高一数学辅导资料2:函数的基本性质
高中数学函数的基本性质 doc
高一数学函数的基本性质一、知识点1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数奇偶性的概念)
课件 课件
课件 课件
课件 课件
课件
课件
课件
(2)已知 f(x)=x7-ax5+bx3+cx+2,若 f(-3)=-3,则 f(3)=________.
[思路点拨] (1) fx是偶函数 定原义―点―域对→关称于 求a的值 图y―轴象―对关→称于 求b的值
(2)
令gx=x7-ax5+bx3+cx
―→
判断gx 的奇偶性
(2)由图象知,使函数值 y<0 的 x 的取值集合为(-2,0)∪(2,5).
栏目导航
(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.
[解]
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
(1)如图所示 课件 课件
课件 课件
课件
课件
(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).
需多项式的奇次项系数为 0,即 a-4=0,则 a=4.
法三:根据二次函数的奇偶性可知,形如 f(x)=ax2+c 的都是偶函数,
因而本题只需将解析式看成是平方差公式,则 a=4.]
栏目导航
1.奇偶性是函数“整体”性质,只有对函数 f(x)定义域内的每一个值 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
人教版高中数学《函数的基本性质》优质教案
2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。
高一数学 函数的基本性质
函数的基本性质一、知识梳理1.奇偶性(1)定义:设函数y =)(x f 的定义域为D ,如果对于D 内任意一个x ,都有D x ∈-,且)(x f -=-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 内任意一个x ,都有D x ∈-,且)(x g -=)(x g ,那么这个函数叫做偶函数.(2)如果函数)(x f 不具有上述性质,则)(x f 不具有奇偶性.如果函数同时具有上述两条性质,则)(x f 既是奇函数,又是偶函数.函数是奇函数或是偶函数的性质称为函数的奇偶性,函数的奇偶性是函数的整体性质.(3)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定在定义域内.即定义域是关于原点对称的点集.(4)图象的对称性质:一个函数是奇函数当且仅当它的图象关于原点对称;一个函数是偶函数的当且仅当它的图象关于y 轴对称.(5)奇偶函数的运算性质:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇. (6)奇(偶)函数图象对称性的推广:若函数)(x f 的图象关于直线a x =对称,则)2()(a x f x f +=-; 若函数)(x f 的图象关于点)0,(a 对称,则)2()(a x f x f +-=-. 2.单调性(1)定义:一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的任意两个值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当12x x <时,都有12()()f x f x >,那么就说()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调减区间.(2)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.(3)设复合函数))((x g f y =,其中)(x g u =,A 是))((x g f y =定义域的某个区间,B 是映射g :x →)(x g u = 的象集.①若)(x g u =在 A 上是增(或减)函数,)(u f y =在B 上也是增(或减)函数,则函数))((x g f y =在A 上是增函数;②若)(x g u =在A 上是增(或减)函数,而)(u f y =在B 上是减(或增)函数,则函数))((x g f y =在A 上是减函数.(4)奇偶函数的单调性①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反. ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数. 3.