乘除法的巧算
第十四讲 乘除法的巧算1 四年级数学思维拓展 教师版
第14讲乘除法的巧算积、商的变化规律,通过对算式适当变形,将因数(或被除数、除数)转化成整百、整千的数,或者使算式中的一些数变得易于心算,从而简化计算。
例1计算(1)25×5×64×125 (2)75×16解 (1)25×5×64×125=25×5×2×4×8×125=(25×4)×(5×2)×(8×125)=100×10×1000=1000000(2)75×16=3×25×4×4=(3×4)×(25×4)=12×100=1200【思路点拨】5的好朋友是2,25的好朋友是4,125的好朋友是8。
因为它们相乘后,得到的都是整十整百整千的数。
根据乘法交换律、结合律,可交换题中因数的位置重新分组求积。
因为25×4,5×2,125×8可以“凑整”,所以第(1)题将64分解成2×4×8;第(2)题将75分解成3×2516分解成4×4,可以使计算简便。
例2(1)125×(10+8) (2)(20-4)×25 (3)4004×25 (4)125×798解(1)125×(10+8)=125×10+125×8=1250+1000=2250(2)(20-4)×25=20×25-4×25=500-100=400(3)4004×25=(4000+4)×25=4000×25+4×25=100000+100=100100(4)125×798=125×(800-2)=125×800-125×2=100000-250=99750【思路点拨】凑整是简便运算的一种基本思维方式,上面这些题目都可以运用,同时结合乘法的运算定律来计算。
乘除法的速算与巧算
• 观察发现“发现:三位数 与1001相乘,积是把这个 三位数连续写两遍。
针对训练六:与101的巧算
(1) 136×1001 (2) 258×1001
② 25×125×8×9×4
基础计算1:
1,计算面各题:
(1):328 ×2
(2):328 ×10
(3):501×20
基础计算2:
三位数相乘计算:
(1):328 ×110 (2):206 ×895 (3):531 ×101
例5 一个数×10,数后添0; 一个数×100,数后添00;
以此类推。
一个数×1000,数后添000; 如:15×10=150
针对训练四:×11的巧算
如 2222×11=
2456×11=
巧算两位数与101相乘
• 一:算一算: • (1) 101 ×43
竖式:
(2)101 ×89
101 × 43 303 404 4343
101 × 89 909 808 8989
» 观察发现“4343、8989”, 两位数与101相乘,积是把这 个两位数连续写两遍。
针对训练五:与101的巧算
(1) 36×101 (3) 39×101 (2) 58×101 (4)42×101
巧算两位数与1001相乘
一:算一算:
(1) 1001 ×132 (2)1001 ×436
竖式:
1001 × 132 2002 3003 1001 132132 1001 × 436 6006 3003 4004 436436
速算与巧算 (一 )
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。
小学奥数-乘除法中的巧算(含答案)
乘除法中的巧算同学们好!我们学习了加、减、连加、连减的混合运算律,可利用加法的运算定律或连减及加减的混合运算的性质进行简便运算。
而乘、除法更有着一些巧妙的简便算法,下面共同学习。
(一)学习指导首先认识乘法交换律:乘法结合律:如:或利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千……)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。
例1. 用简便方法计算。
(1)(3)(2)(4)分析:(1)可以将4和25结合起来先乘。
这样:原式(2)可以将125和8相结合起来乘,这样:原式(3)可以把28变成4×7,再将125和4结合起来先乘:原式(4)我们先把32变为4×8,再把25和4,125和8结合起来乘:原式利用乘法分配律,可以使一些题简便:,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。
例2. 用简便方法计算下面各题。
(1)(3)(2)(4)分析:(1)、(2)题可以直接用乘法分配律去计算。
(1)(2)(3)题可以先把4004变为(),然后再用分配律计算。
(4)小题可以先把798变为(),再运用分配律计算。
例3. 巧算一个数乘以10,100,1000……分析:一个数乘以10,就是在这个数后添0,如:4301043=⨯当一个数乘以100时,就是在这个数后添00,如:52000100520=⨯当一个数乘以1000时,就是在这个数后添000,如:……例4. 巧算一个数与99相乘。
分析:先填空,再观察一个数与99相乘的规律。
观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。
