小学三年级奥数第十一讲周期问题(一)(学生版)
三年级奥数专题-周期问题
三年级奥数专题-周期问题一、知识要点在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等.像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题.这类问题一般要利用余数的知识来解答.在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.二、精讲精练【例题1】小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?从上图可以看出,珠子是按“两红一白三黑”的规律重复排列,即6个珠子为一周期.32÷6=5(组)……2(个),32个珠子中含有5个周期多2个,所以第32个珠子就是重复5个周期后的第2个珠子,应为红色.练习1:1.如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……2.“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?3.把38面小三角旗按下图排列,其中有多少面白旗?【例题2】2001年10月1日是星期一,问:10月25日是星期几?【思路导航】我们知道,每星期有7天,也就是说以7天为一个周期不断地重复.从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天.所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四.练习2:1.2001年5月3日是星期四,5月20日是星期几?2.2001年8月1日是星期三,8月28日是星期几?3.2001年6月1日是星期五,9月1日是星期几?【例题3】100个3相乘,积的个位数字是几?【思路导航】这道题我们只考虑积的个位数字的排列规律.1个3.积的个位是3;2个3相乘积的个位数字是9;3个3相乘积的个位数字是7;4个3相乘积的个位数字是1;5个3相乘积的个位数字是3……可以发现,积的个位数字分别以3、9、7、1不断重复出现,即每4个3积的个位数字为一周期.100÷4=25(个),因此100个3相乘积的个位数字是第25个周期中的最后一个,即是1.练习3:1.23个3相乘,积的个位数字是几?2.100个2相乘,积的个位数字是几?3.50个7相乘,积的个位数字是几?【例题4】有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?【思路导航】上面一列数中,从第1个数字开始重复出现的部分是“43279186”,周期数是8.要求出这列数字的和,就要先求出这列数里共有多少组“43279186”.54÷8=6(组)……6(个)因此,前6组数字和是(4+3+2+7+9+1+8+6)×6=240,余下6个数字之和是4+3+2+7+9+1=26.所以,这列数中前54个数字之和是240+26=266.练习4:1.一列数按“294736294736294……”排列,那么前40个数字之和是多少?2.有一列数按“9453672945367294……”排列,那么前50个数字之和是多少?3.有一列数“7231652316523165……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?【例题5】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字.如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?【思路导航】已知这本童话书3页插图前后各有1页文字,也就是说这本书是按“1页文字3页插图“的规律重复排列的,把“1页文字3页插图”看作一周期,128页中含有128÷(1+3)=32个周期,所以这本童话书共有插图3×32=96页.练习5:1.校门口摆了一排花,每两盆菊花之间摆3盆月季,共摆了112盆花.如果第一盆花是菊花,那么共摆了多少盆月季花?2.同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?3.一个圆形花辅周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗.花辅周围共插了多少面黄旗?。
三年级上奥数精品讲义周期问题
穿手链(周期问题)知识图谱穿手链知识精讲一.简单周期问题1.一些数、图像或事物,按照周而复始的规律循环出现,这种特殊的规律问题称为周期问题.2.在解决周期问题时,关键在于找到周期的长度.只要找到周期的长度,再用总数除以周期长度,得到的商就是完整的周期的个数,余数就是除去完整周期的部分后剩下的个数;若没有余数,则是周期中的最后一个.注意在有余数的除法中,余数要比除数小.3.对于开头比较特殊的周期问题,我们可以先把特殊部分去掉.二.多重周期解题思路1.分别根据各自的周期计算结果,最后加以组合.2.找到公共周期,并归纳出公共周期内的具体情况,再进行计算.由于公共周期必须同时是两个规律甚至更多规律的周期,所以公共周期的长度必须是这些周期长度的公同倍数.一般的,要找最小的那个,称之为最小公倍数.三.对于报数问题一般有两种:1.第一种是两次报数都是同向的.2.第二种是第一次报数是从左向右,第二次报数却是从右到左,这时可以将反向的周期转化为同向的周期问题.