AD为二面角A′−AB−D的平面角.因为∠A′AD=90°,所以二面角A′−AB−D的大小为90°.2.证明:∵P A⊥平面ABCD,BD⊂平面ABCD,∴BD⊥P A.∵四边形ABCD是菱形,∴BD⊥AC.又P A∩AC=A,∴BD⊥平面P AC.又BD⊂平面PBD,∴平面P AC⊥平面PBD.3.(1)连接AC、OE.∵底面ABCD是正方形,∴AC与BD交于中心O点,O为AC、BD中点.又点E是PC的中点,∴OE∥AP.又OE⊂平面BDE,AP⊄平面BDE,∴P A∥平面BDE.(2)∵PO⊥平面ABCD,∴PO⊥AC.∵底面ABCD是正方形,∴AC⊥BD.又AC⊂平面P AC,PO⊂平面P AC,PO∩AC=O,∴BD⊥平面P AC.又BD⊂平面PBD,∴平面P AC⊥平面PBD.五、归纳总结回顾本节课的内容,你都学到了什么?1.两个平面互相垂直的判定定理:如果一个平面过另一个平面的垂线,那么这两个平面垂直.2.判定两个平面垂直的方法:①利用定义,证明二面角为直角;②利用判定定理.。
平面与平面垂直的性质教案
平面与平面垂直的性质教案教案标题:平面与平面垂直的性质教案教案目标:1. 理解平面与平面垂直的概念和性质。
2. 能够识别平面与平面垂直的关系。
3. 能够应用平面与平面垂直的性质解决相关问题。
教案步骤:引入活动:1. 利用一张纸板和一根铅笔,让学生观察纸板的两个面,并问他们这两个面是否相互垂直。
2. 引导学生思考,什么情况下可以认为两个平面是垂直的。
知识讲解:1. 通过投影法介绍平面与平面垂直的定义:当一个平面上的直线与另一个平面上的直线的投影相互垂直时,可以认为这两个平面是垂直的。
2. 解释平面与平面垂直的性质:垂直的平面上的任意两条直线互相垂直。
示例演示:1. 给出几个具体的示例,让学生观察并判断两个平面是否垂直。
2. 引导学生用投影法验证他们的判断是否正确。
练习活动:1. 分发练习题,要求学生判断给定的平面是否与另一个平面垂直。
2. 学生可以使用投影法进行验证,并给出解释。
拓展讨论:1. 引导学生思考平面与平面垂直的应用场景,如建筑设计、几何图形的构建等。
2. 鼓励学生提出更多关于平面与平面垂直的问题,并进行讨论。
总结:1. 对本节课的内容进行总结,强调平面与平面垂直的定义和性质。
2. 鼓励学生在日常生活和学习中多观察、思考平面与平面垂直的情况。
评估:1. 布置一道综合性的作业题,要求学生应用平面与平面垂直的性质解决问题。
2. 根据学生的作业完成情况评估他们对平面与平面垂直性质的理解和应用能力。
教学资源:1. 纸板和铅笔。
2. 练习题。
教学延伸:1. 可以引导学生学习平面与平面垂直的证明方法和相关定理。
2. 可以引导学生进行实际测量,验证平面与平面垂直的性质。
平面与平面垂直的判定教案
平面与平面垂直的判定高一数学备课组教学目标1、知识与技能(1)理解二面角的有关概念,会作二面角的平面角,能求简单二面角平面角的大小;(2)理解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系;(3)熟悉线线垂直、线面垂直的转化.2、过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对二面角的平面角及面面垂直的认识;(2)进一步提高学生分析问题、解决问题的能力.3、情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.教学重点二面角的概念和二面角的平面角的作法,面面垂直的判定.教学难点二面角的平面角的一般作法及面面垂直的判定.教学过程一、课前准备(预习教材P67~ P69,找出疑惑之处)复习1:若直线垂直于平面,则这条直线________平面内的任何直线;直线与平面垂直的判定定理_______________________________.复习2:什么是直线与平面所成的角?直线与平面所成的角的范围为_______________.二、新课导学※探索新知探究1:二面角的有关概念图1问题:上图中,水坝面与水平面、卫星轨道平面与地球赤道平面都有一定的角度.这两个角度的共同特征是什么?新知1:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图2中的二面角可记作:二面角AB αβ--或l αβ--或P AB Q --.图2问题:二面角的大小怎么确定呢?新知2:如图3,在二面角l αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线,OA OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角.平面角是直角的二面角叫直二面角.图3反思:(1)两个平面相交,构成几个二面角?它们的平面角的大小有什么关系?(2)你觉的二面角的大小范围是多少?(3)二面角平面角的大小和O 点的选择有关吗?除了以上的作法,二面角的平面角还能怎么作?探究2:平面与平面垂直的判定问题:教室的墙给人以垂直于地面的形象,想一想教室相邻的两个墙面与地面可以构成几个二面角?它们的大小是多少?新知3:两个平面所成二面角是直二面角,则这两个平面互相垂直.如图4,α垂直β,记作αβ⊥.图4问题:除了定义,你还能想出什么方法判定两个平面垂直呢?