最值(1)定义:设函数y =)(x f 的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有)(x f ≤M ;②存在0x ∈I ,使得)(0x f =M ,那么,称M 是函数y =)(x f 的最大值.设函数y =)(x f 的定义域为I ,如果存在实数m 满足:①对于任意的x ∈I ,都有)(x f ≥m ;②存在0x ∈I ,使得)(0x f =m ,那么,称m 是函数y =)(x f 的最小值.(2)函数最大(小)值首先应该是某一个函数值,即存在0x ∈I ,使得)(0x f =M (m );函数最大(小)值应该是所有函数值中的最大(小)者,即对于任意的x ∈I ,都有)(x f ≤M ()(x f ≥m ).二、方法归纳1.利用定义判断函数奇偶性的方法(1)首先确定函数的定义域,并判断其定义域是否关于原点对称; (2)确定)(x f -与)(x f 的关系; (3)作出相应结论:若)(x f -=)(x f 或)(x f --)(x f = 0,则)(x f 是偶函数; 若)(x f -=-)(x f 或)(x f -+)(x f = 0,则)(x f 是奇函数.2.利用定义证明或判断函数单调性的步骤(1)任取1x ,2x ∈D ,且1x <2x ; (2)作差)()(21x f x f y -=∆; (3)变形(通常是因式分解和配方);(4)定号(即判断差)()(21x f x f y -=∆的正负);(5)下结论(即指出函数)(x f 在给定的区间D 上的单调性). 3.求函数最大(小)值的 一般方法(1)求值域进而得到最大(小)值.求函数的值域的常见方法:直接法、配方法、换元法、判别式法、数形结合法、反函数法、单调性法等等.(2)利用函数单调性的判断函数的最大(小)值. (3)利用函数的图象求函数的最大(小)值;三、典型例题精讲【例1】判断下列函数的奇偶性.(1)x x x x f -+-=11)1()(; (2)22)1lg()(2---=x x x f .错解分析:(1)∵x x x x f -+-=11)1()(xxx -+⋅-=11)1(21)1)(1(2-=+-=x x x . 显然有)(x f -=)(x f ,∴)(x f 为偶函数.(2)∵22)1lg(22)1lg()(22-+-=----=-x x x x x f ,于是)(x f -≠)(x f 且)(x f -≠-)(x f . ∴)(x f 为非奇非偶函数.解析:(1)∵)(x f 的定义域为xx-+11≥0,即-1≤x <1. 定义域不是关于原点对称的数集,∴)(x f 为非奇非偶函数. (2)∵)(x f 的定义域为012>-x 且22--x ≠0,即-1<x <1且x ≠0,此时02<-x .∴xx x x x f --=---=)1lg(22)1lg()(22,∴)(x f 为奇函数. 技巧提示:正确判定函数的奇偶性,必须先考虑函数的定义域. 又例:判断下列函数的奇偶性.(1)551)(2-+-=x x x f ; (2)⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f ; (3)33)(22-+-=x x x f .解析:(1)∵ 21x -≥0,即-1≤x ≤1.此时x x =-+55,∴xx x f 21)(-=,为奇函数.(2)当x >0,-x <0时,)(x f =x x +-2,)(x f -=x x x x -=-+-22)()(,)(x f =-)(x f -;当x <0,-x >0时,)(x f =x x +2,)(x f -=x x x x --=-+--22)()(,)(x f =-)(x f -;∴ )(x f 为奇函数.(3)∵33)(22-+-=x x x f 的定义域为{|x x =.此时函数化为)(x f =0,{|x x =. ∴ )(x f 既是奇函数又是偶函数.【例2】讨论函数xxx x f 22116)(++=的奇偶性. 解析:函数定义域为R ,又11161222116)(++=++=----xxx x x x f=)(22116141612x f xxx x x x=++=++⋅. ∴)(x f 为偶函数.技巧提示:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变).如本题亦可先化简:14412116)(++=++=-x x xx x f ,显然)(x f 为偶函数. 从这可以看出,化简后再解决要容易得多.又例:证明函数)1(1)(22x x og x f ++=为奇函数.解析:∵)(x f +)(x f -=)1(122x x og +++)1(122x x og -+=)]1)(1[(1222x x x x og -+++=112og =0∴)(x f 为奇函数.