如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。
乘除法巧算技巧范文
乘除法巧算技巧范文
一、乘法
1、乘以10、100、1000及其倍数或分数
2、乘以11
乘以11的计算方法是,将原数分解成两部分,将每部分的乘积分别
加起来,得出最终的结果。
例如,18×11=(1*10)+(8*1)=10+8=18
3、乘以5
乘以5的方法是,先乘以2,再乘以2,最后再乘以1,即2×2×1=5,例如,23×5=(23×2)×2×1=46×2×1=92×1=92
4、乘以9
乘以9的计算方法是,首先将原数减去1,然后将减1后的结果乘以10,最后再减去原数,即(x-1)×10-x,例如,23×9=(23-1)×10-
23=22×10-23=220-23=197
5、乘以2的n次方
二、除法
1、除以10、100、1000及其倍数或分数
除以10、100、1000及其倍数或分数,只需将原数的每一位都除以相
应的除数,然后按照小数点规则加上小数点即可,例如,840÷10=84.0,4125÷100=41.25
2、除以2
除以2的思路其实就是将原数每次乘以2,直到乘积大于原数,则记录下这个乘积,然后再将原数和乘积的差再乘以2,直到乘积大于差,然后记录乘积,重复上述步骤,直至乘积为0。
6 整数乘除法的巧算
哈喽!下面就来看看乘除法的巧算。
战场必备品:1、乘法运算定律:⑴乘法交换律:a×b=b×a⑵乘法结合律:(a×b)×c=a×(b×c)⑶乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c2、除法运算性质:⑴a÷b÷c=a÷(b×c)⑵a÷b×c=a÷(b÷c)⑶(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c3、积与商的不变规律⑴如果a×b=c,那么(a×m)×(b÷m)=c(m≠0)或(a÷m)×(b×m)=c(m≠0)⑵如果a(b÷例1、⑴25×19×4⑵125×(47×8) ⑶6780÷3420×例2、⑴25×36 ⑵25×5×64×125例3、计算下面各题⑴374×83+374×17 ⑵298×168-298×68 ⑶839×1011例4、计算下面各题⑴346×275÷468÷346×468 ⑵948÷(237÷35×4)例5、⑴3900÷25÷4 ⑵32000÷125例6、计算:9999×7778+3333×例7、不算出结果,比较两个积的大小 A =98765×4322 B =98766×4321【方法小结】熟记乘法运算律,除法性质,观察算式特点,灵活运用例题所讲方法,计算题就是小菜一碟。
乘除法巧算 — 定稿
乘除法巧算(一)一、运算性质1. 带符号搬家2. 添去括号二、巧算方法:1. 拆积凑整(好朋友数):5×2、25×4、125×82. 找钱法:出现了末尾是9的乘法,就会变的比较简单!3. 乘法分配律:56×11=56×(10+1)=56×10+56×1=616提取公因数:23×48+23×52=23×(48+52)=23×100=2300补充:除法的性质:23÷5+52÷5=(23+52)÷5=75÷5=15,正确但是,注意:18÷3+18÷6≠18÷(3+6)4. 头同尾和十:头×(头+1);尾× 尾,例如:84×86=7224,995×995=990025尾同头和十:头×头+尾;尾× 尾,例如:83×23=19095. 特殊数字巧算:(1)叠数:abc×1001001=abcabcabcabababab=ab×1010101, abcdabcd=abcd×10001(2)11、111、111、111…111的巧算:错位叠加!11×11=121,111×111=12321,11111×11111=123454321……(3)1001=7×11×13、111=37×3、999=27×37等.6. 多位数的巧算,其实就是上述方法的综合运用!!!题型一:利用带符号搬家和添去括号解题1. 1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)2. (1÷2)÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷(6÷7)÷(7÷8)3.121×32÷872×27×88÷(9×11×12)题型二:拆积凑整(好朋友数)1. 25×83×32×1252. 75×16×125×6题型三:末尾是9的巧算1. 723×99938×99992. 11×11×3×61111×1111×6×6附加题:333×333 666×666题型四:乘法分配律和提取公因数1. 56×21450×9982. 56×22+56×7845×22+45×33+45×443. 999×222+333×334附加题:999999×999999+999999题型五:特殊数字的巧算1.