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的观察推理能力.本讲内容是在数列和找规律的基础上,进一步学习周期问题.从常见的数字规律入手,了解周期,学习周期长度等的计算和应用.后续课程还会进一步学习复杂周期问题.课堂引入例题1、今天,唐小果和艾小莎在手工课上学习了穿手链.下面是她们穿好的一些手链.你能看出来她们穿出来的手链有什么特点吗?第三个手链中共用了22颗珠子,其中白色的珠子有多少颗呢?例题2、如图,要穿出来这样的一串手链,颜色分别是黑、白、蓝、绿、粉.总共用了25颗珠子,其中共有多少颗蓝色的珠子?如果总共用了23颗,其中有几颗可能是蓝色的?写出所有可能.简单周期问题例题1、元宵节这天艾小莎去看花灯,发现彩灯按着红、蓝、黄、绿、红、蓝黄、绿……的顺序依次排列,那么第12盏灯是什么颜色?是按照“红蓝黄绿”的顺序重复的.例题2、有249朵花,按照5朵红花,9朵黄花,13朵绿花的顺序循环排列,则这249朵花中绿花有多少朵?例题3、“A、B、C、D、E、D、C、B、A、B、C、D、E、D、C、B、A、B……”前80个字母有多少个“C”?好像不是按照“A、B、C、D、E”的顺序重复的,那周期是什么呢?例题4、在从1开始的自然数中,第100个不能被3除尽的数是多少?除以3的余数可能是1、2或者没有余数,其中有两种是除不尽的.例题5、一些学生站成一排,从左向右1~3循环报数.第10个报1的学生是第几人?例题6、“胡萝卜熟啦熟啦……”,“熟啦”两个汉字不断重复,这句话中第30个汉字是什么?“胡萝卜”只出现在开始.随练1、一些图形按照下面的规律排成一行,那么前99个图形中共多少个三角形?随练2、三天打鱼,两天晒网,按照这样的方式,80天内有_______天在打鱼.随练3、“A、B、C、D、C、B、A、B、C、D、C、B、A、B、……”前30个字母有多少个“A”?随练4、有268朵花,按照4朵红花,10朵黄花,16朵绿花的顺序循环排列,则这268朵花种绿花有________朵.多重周期问题例题1、如图所示,表格中每行的文字都是循环出现的:第一行是“哥伦比亚”4个汉字不断重复,第二行则是“阿尔及利亚”5个汉字不断重复.那么这两行的公共周期长度是多少?哥伦比亚哥伦比亚哥…阿尔及利亚阿尔及利…公共周期,既是“哥伦比亚”的周期,也是“阿尔及利亚”的周期.例题2、如图所示,表格中每行文字都是循环出现的:第一行是“高思杯”三个汉字不断重复,第二行是“重磅来袭”四个汉字不断重复.那么,第2020列从上到下依次写出的两个汉字是什么?高思杯高思杯高思杯……重磅来袭重磅来袭重……例题3、 如图所示,表格中每行的文字都是循环出现的:第一行是“小鸡炖蘑菇”5个汉字不断重复,第二行是“宫保鸡丁”4个汉字不断重复,第三行则是“回锅肉”3个汉字不断重复.那么,第121列中从上到下依次是哪3个字?例题4、 如图,用“原、始、人”3个字,在一张方格纸中自左上到右下的斜行里按顺序循环填入.那么第88行18列交叉处填入的字是什么?例题5、 66名士兵排成一列横队,第一次从左到右1至5循环报数,第二次从左到右1至2循环报数,那么,两次都报2的有多少名?既报1又报2的士兵有多少名?例题6、 100名士兵排成一横排,第一次从左到右1至3循环报数,第二次从右到左1至4循环报数.请问:既报2又报3的士兵有多少名?小 鸡 炖 蘑 菇 小 鸡 炖 蘑 … 宫 保 鸡 丁 宫 保 鸡 丁 宫 … 回锅肉回锅肉回锅肉…三重周期问题与两重周期有什么区别和联系吗?原 始 人 … 始 人 … 人 … …每行每列都是规律的哦~这个就是双重周期问题.这个跟上一题好像有些不一样呐~你发现了吗?例题7、 如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里.一只黑跳蚤也从标有数“1”的圆圈起跳,但它是沿着逆时针方向跳了200步,落在另一个圆圈里.这两个圆圈里的数的乘积是多少?随练1、 40个人站成一排排队报数,第一次从左到右1至3循环报数,第二次从左到右1至4循环报数,两次报相同数的人有________个.随练2、 如图所示,表格中每行的文字都是循环出现的:第一行是“天才眼镜狗”5个汉字不断重复,第二行是“大灰狼”3个汉字不断重复,第三行则是“坏人”2个汉字不断重复.那么第16列从上到下依次是哪3个汉字?易错纠改例题1、 下面的解题过程是否正确,若不正确,写出正确答案.拓展1、 有一个数列如下:1、2、3、4、3、2、1、2、3、4、3、2、1、2、…… 这个数列的第40个数是__________. 2、 在学校运动会的开幕式上,46名同学组成仪仗队站成一排.如图所示,每人手里都举着一面彩旗,从左到右颜色依次是红、黄、蓝、绿四种颜色依次循环.最右侧的同学手里的彩旗是__________色.3、 一些学生按照男生(1号)、男生(2号)、女生(3号)、男生(4号)、男生(5号)、女生(6号)……的顺序从左至右站成一排.那么,第20个女生的编号是__________.4、 温老师参加一次10分钟的知识竞赛,他每分钟能做15道题,但做3道错一道,而且他做2分钟要休息1分钟,那么温老师这次竞赛做对了____________道题.1 2 3 4 567 天 才 眼 镜 狗 天 才 眼 镜 … 大 灰 狼 大 灰 狼 大 灰 狼 … 坏 人坏人坏人坏人坏…【题目】徐老师决定实施自己的健康饮食计划表,第1天吃1个蛋糕,第2天吃1根胡萝卜,第3天吃1根胡萝卜,第4天吃1个蛋糕,第5天吃1根胡萝卜,第6天吃1根胡萝卜,第7天吃1个蛋糕,……,如此不断重复,那么胡老师吃到第50个蛋糕时,她已经吃了多少根胡萝卜?