新知4:两个平面垂直的判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.※ 重难点突破例1 如下图 AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证:ABC PAC ABC PAB 平面,平面平面平面⊥⊥,PBC PAC 平面平面⊥.l分析:线线垂直 线面垂直 面面垂直三、总结提升※ 课堂小结1. 二面角的有关概念,二面角的求法;2. 两个平面垂直的判定定理及应用.※ 知识拓展二面角的平面角的一个常用作法:如图过平面α内一点A ,作AB β⊥于点B ,再作BO l ⊥于O ,连接OA ,则AOB ∠即为所求平面角.(为什么?)※ 当堂检测(时量:5分钟 满分:10分)计分:1. 以下四个命题,正确的是( ).A.两个平面所成的二面角只有一个B.两个相交平面组成的图形叫做二面角C.二面角的平面角是这两个面中直线所成的角中最小的一个D.二面角的大小和其平面角的顶点在棱上的位置无关2. 在正方体1111ABCD A B C D -中,过,,A C D 的平面与过1,,D B B 的平面的位置关系是( ).A.相交不垂直B.相交成60°角C.互相垂直D.互相平行3. 二面角的大小范围是________________.4. 若平面内的一条直线和这个平面的一条斜线的射影垂直,则它和这条斜线的位置关系为_______.课后作业课本P74 B 组第1题板书设计教学反思§2.3.2 平面与平面垂直的判定 例1 随堂练习 课堂小结 课后作业1、二面角的有关概念2、平面与平面垂直的判定。
平面与平面垂直的判定教案
平面与平面垂直的判定教案
一、教学目标:
1.理解平面与平面垂直的概念;
2.掌握判断平面与平面垂直的基本方法;
3.能够应用所学知识解决相关问题。
二、教学重难点:
1.掌握平面与平面垂直的判定方法;
2.理解垂直平面间的特点;
3.掌握将垂直平面相关知识运用于实际问题的能力。
三、教学过程:
步骤一:导入与激发学生兴趣(5分钟)
1.引入平面与平面垂直的概念:请学生说出自己了解的平面与平面垂直的特点和判断条件。
2.引导学生思考问题:为什么需要判断平面与平面是否垂直?在哪些实际问题中会用到这个概念?
3.引入本课的主要内容:本课将学习平面与平面垂直的判断方法及其应用。
步骤二:教学内容展示(25分钟)
1.定义:平面与平面垂直是指两个平面的法向量相互垂直,即两个平面法向量的内积为0。
2.公式表示:假设平面1的法向量为n1,平面2的法向量为n2
3.实例演示:通过数学演算,展示平面与平面垂直的判定过程。
4.注意事项:在判断平面与平面垂直时,需要注意法向量的方向是否正确,正负号是否考虑周全。
步骤三:小组讨论与练习(20分钟)
1.分为小组进行讨论:每个小组选择一个实际问题,并结合判断平面与平面垂直的方法进行分析与解决。
2.小组展示与交流:每个小组选派一位代表进行展示,并与全班进行交流与讨论,分享解决问题的思路和方法。
步骤四:拓展与扩展(10分钟)。
平面与平面垂直的判定教案
平面与平面垂直的判定教案教案标题:平面与平面垂直的判定教学目标:1. 学生能够理解平面与平面垂直的概念。
2. 学生能够运用坐标系和向量法判断平面与平面之间的垂直关系。
3. 学生能够综合运用所学知识,解决实际问题。
教学准备:1. 教师:准备黑板、白板、投影仪等教学工具。
2. 学生:准备笔记本、铅笔和计算器等学习用品。
教学过程:导入活动:1. 引入话题:教师通过向学生提问呈现平面与平面垂直的例子,如两条彼此垂直的公路、桌子上的直角等,引起学生思考。
知识讲解:2. 引入坐标系法:教师通过绘制坐标系,并以示意图的形式介绍平面与平面垂直的概念。
解释两个平面垂直的条件是它们的法向量互为共线的。
3. 介绍向量法:教师讲解平面与平面垂直的另一种判定方法——向量法。
通过示意图,解释两个平面垂直的条件是它们的法向量的点乘为零。
示例分析:4. 展示示例:教师通过投影仪或板书展示一些具体的示例,要求学生根据所学知识判断这些示例中的平面是否垂直。
学生可以尝试使用坐标系法或向量法进行判断。
5. 分析讨论:教师引导学生讨论各个示例的解题思路和答案,并指导学生关注容易犯错的地方。
在学生犯错误时给予适当指导,确保学生对判断平面垂直的方法和步骤有清晰的理解。
拓展活动:6. 练习演练:教师提供一些练习题,要求学生在课堂上独立完成。
学生可以选择使用坐标系法或向量法进行判断,完成后互相交流答案并讨论解题思路。
7. 确认复习:教师向学生总结本节课所学内容,并强调重点和难点。
鼓励学生提出问题,解答疑惑。
作业布置:8. 作业要求:教师布置作业,要求学生根据课堂所学,独立完成一定数量的平面与平面垂直判定题目。
学生可以选择使用坐标系法或向量法进行判断。
9. 提供指导:教师在作业布置时,提供一些解题思路和步骤的指导,以便学生完成作业。
教学反思:10. 教学反思:教师对本节课的教学进行反思,并记录下本节课教学中的亮点和需要改进之处,为今后教学提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.已知二面角 的平面角为 , ,若 到平面 的距离为 ,则 点在 上的射影 到平面 的距离为________________.