(11,111…11的巧算)23×1145657×11234×111112. (叠数)23×10101456×100100123452×100013. (叠数的拓展)23×1001001456×1000100010001附加题:20152015×2016−20162016×20154.3×5×7×9×11×1339×49×55附加题:2×7×9×11×135×7×22×39×491. (2÷4)÷(4÷6)÷(6÷8)(1÷3)÷(3÷5)÷(5÷7)÷(7÷9)2. 130÷(13÷3×15)478×9÷478×94. 32×25 12×75×1255. 45000÷(25×90)125×16−111×96. 23×999933333×427. 17×101010101347×1000100011.(26÷25)×(27÷17)×(25÷9)×(17÷39)2.999×888÷13323.99999×99999+2999994.22222×33333+88889×666665.555×445−556×4446.9999999×10000001结果中有几个9 ?7.12345654321×368.777777×333333结果的数字之和是多少?9.6×4444×2222+3333×5555的得数中有几个数字是奇数?。
乘除法巧算技巧
乘除法巧算技巧1、两位数(三位数)×11方法:两头一拉,中间相加。
注意在相加时,哪一位满10要向前一位进一。
例:23×11=253 78×11=858 358×11=39382、两位数×99方法:将与99相乘的两位数减1写在前边,后边写上这个乘数的补数。
例:63×99=62373、二十以内的两位数乘法。
方法:尾乘尾(有进位的要向前一位进);所得的的数写在个位。
尾加尾(在计算中个位有进上来的数要一并加上,本位有进位再向前一位进)所得的的数写在十位头乘头(有前一位进上来的数要加上)所得的数写在百位例:16×14=2244、个位都是1的两位数乘法。
方法:尾乘尾,所得的的数写在个位头加头(有进位的要向前一位进)所得的的数写在十位头乘头(有前一位进上来的数要加上)所得的数写在百位例:71×81=57515、任意两位数×101,三位数×1001方法:将这个两位数(三位数)直接排两遍写在结果上。
例:26×101=2626 368×1001=3683686、个位数互为补数,十位数相同的两位数乘法。
方法:个位乘个位,所得的数写在结果的后边(不足两位的在十位上补“0”)十位其中一个数加1后十位乘十位,结果写在前边例:62×68=42167、个位数相同十位数互为补数的两位数乘法。
方法:个位乘个位,所得的数写在结果的后边(不足两位的在十位上补“0”)十位数相乘的积再加上一个个位数,结果写在前边。
例:26×86=22368、两位数乘两位数,其中一组数为相同数,另一组数互为补数。
方法:同6.例:66×37=2442。
三年级奥数乘除法中的巧算
第二讲速算与巧算(二)一、乘法中的巧算1. 两数的乘积是整十、整百、整千的,殊的等式:5X 2=1025 X 4=100125X 8=1000例 1 计算① 123X 4X 255X 4解:=123X( 4X 25)X(5X 2)=123 X 100 = 1230010=10000002. 分解因数,凑整先乘。
例 2 计算①24 X 25③125X 5X 32X 5=6 X(4X 25) =7X 5X 4X 8X 5=6 X 100 =7 ( 125X 8)X( 5X 5X 4)=600=1000X 100=100000 要先乘. 为此,要牢记下面这三个特②125 X 2X 8X 25X= ( 125X 8)X( 25X 4)=1000 X 100X②56 X 125X 8X 125=7X(8X125) =125X 1000 ==70003. 应用乘法分配律。
例 3 计算① 175 X 34+ 175X 66 35+67X 52+6解:=175 X(34+66)=67 35+52+ 1)=175X 100=17500 ②67 X12+67XX(12+=67 X100 =6700例 4 计算① 123 X 101 99解:=123 X(100+1)=123X 100+ 123 (100-1 )②123 X =123 X=12300+ 123 =12300-123=12423 =121774. 几种特殊因数的巧算。
例5 一个数X 10,数后添0;一个数X 100,数后添00;一个数X 1000,数后添000;以此类推。
女口:15X 10=15015X 100=150015X1000=15000例6 一个数X 9,数后添0,再减此数;一个数X 99,数后添00,再减此数;一个数x 999,数后添000,再减此数;以此类推。
如:12X 9= 120-12 = 10812X 99= 1200- 12= 118812X 999= 12000-12=11988例7 一个偶数乘以5,可以除以2添上0。
乘除法数的巧算
乘除法数的巧算知识解析同学们已经学会了整数加减法的巧算,大家已经学会了“凑整”的方法进行巧算,那么今天我们同样要运用凑整的方法进行乘除法的巧算。