【答案】吃1根胡萝卜,吃1个蛋糕,所以吃50个蛋糕,就吃50根胡萝卜.☺黄 ☺蓝 ☺绿 ☺红 ☺黄 ☺蓝 …☺红5、 如图所示,表格中每行的文字都是循环出现的:第一行是“红烧鲫鱼”4个汉字不断重复,第二行是“土豆泥”3个汉字不断重复,第三行则是“豆腐白菜汤”5个汉字不断重复.那么第45列从上到下依次是哪3个汉字?__________A.烧土豆B.鱼泥汤C.红豆豆D.红泥汤6、 在一根绳子上依次穿2颗红珠、3颗白珠、5颗黑珠,并按此方式重复.如果从头开始一共穿了77颗珠子,那么这77颗珠子中白珠比黑珠少__________颗.7、 500名士兵排成一排,第一次从左到右1~3循环报数,第二次从左到右1~4循环报数.请问:既报过1又报过4的士兵有多少名?8、 如图所示,7个小朋友围成一圈,沿顺时针方向依次编号为1~7.然后,按如下方法给他们发糖:先给1号小朋友1块糖;然后沿顺时针方向隔过一个人后,给3号小朋友1块糖;再沿顺时针方向隔过两个人后,给6号小朋友1块糖;接着又沿顺时针方向隔过一个人后,给1号小朋友1块糖……如此反复地间隔一个人、两个人,直到1997块糖全部分完.那么最先发到糖的那位小朋友一共得到了多少块糖?9、 分析并口述题目的做题思路及方法.如图所示,表格中每行的文字都是循环出现的:第一行是“火龙果”3个汉字不断重复,第二行是“冰镇西瓜”4个汉字不断重复.那么第3次出现“火瓜”在第几列?红 烧 鲫 鱼 红 烧 鲫 鱼 红 … 土 豆 泥 土 豆 泥 土 豆 泥 … 豆 腐白菜汤豆腐白菜…57 64 32 1 火 龙 果 火 龙 果 火 龙 果 … 冰 镇西瓜冰镇西瓜冰…。
三年级思维训练11--周期问题(原卷 解析版)
三年级思维训练11--周期问题1、按下图所示的规律摆三角形,第82个三角形是色的。
在这种颜色的三角形中,它是第个。
2、为庆祝元旦,学校在大门口安装了50盏彩灯,彩灯按照“黄黄红绿绿红黄黄红绿绿红……”的顺序依次排列,则在这50盏彩灯中,共有黄色的彩灯盏。
3、公元2008年的中国农历生肖是鼠,请问公元3000年的中国农历年生肖是。
(注:中国农历年有十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、候、鸡、狗、猪,12年为一轮)4、四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期。
(用数字1至7表示)5、某月内有三个星期六的日期是偶数,这个月的18日是星期。
6、时钟现在是整点,再过112个小时,钟面上恰好是1点整,请你判断,现在是点钟。
7、若现在时间为1208,那287999999987分钟后是什么时间?(注:0915是上午9点15分,1504是下午3点零4分)8、有一张黑白相间的方格纸,用记号(2,3)表示从上往下数第2行,从左往右数第3列的那一格(见下图),那么(2010,201)这一格是色。
9、在1983后面写一串数字,从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字,这样得到一串数字19834286…,那么这串数字中,前2011个数字的和是多少?10、2010名学生从前往后排成一列,按下面的规则报数:如果某个同学报的是一位数,后面的同学就要报出这个数与8的和;如果某个同学报的是两位数,后面的同学就要报出这个数与7的和,现在让第一个同学报1,那么最后一个同学报的数是 。
11、在一个圆上有5个点,按顺时针方向依次编码为1、2、3、4、5.一只昆虫绕圆按顺时针方向从一点跳到另一点,如果它是在奇数号点上,它依次跳一个点,如果它是在偶数号点上,它一次跳两个点。
如果这只昆虫在5处起跳,跳2008次后,它将在哪个点上?12、分别姓赵、钱、孙、李、周、吴、王的七位同学站成一排,按下列方式依次报数:报“1998”的是姓 的同学。
小学数学三年级周期问题
八、周期问题(一)〖趣味数学〗有10张卡片,正面朝上,每次翻动6张卡片,最少经过()次翻动,卡片都能反面朝上。
〖知识要点〗1、什么是周期问题?在日常生活中有一些按照一定的规律不断重复的现象,如人的十二生肖、一年有春夏秋冬四个季节、一个星期七天等等。
像这样常碰到的有一定循环出现的问题,我们称为周期问题。
2、解题步骤:(1)观察、分析数、图形或事物的变化是否重复循环出现并具有周期性。
(2)每几个数循环一次,谁开始谁结束,周期长度是多少。
(3)每个循环节按什么次序排列。
(4)利用除法算式求出余数,根据余数得出正确的结果。
〖例题精讲〗例1、两个小朋友比赛智力,一位小朋友画出了一组图形(排列如下),根据排列的规律。
请算出第60个图形是(),第121个图形是()。
〔分析与解答〕:每3个图形为一组,称为一个周期。
60÷3=30(组),没有余数,说明30个图形里刚好有30个周期。
(即为)121÷3=40(组)……1(个),说明121个图形中含有40个周期多1个,所以第121个图形就是重复40个周期后的第1个图形。
〖我真行1〗按照“数学奥林匹克比赛数学奥林匹克比赛数学奥林匹克比赛……”依次排列,第100个字是()。
例2、黑珠、白珠共202个,穿成一串(如下图所示),在这串珠子中,最后一个珠子是(黑)颜色的,这种颜色的珠子共有(26)个。
……202÷4=50……2(黑色) 50+1=51(个)〖我真行2〗有一些灯泡按照“一黄三红四白”的顺序排列,第30个灯泡是()色,第260个灯泡是()色。