再例:讨论函数aa x x a x f -+-=||)(22 (a ≠0)的奇偶性.解析:∵ 2x ≤2a ,∴ 要分a >0与a <0两类讨论.(i )当a >0时,由⎩⎨⎧≠+≤≤-aa x ax a ||,函数的定义域为 ],0()0,[a a -,∵a x +≥0, ∴xx a x f 22)(-=,)(x f 为奇函数;(ii )当a <0时,由⎩⎨⎧≠+-≤≤aa x ax a ||,函数的定义域为[][],00,a a -,∵a x +≤0, ∴ax x a x f 2)(22---=,)(x f 既不是奇函数,也不是偶函数.【例3】求函数20.7log (32)y x x =-+的单调区间.错解分析:设41)23(23)(22--=+-=x x x x t , ∴)23,(-∞为函数)(x t 的单调递减区间;),23(+∞为函数)(x t 的单调递增区间. 又t x x y 7.027.0log )23(log =+-=为t 的减函数, ∴)23,(-∞为函数20.7log (32)y x x =-+的单调递增区间;),23(+∞为函数20.7log (32)y x x =-+的单调递减区间. 解析:设23)(2+-=x x x t , 由0232>+-x x 得函数的定义域为),2()1,(+∞-∞ ,区间)1,(-∞和),2(+∞分别为函数23)(2+-=x x x t 的单调递减区间和单调递增区间. 又t y 7.0log =,根据复合函数的单调性的规则,得区间)1,(-∞和),2(+∞分别为函数t y 7.0log =的单调递增区间和单调递减区间.技巧提示:函数的单调区间是包含在定义域内的某个区间,因此,求函数的单调区间必须考虑函数的定义域.运用复合函数的单调性规则求函数的单调区间时,要考虑各个基本函数都要有意义.又例:设函数)(x f =bx ax ++(a >b >0),求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性.解析:在定义域内任取1x <2x ,∴)()(21x f x f -=1212x a x a x b x b ++-++))(())((2121b x b x x x a b ++--=, ∵a >b >0,∴b -a <0,1x -2x <0,只有当1x <2x <-b 或-b <1x <2x 时函数才单调. 当1x <2x <-b 或-b <1x <2x 时)()(21x f x f ->0.∴(-b ,+∞)和(-∞,-b )都是函数)(x f 的单调减函数区间.【例4】设0a >,()x xe af x a e =+是R 上的偶函数. (1) 求a 的值;(2)证明()f x 在(0,)+∞上为增函数.解析:(1)依题意,对一切x R ∈,有()()f x f x -=,即1x xx xe a ae ae a e +=+. ∴11()()xxa e ae --0= 对一切x R ∈成立, 则10a a-=,即1a =±.∵0a >,∴1a =. (2)设120x x <<,则12121211()()xxx x f x f x e e e e-=-+- 2121121122111()(1)(1)x x x x x x x x x x x e e e e eee+-++-=--=-,由12210,0,0x x x x >>->,得21120,10x x x x e -+>->,2110x x e +-<, ∴12()()0f x f x -<,即12()()f x f x <,∴)(x f 在(0,)+∞上为增函数.技巧提示:两小题都只要抓住偶函数、增函数的定义解决问题就不难.两小题中变形的都是因式分解,第(2)小题的变形以容易判别符号为目标.又例:已知)(x f 是定义在R 上的偶函数,且在),0[+∞上为减函数,若)12()2(2->--a f a a f ,求实数a 的取值范围.解析:)(x f 是R 上的偶函数且在),0[+∞上为减函数.∴由)12()2(2->--a f a a f ,有|12||2|2-<--a a a ,即⎩⎨⎧-<--≥--222)12(202a a a a a ,解得a ≤-1或a ≥2. 再例:二次函数)(x f 的二次项系数为正,且对任意实数x ,恒有)2(x f +=)2(x f -,若)21(2x f -<)21(2x x f -+,则x 的取值范围是_________.解析:由二次函数)(x f 的二次项系数为正,知函数的图象为开口向上的抛物线,由)2(x f +=)2(x f -,知x =2为对称轴, 于是有结论:距对称轴较近的点的纵坐标较小. ∴22122122--+<--x x x即22)1(12-<+x x ,22)1(12-<+x x∴-2<x <0.