1.特殊乘数2×5=10 4×25=100 8×125=10002.乘法三大规律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c知识链接例1.乘法中的巧算25×18×4 8×25×4×12525×44 25×64×125例2. 乘法分配律15×37+15×63 88×99+8822×99 69×101例3特殊乘法的巧算首同尾合十(两位数乘两位数):十位上的数字乘十位上的数字加1的和的积再乘100,加上位数相乘的和。
62×68= 81×89= 56×54=尾同首合十(两位数乘两位数):十位上的数字相乘再加上个位上的一个数字的和乘100,再加上个位数字相乘的和34×74= 69×49= 53×53=例4除法中的巧算77×5÷11 7500÷(100÷3) 25×(32÷25)4200÷ 25 2000÷125÷8 110÷3-40÷3课堂训练1.巧算下列算式4×27×25 8×23×125 2×125×8×525×12 125×48 125×32×2573×77 56×54 97×9365×45 87×27 32×783200÷25 43000÷125 1200÷25÷4360×40÷60 2700÷(125×3) 3600÷(25×9÷2)125×102 1001×65—65 26×123+26×87798×32 300÷7+240÷7—50÷7提高训练(速算)124×25 5×64×25×125×209 125×79245000÷(25×90) 12×999 1421×11101+102+103+104+105+106+107+108+109+110家庭作业巧算125×16×25 79×71 43×63 105×65+36×65-41×65 27×15÷5 42000÷(125×7) 31200÷25入门测试8×25×4×125 88×99+88 69×10143000÷125 87×27 25×(32÷25)56×54 3600÷(25×9÷2) 22×99 1001×65—65。
乘除法巧算
4.方茴说:"可能人总有点什么事,是想忘也忘不了的。
"5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向 2. 乘除法巧算教学目标:掌握巧算中经常要用到的一些运算定律,如乘法交换律、结合律、分配律以及除法分配律等变式定律与性质。
1. 乘法中常用的几个重要式子2×5=10;4×25=100;8×125=1000;4×75=300;4×125=500; 2. 乘法的几个重要法则⑴去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。
例题. ① a ×(b ÷c) =a ×b ÷c ②a ÷(b ÷c) =a ÷b ×c ⑵带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。
第七讲 乘除法中的巧算
6 × ( 6 + 1) 2× 8
31 × 39= 12 09
3 × ( 3 + 1) 1× 9
128 × 122= 156 16
12 × ( 12+1 ) 2× 8
首同末合十的计算公式,也可以推广到两个三位数、两个四位数相乘的速算中 去。例如256×254=[25×(25+1)]×100+6×4 =[25×26]×100+24 =65024 ⑵ 末同首合十的两位数相乘公式 若两个两位数十位上的数字分别是a和b,且a+b=10,个位上的数字都是c, 则它们的积为:用两个十位数字的积加上一个个位数字所得的 和作为积的千位、百位;积的末两位是个位数的平方。 即 (10a+c)(10b+c)=(ab+c)×100+c×c。
下面我们就介绍几种巧算的方法 1、拆并扩整法 如果一个因数是5、25、125、625,另一个因数可拆成2n、4n、8n、16n的形 式,这样可先拆分再合并最后扩整。 72×125×3=8×9×125×3=(8×125)×(9×3) 例题 1、125×48= 25×32×125=
2012-6-22
3
2、提公因数法(即乘法分配率的逆应用) 把相同因数提在外面将几个积的和写成几个因数相乘的形式就叫提公因数法。 125×64+125×36=125×(64+36) 8888+9999+6666+7777 30×15+96.6×1.5+34×0.15=30×15+9.66×15+0.34×15=(30+ 9.66+0.34)×15 例题 2、 50×15+49×15+15 44×18+52×18+4×位置,它们的积不变。这叫“乘法的交 换律”。即ab=ba 例如: 807×13865=13865×807=11189055 【乘法结合律】三个数相乘,先把前面两个数相乘,再与第三个数相乘;或者先 把后面两个数相乘,再与第一个数相乘,它们的积不变。这叫 做“乘法的结合律”。即(a· c=a· c) b)· (b· 例如: (427×125)×8=427×(125×8)=427×1000=427000 【乘法分配律】两个数的和乘以一个数(或者一个数乘以两个数的和),等于每 一个加数分别乘以这个数(或者这个数分别乘以每一个加数) 所得的两个积之和。这叫做“乘法对于加法的分配律”,简称 “乘法分配律”。即(a+b)c=ac+bc;或者是a 2012-6-22 4 (b+c)=ab+ac。