例3、一个小朋友写了这样一列数“4、1、3、2、4、1、3、2、4、1、3、2……”,你能很快算出这列前54个数字之和是多少吗?〔分析与解答〕:上面一列数中,从第一个数字开始重复出现的部分是“4132”,周期数是4。
要求这列数字的和,就要先求出这列数里一共有多少组“4132”。
54÷4=13(组)……2(个),因此前13组数字之和是(4+1+3+2)×13=130;余下两个数的和是4+1=5。
竞赛数学课本-三年级上-第11讲-周期问题初步
其实蜗牛在最后一天的时候直接爬出了井口,并不会往下滑了,所以在考虑周期的时候要特别注意整个过程结束的时候是不是完整的周期.(1)工厂的仓库里有80吨货物,这些货物都由同一辆卡车负责运输.第一天卡车往仓库里运进50吨,第二天运出了60吨,第三天又运进50吨,第四天再运出60吨,……如此不停地循环下去,第几天仓库里的货物才会被运完?(2)工厂的仓库里有80吨货物,同样是由一辆卡车负责货物的运输.第一天卡车从仓库里运出60吨,第二天再运进50吨,第三天又运出60吨,第四天再运进50吨,……如此不停地循环下去.第几天仓库里的货物才会被运完?例题1高思网课分析 乍看之下这个题的两个问题是一样的,都是每两天共运出10吨.仔细想一想,这两个问题有什么区别?每个周期有什么区别?练习1.一只蜗牛在一口20米深的井底,如果它每个白天往上爬3米,但是在晚上又往下滑1米.请问:这个蜗牛在第几天能爬出这口井?有些问题,只给出了变化的规律,并没有给出明确的周期.这就需要我们按照规律,把隐藏的周期找出来,再利用周期进行计算.分析 先试着算一下开始几天四人的宝石数量,可以用下面这个表格来表示,试着再往下填几行:τ Հ ԛ1 10 75 4 ԛ2 7 86 5 ԛ3ԛ4 ԛ5 čč čč都要聚在一起,重新分配宝石.分配的规则就是:人每人5、例题2高练习2. 我们对四位数1234的各位数字进行如下方式的交换:第1次交换千位和百位,第2次交换个位和十位,第3次交换千位和个位,第4次交换百位和十位,第5、6、7、8次的交换方式与第1、2、3、4次的相同,并如此继续下去,那么经过100次这样的交换后,所得的四位数是什么?分析 开始数1的时候指着的是大拇指,下一次指到大拇指的时候是数几呢?几个数一个循环?练习3. 如图,在A 、B 两地之间有11个站,一辆车不停地往返于两地之间.从A 出发,每天走到下一站,到达B 地后的第二天又回到11号站,第1天的时候它在A 站,那么第100天时它在哪个站?有的问题同时包含两个周期规律,我们必须把它们一并考虑,这就需要找到它们的公共周期才行.始数数.请问:例题3nn第二次从右到左高思分析 试着把每个士兵两次报的数都写出来,找找看有没有周期?练习4. 全校2010名同学排成一队,先从排头向排尾1至3报数,再从排尾向排头1至5报数.两次分别报了1和4的同学有多少人?生活中也存在很多周期问题,比如同学们最熟悉的星期.我们经常需要去计算一些和星期几有关的问题.分析 (1)4月、5月都有多少天?3月份还剩多少天?(2)一个星期有多少天?练习5. 2010年6月21日是星期一,那么2010年国庆节是星期几? 闰年闰年(leap year )是为了弥补因历法规定所造成的年度天数与地球实际公转周期的时间差而设立的.补上时间差的年份,即有闰日的年份就被称为闰年.由于地球绕太阳运行周期,即我们所谓的一回归年,为365天5小时48分46秒(合365.24219天),而公历的平年只有365日,比回归年短约0.2422日,所余下的时间每经四年约累积为一天,把这一天加于2月末(2月29日),使当年的历年长度为366日,就拿起日历研究起来.他发现再过天则是例题5高这样的一年就被称为“闰年”.按照每四年一个闰年计算,平均每年就要多算出0.0078天,经过四百年就会多出大约3天来.因此,每四百年中要减少三个闰年.所以人们规定后两位为00的公历年份必须是400的整数倍,才能被算作是闰年,不是400的整数倍的就是平年.比如,1700年、1800年和1900年为平年,2000年为闰年.闰年的计算,归结起来就是所谓的:四年一闰;百年不闰,四百年再闰.本讲知识点汇总一、“蜗牛爬井”:注意最后的周期是否完整.二、周期不明显的问题:按照给出的规律或特征多写出一些,找到周期.三、日历中的星期几:一星期是7天,所以是7天一周期.作业1. 狗熊摘苞米,它每天白天摘12个苞米存到仓库里,但每天晚上狗熊睡觉的时候,都会被猴子偷走7个苞米,那么要几天狗熊仓库里就会有100个苞米?2. 卡莉娅、小高和墨莫分别有5块、3块和7块巧克力,每次巧克力最多的人都给其他两人每人1块巧克力,这样给100次之后,小高有多少块巧克力?高思网3.军训时,许多同学排成一排,第一次从左到右1至2报数,第二次从左到右1至3报数.最后发现既报了1又报了3的士兵有10名,请问这一队士兵至少有多少人?4.2010年9月1日是星期三,那么2010年12月31日是星期几?5. 有一个关于毕达哥拉斯的故事传说,他有一次处罚学生,要他来回数在戴安娜神庙的七根柱子(这七根柱子分别标上了A、B、C、D、E、F、G),一直到指出第2000根柱子的标号是哪一个才能够停止.那么第2000根柱子的标号是哪个字母呢?A B C D E F G12345671312111098141516171819252423222120n n n n n nn n n n n n高思网课。
小学数学三年级周期问题[整理]
八、周期问题(一)〖趣味数学〗有10张卡片,正面朝上,每次翻动6张卡片,最少经过()次翻动,卡片都能反面朝上。