6.自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是()
A.相等B.互补C.互余D.无法确定
7.如图5, ,过点 引 所在平面的斜线 , 与 、 分别成 、 角,求二面角 的平面角的余弦值.
布置作业:课本习题1,2,3,4,5.
板书设计:
1.二面角例1练习
2.二角面的平面角
例2
8.提示:连结 交 于点 ,连结 ,证明 就是二面角 的平面角.
9.提示:分别作 、 垂直于面 、 于点 、 ,证明 面 ,令 交于 于点 ,连结 、 ,证明 , , 为所求.在△ 中用余弦定理算出 .又 、 、 、 共圆,可由正弦定理去算 .
[总结提炼]
求二面角的平面角,首先要选择一个合适的方案画出二面角,其次要能够根据定义作出二面角的平面角,用三垂线定理作二面角的平面角是最常用的方法,用三垂线定理必须先找到一个参考平面,二面角的两个半平面之一往往就是参考平面,而三垂线定理的特点是斜线和射影同时垂直于面内的直线,这恰好符合二面角的平面角的两边同时垂直于棱的要求,最后要注意作、证、算的步骤安排,当然有时也直接按定义去作二面角的平面角.
[探索研究]
1.二面角
(1)半平面
平面内的一条直线把这个平面分成两部分,其中的每一部分都叫做半平面.
(2)二面角
从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
(3)二面角的画法:分直立式与平卧式两种.图1,记作二面角 .
①直立式②平卧式
图1
2.二面角的平面角
图5
8.如图6,在正方体 中,求二面角 的平面角的正切值.
图6
9.如图7,在 的二面角 内有一点 ,它到 、 面的距离分别为3和5,求 点到棱 的距离.
图7
[参考答案]
1.略.2.C 3.D 4.C 5. 6.B
7.提示:在 上任取一点 ,作 交 于 点,作 交 与 点,令 ,则 即为所求,先在 △ 及△ 中算出 、 、 、 ,再在 △ 中算出 .
教师提出问题:平面几何中可以把角理解为一个旋转量,同样,一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量.这说明二面角不仅有大小.而且其大小是惟一确定的.
平面与平面的位置关系,总的说来只有相交或平行两种情况.为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题.从而提问:二面角的大小应该怎么度量?
平面与平面垂直的判定和性质
第一课时
教学目标:
1.理解二面角的有关概念,能画出二面角.
2.会求二面角的平面角.
教具准备:投影胶片、三角板.
教学过程:
[设置情境]
看看日常生活中常见的例子:公路上的坡面与水平面,打开的门与门框所在的平面等.它们中的两个面成一定的角度.为了解决实际问题,人们需要研究两个平面所成的角.那么,怎么定义两个平面所成的角呢?
解:如图4.设 、 是 、 在平面 上的射影,延长 交平面 于 ,
则平面 .
由已知可得 、 分别是 和 的中点.
∴
图4
由 得 .
又 ,故 ,由三垂线逆定理得 .
由于 ,则 .
∴ .
[演练反馈]
1.课本练习1,2,3,4.
2.二面角指的是()
A.两个平面相交所成的角
B.经过同一条直线的两个平面所组成的图形
C.从一条直线出发的两个半平面组成的图形
D.两个相交平面所夹的不大于 的角
3.已知△ 中, , , , 在平面 内,△ 所在平面与面 成 角,则△ 在平面 内的射影面积可能是()
A. B. C. D.
4.已知二面角 的平面角是锐角 , 内一点 到 的距离为3,点 到棱 的距离为4,那么 的值等于()
平面角是直角的二面角叫做直二面角.
3.例题分析
例1如图3,平面角为锐角的二面角 , , , ,若 与 所成角为 ,求二面角 的平面角.
图3
解:作 于 ,作 于 ,连结 ,
则 , 是二面角的平面角.
又 是 与 所成的角,
设 ,
则 , , .
∴ .
例2正三角形 边长为10, 平面 , 、 与平面 的距离为4和2, 、 在平面 的同侧,求:平面 与平面 所成的角 .
让学生主动动手操作并与同学讨论交流,尝试找到度量二面角大小的方法.
现给出二面角的平面角的定义:
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
如图2,二面角 , , , , , . 是二面角 的平面角.
图2
二面角的平面角的范围是 ,当两个半平面重合时,平面角为 ;当两个半平面合成一个平面时,平面角为 .求解二面角问题的关是确定平面角的位置,需抓住“二面角的平面角”的三个要素:(1)确定二面角的棱上一点;(2)经过这点分别在两个面内引射线;(3)所引的射线都垂直于棱.