三年级乘除法巧算方法
三年级乘除法巧算方法《三年级乘除法巧算方法》嘿,我的好朋友!今天我要给你分享一些超级厉害的三年级乘除法巧算方法,学会这些,让你的数学作业像玩游戏一样轻松搞定!咱们先说乘法巧算。
方法一:凑整法这就好比你去搭积木,要把合适的积木凑在一起才能搭出漂亮的城堡。
比如 25×4=100,125×8=1000,看到有类似的数字相乘,咱们就赶紧把它们凑一块儿。
举个例子,25×16,这时候你就得想啦,16 可以分成 4×4,那式子就变成 25×4×4,先算 25×4 等于 100,再乘以 4 就是 400。
是不是一下子就简单了?我跟你说,我小时候做这题,一开始还傻愣愣地硬算,算得我脑袋都大了,后来学会这个方法,感觉自己像开了窍一样!方法二:乘法分配律这个就像是分糖果,把一堆糖果按照不同的方式分给小朋友。
比如说 25×(40 + 4),那就等于 25×40 + 25×4,先算 25×40 得到 1000,25×4 得到 100,最后一加,答案 1100 就出来啦。
我有次考试就碰到这样的题,一开始没反应过来,后来突然想到这个方法,赶紧改答案,最后分数保住啦,哈哈!再来说说除法巧算。
方法一:商不变性质想象一下,你有一堆苹果要分给小伙伴,不管是把苹果整个分,还是切成小块分,每个人拿到的总数是不变的。
比如 120÷40,咱们可以把被除数和除数都同时除以 10,变成 12÷4,答案一下子就出来是 3 啦。
有一回我弟弟做这题,还在那一个一个地除,我在旁边告诉他这个方法,他那崇拜的小眼神,可把我得意坏了!方法二:连除等于除以积这就像是走路,有时候你直直地走比较远,但是绕一下路可能更近。
比如 240÷2÷4,那就等于 240÷(2×4),先算 2×4 等于 8,再用 240÷8 等于 30。
三年级数学思维能力提升--乘除法巧算
三年级数学思维能力提升乘除法巧算知识与方法归纳基本特点:乘法巧算中几个常用凑整数:2×5 = 10 4×25 = 100 8×125 = 1000基本方法:(1)去括号和添括号法则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。
例如:① a×(b÷c)= a×b÷c ②a÷(b÷c)= a÷b×c(2)带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。
不论数移动到哪个位置,它前面的运算符号不变。
(3)利用乘法的意义巧算乘法是求几个相同加数的和的简便运算;可以利用乘法的意义,先计算出相同加数的个数,再计算结果,使计算简便。
(4)抵消思想同级运算能抵消的先抵消,就能使计算简便。
典型题讲解例1、用简便方法计算下列各题。
(1)19×25×4 (2)125×27×8 (3)5×25×4×2例2、用简便方法计算下列各题。
(1)125×32 (2)28×25 (3)25×6×64×125练习1、简便计算下列各题。
(1)36×4×25 (2)125×16×5 (3)125×48 ×5例3、简便计算下列各题。
(1)170÷5 (2)2100÷25 (3)35000÷125例4、简便计算下列各题。
(1)3100÷4÷25 (2)12000÷125÷8练习2、简便计算下列各题。
三年级奥数-乘除法中的巧算
第二讲速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25 ② 125×2×8×25×5×4解:=123×(4×25) =(125×8)×(25×4)×(5×2)=123×100=12300 =1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③ 125×5×32×5=6×(4×25) =7×8×125=7×(8×125) =125×5×4×8×5=6×100 =7×1000 =(125×8)×(5×5×4)=600 =7000 =1000×100=1000003.应用乘法分配律。
例3计算① 175×34+175×66 ②67×12+67×35+67×52+6解: =175×(34+66) =67×(12+35+52+1)=175×100 = 67×100=17500 =6700例4计算① 123×101 ② 123×99解: =123×(100+1)=123×100+123 =123×(100-1)=12300+123 =12300-123 =12423 =121774.几种特殊因数的巧算。
四年级奥数教程(二)巧算乘除法
课题巧算乘除法四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的。