〖知识要点〗1、什么是周期问题?在日常生活中有一些按照一定的规律不断重复的现象,如人的十二生肖、一年有春夏秋冬四个季节、一个星期七天等等。
像这样常碰到的有一定循环出现的问题,我们称为周期问题。
2、解题步骤:(1)观察、分析数、图形或事物的变化是否重复循环出现并具有周期性。
(2)每几个数循环一次,谁开始谁结束,周期长度是多少。
(3)每个循环节按什么次序排列。
(4)利用除法算式求出余数,根据余数得出正确的结果。
〖例题精讲〗例1、两个小朋友比赛智力,一位小朋友画出了一组图形(排列如下),根据排列的规律。
请算出第60个图形是(),第121个图形是()。
〔分析与解答〕:每3个图形为一组,称为一个周期。
60÷3=30(组),没有余数,说明30个图形里刚好有30个周期。
(即为)121÷3=40(组)……1(个),说明121个图形中含有40个周期多1个,所以第121个图形就是重复40个周期后的第1个图形。
〖我真行1〗按照“数学奥林匹克比赛数学奥林匹克比赛数学奥林匹克比赛……”依次排列,第100个字是()。
例2、黑珠、白珠共202个,穿成一串(如下图所示),在这串珠子中,最后一个珠子是(黑)颜色的,这种颜色的珠子共有(26)个。
……202÷4=50……2(黑色) 50+1=51(个)〖我真行2〗有一些灯泡按照“一黄三红四白”的顺序排列,第30个灯泡是()色,第260个灯泡是()色。
例3、一个小朋友写了这样一列数“4、1、3、2、4、1、3、2、4、1、3、2……”,你能很快算出这列前54个数字之和是多少吗?〔分析与解答〕:上面一列数中,从第一个数字开始重复出现的部分是“4132”,周期数是4。
要求这列数字的和,就要先求出这列数里一共有多少组“4132”。
54÷4=13(组)……2(个),因此前13组数字之和是(4+1+3+2)×13=130;余下两个数的和是4+1=5。
小学奥数周期问题
【例1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列, 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球 呢?
●●●●●●●●… 解析: 周期=3 ÷3=30(组) 100÷3=33(组)······1(个) 答:第90个是 黑 球,第100个又是 白 球。
2. 解析:仔细分析可得,规律是1分,2分,5分。
3. 100 ÷ 3=33(组)··· ···1(个) 周期=3
① 1+2=5=8(分) ② × 33+1=265(分)
4. 265分=2.65元
5. 答:第100枚是1分硬币,前100枚硬币一共是2.65元。
【例3】 24个2相乘,积末位数字是几?
2008年1月1日是星期二。
答:……………………………………………………………… ………
课堂小结
找规律:确定周期和总数 除周期:总数(总个数,总天数···)除以周期 对余数:余数是几对应周期中的第几个
○ 没有余数,对应周期最后一个
【例2】有一列数按“”排列,那么第48个数字是多少?前48个 数字之和是多少?
解析:观察例题数列,重复出现的循环是1、2、5、6、9。
÷5=9(组)······3(个)
周期=5
1+2+5+6+9=23
×9+1+2+5=215
答:第48个数字是5,前48个数字之和是215。
1. 巩固练习:小明和小华做游戏,将存钱罐里的硬币拿出来,按一枚1分硬币,一 枚2分硬币,一枚5分硬币,再一枚1分硬币,一枚2分硬币,一枚5分硬币......, 这样的顺序往下摆,请你算一算第100枚是几分硬币?前100枚硬币一共是多少元?
小学三年级奥数-周期问题
练习2:
• 1.2001年5月3日是星期四,5月20日是星期几? • 2.2001年8月1日是星期三,8月28日是星期几? • 3.2001年6月1日是星期五,9月1日是星期几?
• 【例题3】100个3相乘,积的个位数字是几?
• 【思路导航】这道题我们只考虑积的个位数字的排列 规律。1个3.积的个位是3;2个3相乘积的个位数字 是9;3个3相乘积的个位数字是7;4个3相乘积的个 位数字是1;5个3相乘积的个位数字是3……可以发现 ,积的个位数字分别以3、9、7、1不断重复出现, 即每4个3积的个位数字为一周期。100÷4=25〔个 〕,因此100个3相乘积的个位数字是第25个周期中 的最后一个,即是1。
练习1:
• 1.如图,算出第20个图形是什么? • ○△△□□□○△△□□□○△△…… • 2.“数学趣味题数学趣味题……〞依次重复排列,第
2001个字是什么? • 3.把38面小三角旗按以下图排列,其中有多少面白旗
?
• 【例题2】2001年10月1日是星期一,问:10月25日 是星期几?
• 【思路导航】我们知道,每星期有7天,也就是说以7 天为一个周期不断地重复。从10月1日到10月25日经 过25-1=24天,24÷7=3〔星期〕……3〔天〕,说 明24天中包括3个星期还多3天。所以从10月1日开始 过3个星期,最后一天还是星期一,从这最后一天起 再过3天就应是星期四。
• 【思路导航】这本童话书3页插图前后各有1页文字, 也就是说这本书是按“1页文字3页插图“的规律重复 排列的,把“1页文字3页插图〞看作一周期,128页 中含有128÷〔1+3〕=32个周期,所以这本童话书 共有插图3×32=96页。
练习5:
• 1.校门口摆了一排花,每两盆菊花之间摆3盆月季,共 摆了112盆花。如果第一盆花是菊花,那么共摆了多少 盆月季花?
小学数学三年级周期问题
八、周期问题(一)〖趣味数学〗有10张卡片,正面朝上,每次翻动6张卡片,最少经过()次翻动,卡片都能反面朝上。
〖知识要点〗1、什么是周期问题?在日常生活中有一些按照一定的规律不断重复的现象,如人的十二生肖、一年有春夏秋冬四个季节、一个星期七天等等。
像这样常碰到的有一定循环出现的问题,我们称为周期问题。
2、解题步骤:(1)观察、分析数、图形或事物的变化是否重复循环出现并具有周期性。
(2)每几个数循环一次,谁开始谁结束,周期长度是多少。
(3)每个循环节按什么次序排列。
(4)利用除法算式求出余数,根据余数得出正确的结果。
〖例题精讲〗例1、两个小朋友比赛智力,一位小朋友画出了一组图形(排列如下),根据排列的规律。
请算出第60个图形是(),第121个图形是()。
〔分析与解答〕:每3个图形为一组,称为一个周期。
60÷3=30(组),没有余数,说明30个图形里刚好有30个周期。
(即为)121÷3=40(组)……1(个),说明121个图形中含有40个周期多1个,所以第121个图形就是重复40个周期后的第1个图形。
〖我真行1〗按照“数学奥林匹克比赛数学奥林匹克比赛数学奥林匹克比赛……”依次排列,第100个字是()。
例2、黑珠、白珠共202个,穿成一串(如下图所示),在这串珠子中,最后一个珠子是(黑)颜色的,这种颜色的珠子共有(26)个。
……202÷4=50……2(黑色) 50+1=51(个)〖我真行2〗有一些灯泡按照“一黄三红四白”的顺序排列,第30个灯泡是()色,第260个灯泡是()色。
例3、一个小朋友写了这样一列数“4、1、3、2、4、1、3、2、4、1、3、2……”,你能很快算出这列前54个数字之和是多少吗?〔分析与解答〕:上面一列数中,从第一个数字开始重复出现的部分是“4132”,周期数是4。
要求这列数字的和,就要先求出这列数里一共有多少组“4132”。
54÷4=13(组)……2(个),因此前13组数字之和是(4+1+3+2)×13=130;余下两个数的和是4+1=5。
三年级数学上册竞赛第11讲周期问题初步
其实蜗牛在最后一天的时候直接爬出了井口,并不会往下滑了,所以在考虑周期的时候要特别注意整个过程结束的时候是不是完整的周期.例题1(1)工厂的仓库里有80吨货物,这些货物都由同一辆卡车负责运输.第一天卡车往仓库里运进50吨,第二天运出了60吨,第三天又运进50吨,第四天再运出60吨,……如此不停地循环下去,第几天仓库里的货物才会被运完?(2)工厂的仓库里有80吨货物,同样是由一辆卡车负责货物的运输.第一天卡车从仓库里运出60吨,第二天再运进50吨,第三天又运出60吨,第四天再运进50吨,……如此不停地循环下去.第几天仓库里的货物才会被运完?分析 乍看之下这个题的两个问题是一样的,都是每两天共运出10吨.仔细想一想,这两个问题有什么区别?每个周期有什么区别?练习1.一只蜗牛在一口20米深的井底,如果它每个白天往上爬3米,但是在晚上又往下滑1米.请问:这个蜗牛在第几天能爬出这口井?有些问题,只给出了变化的规律,并没有给出明确的周期.这就需要我们按照规律,把隐藏的周期找出来,再利用周期进行计算.分析 先试着算一下开始几天四人的宝石数量,可以用下面这个表格来表示,试着再往下填几行:τ Հ ԛ1 10 7 5 4 ԛ2 7 8 6 5 ԛ3 ԛ4 ԛ5 čč čč都要聚在一起,重新分配宝石.分配的规则就是:人每人5、例题2练习2. 我们对四位数1234的各位数字进行如下方式的交换:第1次交换千位和百位,第2次交换个位和十位,第3次交换千位和个位,第4次交换百位和十位,第5、6、7、8次的交换方式与第1、2、3、4次的相同,并如此继续下去,那么经过100次这样的交换后,所得的四位数是什么?分析 开始数1的时候指着的是大拇指,下一次指到大拇指的时候是数几呢?几个数一个循环?练习3. 如图,在A 、B 两地之间有11个站,一辆车不停地往返于两地之间.从A 出发,每天走到下一站,到达B 地后的第二天又回到11号站,第1天的时候它在A 站,那么第100天时它在哪个站?有的问题同时包含两个周期规律,我们必须把它们一并考虑,这就需要找到它们的公共周期才行.始数数.请问:例题3nn第二次从右到左分析 试着把每个士兵两次报的数都写出来,找找看有没有周期?练习4. 全校2010名同学排成一队,先从排头向排尾1至3报数,再从排尾向排头1至5报数.两次分别报了1和4的同学有多少人?生活中也存在很多周期问题,比如同学们最熟悉的星期.我们经常需要去计算一些和星期几有关的问题.分析 (1)4月、5月都有多少天?3月份还剩多少天?