实际进行乘、除法以及乘除法混合运算式可利用到以下性质进行巧算:①乘法交换律:a×b = b×a②乘法结合律: a×b×c = a×(b×c)③乘法分配律: (a + b)×c = a×c + b×c由此可推出:a×b + a×c = a×(b + c)(a - b) ×c = a×c - b×ca×b - a×c = a×(b - c)④除法的性质: a÷b÷c = a÷b÷c = a÷(b×c)a÷(b÷c)= a÷b×c利用乘法、除法的这些性质,先凑整得10、100、1000……使计算更简便.教学目标1、熟练掌握乘除法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。
教学重难点重点:乘法运算律,特殊的由原有规律推出的定律难点:把乘除运算律延用到乘除法混合运算中,尤其在含有括号或多项的题目中。
教学过程一、复习引入1、利用乘法运算律,填空:15×10 = 16×______25×7×4 = ______×______×7(60×25)×______ = 60×(______×8)125×(8×______) = (125×______)×143×4×8×5 = (3×4)×(______×______)2、下面哪些运算运用了乘法分配律?117×3 + 117×7 = 117×(3 + 7)24×(5 + 12) = 24×174×a + a×5 = (4 + 5)×a36×(4×6) = 36×6×43、用乘法分配律计算下面各题103×12 20×55 24×205= = == = == = =有了上面的复习,我们把四年级课本上有关乘法的运算律都进行了一个回顾与掌握,今天我们将就如何在巧算中用上这些规律进行讲解。
奥数——巧算乘除法
奥数——巧算乘除法
(2)99 999 × 7 + 11 111 × 37
= 11 111 ×9 ×7 + 11 111 × 37
= 11 111 ×63 + 11 111 ×37
= 11 111 ×(63 + 37)
= 11 111 ×100
= 11 11100
奥数——巧算乘除法
(3)4500÷(25 × 90) =4500÷25÷90 =4500÷(5 × 5) ÷90 =4500÷5÷5÷90 =900÷5÷90 =900÷90÷5 =2 (4)18000÷125÷18 =18000÷(9 × 2) ÷125 =18000÷9÷2÷125 =2000÷2÷125 =8
奥数——巧算乘除法
例1,计算
(1)25 ×5 ×64 ×125
(2)56 × 165÷7÷11
分析:(1)在计算乘、除法时,我们通常 可以运用2 × 5、4 × 25、8 × 125来进行 巧妙的计算! (2)运用除法的性质,带着符号“搬家”。
奥数——巧算乘除法
解:
(1)25 × 5 × 64 × 125 = 25 × 5 × 2 × 4 × 8 × 125 =( 25 × 4)×( 5 ×2 )×(8 ×125) = 100 ×10 ×1000 = 1000 000
= 48000
奥数——巧算乘除法
(2)2008 ×2006 + 2007 ×2005 2007×2006 - 2008 ×2005
=2008 ×(2006 - 2005)- 2007 × (2006-2005)
= 2008 – 2007
=1
奥数——巧算乘除法
(3)42 × 35 + 61 × 35 - 3 × 35 = 35 ×( 42 + 61 - 3) = 35 ×100 = 3500 (4)(125 × 99 + 125)× 16 =(125 × 99 + 125 × 1)× 16 = 125 ×100 × 16 = 125 ×8 ×2 ×100 = 1000 ×2 ×100 = 200 000
乘除法中的巧算
乘除法中的巧算乘除法中的巧算;如何灵活运用乘,除法的运算定律和运算性质进行巧算的方法与策略。
乘法交换律;a × b = b × a乘法结合律;(a × b ) × c = a ×(b ×c)乘法分配律;(a ? b) × c = a × c ? b × c乘法性质;1( 两个数的差与一个数相乘,可以用被减数和减数分别与这个数相乘, 再把所得的积相减。
(a - b)× c=a × c - b × c2(一个数与两个数商相乘,可以用这个数先与商里的被除数相乘,再除以商里的的除数;或用这个数先除以商里的除数,再与商里的被除数相乘。
a ×(b ? c)=a × b ?c =a? c× b特殊数字的乘积;5 ×2=10 25 × 4=100 125 × 8 =1000 37 × 3 =111 625 × 16 =10000 75 × 4 =300 375 × 8 =30001例;125 ×(98 × 8)利用乘法结合律,先交换8与98的位置,使125和8结合得出1000。
125 ×(98 × 8)=(125 × 8)× 98=1000 × 98=98000例;48 × 625 × 37利用数的分解,把48转化成3 6的形式,再把16与625,3与37结合。
48 ×625 ×37=3 ×16 ×625 × 37=(16 × 625) ×(3 ×37)=10000 × 111=1110000例;43 ×76+76 × 57运用乘法分配律,先提出两个乘法算式中的公因数76,再使43和57结合,然后与76相乘。