(2)一个星期有多少天?练习5. 2010年6月21日是星期一,那么2010年国庆节是星期几? 闰年闰年(leap year )是为了弥补因历法规定所造成的年度天数与地球实际公转周期的时间差而设立的.补上时间差的年份,即有闰日的年份就被称为闰年.由于地球绕太阳运行周期,即我们所谓的一回归年,为365天5小时48分46秒(合365.24219天),而公历的平年只有365日,比回归年短约0.2422日,所余下的时间每经四年约累积为一天,把这一天加于2月末(2月29日),使当年的历年长度为366日,就拿起日历研究起来.他发现再过天则是例题5这样的一年就被称为“闰年”.按照每四年一个闰年计算,平均每年就要多算出0.0078天,经过四百年就会多出大约3天来.因此,每四百年中要减少三个闰年.所以人们规定后两位为00的公历年份必须是400的整数倍,才能被算作是闰年,不是400的整数倍的就是平年.比如,1700年、1800年和1900年为平年,2000年为闰年.闰年的计算,归结起来就是所谓的:四年一闰;百年不闰,四百年再闰.本讲知识点汇总一、“蜗牛爬井”:注意最后的周期是否完整.二、周期不明显的问题:按照给出的规律或特征多写出一些,找到周期.三、日历中的星期几:一星期是7天,所以是7天一周期.作业1. 狗熊摘苞米,它每天白天摘12个苞米存到仓库里,但每天晚上狗熊睡觉的时候,都会被猴子偷走7个苞米,那么要几天狗熊仓库里就会有100个苞米?2. 卡莉娅、小高和墨莫分别有5块、3块和7块巧克力,每次巧克力最多的人都给其他两人每人1块巧克力,这样给100次之后,小高有多少块巧克力?3.军训时,许多同学排成一排,第一次从左到右1至2报数,第二次从左到右1至3报数.最后发现既报了1又报了3的士兵有10名,请问这一队士兵至少有多少人?4.2010年9月1日是星期三,那么2010年12月31日是星期几?5. 有一个关于毕达哥拉斯的故事传说,他有一次处罚学生,要他来回数在戴安娜神庙的七根柱子(这七根柱子分别标上了A、B、C、D、E、F、G),一直到指出第2000根柱子的标号是哪一个才能够停止.那么第2000根柱子的标号是哪个字母呢?A B C D E F G12345671312111098141516171819252423222120n n n n n nn n n n n n。
三年级奥数题及答案:周期问题
这篇《三年级奥数题及答案:周期问题》,是无忧考特地为大家整理的,希望对大家有所帮助! 把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段? 答案:对折一次: 2*2-1=3段 对折二次:4*2-3=5段 对折三次:8*2-5=11段 绳子被折成8股,因此相当于未对折时被剪8刀,应该成9段吧 一方面三折以后成8股,中间一剪成16; 另一方面,第一折产生1个弯头,第二折产生2个弯头,第三折产生4个弯头; 最后剪成:16-1-2-4=9根。
三年级奥数之周期问题(彩色版,含解答)
64
周期问题进阶
课 本
这样的一年就被称为“闰年” . 按照每四年一个闰年计算,平均每年就要多算出 0.0078 天,经过四百年就会多出大 约 3 天来.因此,每四百年中要减少三个闰年.所以人们规定后两位为 00 的公历年份必 须是 400 的整数倍,才能被算作是闰年,不是 400 的整数倍的就是平年.比如,1700 年、 1800 年和 1900 年为平年, 2000 年为闰年.闰年的计算, 归结起来就是所谓的: 四年一闰; 百年不闰,四百年再闰.
有的问题同时包含两个周期规律,我们必须把它们一并考虑,这就需要找到它们的 公共周期才行.
例题 4
第一次从左到右 1 至 3 循环报数, 500 名士兵排成一横排,
第二次从右到左 1 至 4 循环报数.那么,既报 1 又报 4 的士兵有多少名?
63
三 年 级
上册第 11 讲
分析 试着把每个士兵两次报的数都写出来,找找看有没有周期?
໌ ݹ ݹ ໌ ٶ ٥ ͬ ݹՀ ٥ ͬ ݹՀ ٥ ڱ ݍఝ ڱ ݍఝ ڱ ݍఝ
n n n
例题 3
小高和其他 5 个小朋友围成一圈,圆圈中央摆放着 55 个 乒乓球.从小高开始,小朋友们沿逆时针方向开始拿球,每人每次拿 3 个, 直到把乒乓球全部拿完为止(最后剩下的球不足 3 个就全拿走) .那么,小 高总共拿到了几个球? 分析 几个人一个周期?一个周期一共拿走多少个球?其中小高又拿了几个呢?
Ă ԛ 16 ّ
ԛ1ّ
ԛ2ّ
ԛ3ّ
分析 先找一下规律,再按照规律多画几个图,找到周期.
ԛ1ّ
ԛ2ّ
ԛ 3 ّ
ԛ 4 ّ
ԛ 5 ّ
三年级奥数周期问题
周期问题[知识引领与方法]1、基本周期问题2、双周期问题3、日期中的周期问题【方法总结】1、通过观察规律,找出周期,确定周期。
2、用总量除以周期,总量÷周期=商......余数,然后看余数,余数是几,结果就是周期里的第几个;余数是零,结果为周期里的最后一个。
注意:如果不是从第一个开始循环,那么要从总量里减掉不是循环的个数后,再继续算。
[例题精选及训练]【例1】田田和丁丁做游戏,他们把两种形状的小石子按下面的规律排列:⚪★⚪★★⚪★★★⚪★⚪★★⚪★★★⚪★⚪★★⚪★★★......你知道他们所排列的这些小石子中,第100个是什么图形吗?第182个又是什么图形呢?【练习】一天早上,牛牛一起床就大喊:“我要吃包子我要吃包子我要吃包子......”请问,牛牛喊得第28个字是什么字?第33个字又是什么字?【例2】A B C A B C A B ......万事如意万事如意......上表中每一列的两个符号组成一组,如第1组“A万”,第2组“B事”......,那么第20组是什么?【练习】如下图所示的表中,将每列上、下两个字组成一组,例如第一组为“数真”,第二组为“学有”,那么第50组是什么字?数学数学数学数学......真有趣真有趣真有......【例3】图中是2013年5月份的日历表,根据表请回答:(1)该年6月1日是星期几?(2)该年10月1日是星期几?(3)2015年5月1日是星期几?【练习】2017年6月1日是星期四,算一算2017年9月1日是星期几?【极限思考一】100个3相乘,积的个位数字是几?【极限思考二】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。
如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?[ 当堂练习与作业]1、在一根绳子上依次串4颗红珠、2颗白珠、1颗黑珠,并按此顺序依次重复。
如果从头开始一共穿了75颗珠子,那么这75颗珠子中红珠比白珠多多少颗?2、2014年3月3日是星期一,算一算2014年8月8日是星期几?3、算一算:80个7相乘的积的个位数字是几?。
三年级奥数.应用题.周期问题(A级).学生版
流星雨(Meteor Shower)的产生一般认为是由于与地球相摩擦的结果(流星体可以是小行星带上的小行星),流星群往往是由分裂的碎片产生,因此,流星群的轨道常常与彗星的轨道相关。
成群的流星就形成了流星雨。
流星雨看起来像是流星从夜空中的一点迸发并坠落下来。
这一点或这一小块天区叫作流星雨的点。
通常以流星雨辐射点所在天区的给流星雨命名,以区别来自不同方向的流星雨。
例如每年11月1 7 日前后出现的流星雨辐射点在中,就被命名为狮子座流星雨。
流星雨、流星雨、也是这样命名的。
单个出现的流星,在方向和时间上都很随机,也无任何辐射点可言,这种流星称为偶发流星。
与偶发流星有着本质不同的流星雨的重要特征之一,是所有流星的反向延长线都相交于辐射点。
世界上最早的关于流星雨的记载是在687年,关于的记载:“夜中星陨如雨”。
同学们你们知道科学家是如何知道什么时间出现美丽而又神秘的流星雨吗? 这就用到了我们今天的学习内容,周期问题。
周期问题:知识框架课前预习周期问题时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.1.找准变化的规律2.确定解题的突破3. 同余知识的应用(杯赛考试涉及)【例1】小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?......重难点例题精讲【巩固】★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形,在87个图形中一共有多少个五角星?【例 2】植树节那天,同学们按1棵松树,2棵柏树,3棵香樟树的顺序植树,第15棵是什么树?第150棵又是什么树?【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【例 3】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A,第二组是“们,B……⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?【巩固】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“赵,甲,第二组是“钱,乙……第66组是什么?模块二、数列中的周期问题【例 5】哈利波特在地上写了一列数:7,8,4,5,3,3,7,8,4,5…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【巩固】根据下面一组数列的规律求出51是第几个数?1、2、3、4、6、7、8、9、11、12、13、14、16、17……【例 6】100个13相乘,积的个位数字是几?【巩固】93个18相乘,积的个位数字是几?【例 7】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈,现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲周期问题(一)
学习内容:基本周期问题
学习目标:1、明确几个周期问题的算法
2、周期不明显的问题,由给出的特征规律多写出一些,找到规律
3、记住一些简单常用的周期,如一周七天
在日常生活中,有一些按照一定规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等,像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。
这类问题一般要利用余数的知识来解答。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定术,然后利用除法算式求出余数,最后根据余数得出正确的结果。
周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.
分类: 1.图形中的周期问题;
2.数列中的周期问题;
3.年月日中的周期问题;
4. 一个数连乘几次的周期问题。
周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,
如果正好有整数个周期,结果就为周期里的最后一个;
一、图形中的周期问题
例1、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:
●●○●●○●●○…
你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?
例2、★★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形?
例3、小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.
⑴第73颗是什么颜色的?
⑵第10颗黄珠子是从头起第几颗?
⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?
二、数列中的周期问题
例4、1,2,3,1,2,3,1,2,3,…那么第16个数是多少?
例5、小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?
例6、在1,9,8,9后面顺次写出一串数字,使得每个数都等于它前面两个数之和的个位数,即得到1,9,8,9,7,6,3.。
那么第398个数字是什么?
1、美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?
2、根据下面一组数列的规律求出51是第几个数?
1、2、3、4、6、7、8、9、11、12、13、14、16、17……
3、1999名同学从前往后排成一列,按下面的规则报数:如果某名同学报的数是一位数,那么后一个同学就要报出这个数与9的和;如果某名同学报的数是两位数,那么后一个同学就要报出这个数的个位数与6的和。
现让第一个同学报1,那么最后一名同学报的数是( )。
4、将8个数从左到右排成一排,从第3个数开始,每个数恰好等于它前面
两个数之和,如果第7个数和第8个数分别为81,131,那么第1个数是多
少。
1、在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?
2、把38面小三角旗按下图排列,其中有多少面白旗?
3、有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?
4、一列数按“294736294736294……”排列,那么前40个数字之和是多少?
家长签字:
年月日 .。