【例5】已知)(x f 是定义在R 上的增函数,对x ∈R 有)(x f >0,且)5(f =1,设)(x F =)(x f +)(1x f ,讨论)(x F 的单调性,并证明你的结论.解析:在R 上任取1x 、2x ,设1x <2x ,∴)(1x f <)(2x f ,],)()(11)][()([])(1)([])(1)([)()(2112112212x f x f x f x f x f x f x f x f x F x F --=+-+=-∵)(x f 是R 上的增函数,且)5(f =1,∴当x <5时0<)(x f <1,而当x >5时)(x f >1;① 若1x <2x <5,则0<)(1x f <)(2x f <1,∴0<)(1x f )(2x f <1,∴)()(1121x f x f -<0,∴)(2x F <)(1x F ;② 若2x >1x >5,则)(2x f >)(1x f >1 ,∴)(1x f )(2x f >1, ∴)()(1121x f x f ->0,∴)(2x F >)(1x F . 综上,)(x F 在(-∞,5)为减函数,在(5,+∞)为增函数.技巧提示:该题属于判断抽象函数的单调性问题.抽象函数问题是函数学习中一类比较特殊的问题,其基本能力是变量代换、换元等,应熟练掌握它们的这些特点.又例:已知函数)(x f 的定义域关于原点对称,且满足:(1))()(1)()()(122121x f x f x f x f x x f -+⋅=-;(2)存在正常数a ,使)(a f =1.求证:(Ⅰ))(x f 是奇函数;(Ⅱ))(x f 是周期函数,并且有一个周期为4a . 解析:(Ⅰ)设21x x t -=,则)()()()(1)()()()(1)()()()(211221211212t f x x f x f x f x f x f x f x f x f x f x x f t f -=--=-+⋅-=-+⋅=-=-所以函数)(x f 是奇函数.(Ⅱ)令a x a x ==212,,则)2()(1)()2()(a f a f a f a f a f -+⋅=即)2(11)2(1a f a f -+=,解得:)2(a f =0.于是有 )()2(1)2()()2(x f a f a f x f a x f --+-⋅=+)(1)()2(1)]2([)(x f x f a f a f x f -=--+-⋅=.所以)()(11)2(1)4(x f x f a x f a x f =--=+-=+. 因此,函数)(x f 是周期函数,并且有一个周期为4a .【例6】设函数)(x f =xx 1-.对任意),1[+∞∈x ,有0)()(<+x mf mx f 恒成立,则实数m 的取值范围是 .解析:方法一 :显然m ≠0,由于函数)(x f =xx 1-在),1[+∞∈x 上是增函数, 则当m >0时,0)()(<+x mf mx f 不恒成立,因此m <0.当m <0时,函数)()()(x mf mx f x h +=在),1[+∞∈x 上是减函数, 因此,当1=x 时,)(x h 取得最大值mm h 1)1(-=, 故0)()()(<+=x mf mx f x h 恒成立等价于)(x h 在),1[+∞∈x 上的最大值小于零,即01)1(<-=m m h ,解⎪⎩⎪⎨⎧<<-01m m m ,得m <-1. 于是实数m 的取值范围是)1,(--∞.方法二 :显然m ≠0,由于函数)(x f =xx 1-在),1[+∞∈x 上是增函数, 则当m >0时,0)()(<+x mf mx f 不恒成立,因此m <0.若x m mx mx mx x mf mx f -+-=+1)()(=m xm x m 22212--<0恒成立, 因为),1[+∞∈x ,m <0,则需22212m x m -->0恒成立, 设函数22212)(m x m x g --=,则)(x g 在),1[+∞∈x 时为增函数,于是1=x 时,)(x g 取得最小值1)1(2-=m g .解 ⎩⎨⎧<>-0012m m ,得m <-1.于是实数m 的取值范围是)1,(--∞.方法三 :显然m ≠0,由于函数)(x f =xx 1-在),1[+∞∈x 上是增函数, 则当m >0时,0)()(<+x mf mx f 不恒成立,因此m <0. 因为对任意),1[+∞∈x ,0)()(<+x mf mx f 恒成立, 所以对1=x ,不等式0)()(<+x mf mx f 也成立,于是0)1()(<+mf m f ,即01<-mm , 解 ⎪⎩⎪⎨⎧<<-001m m m ,得m <-1. 于是实数m 的取值范围是)1,(--∞.技巧提示:这是一个“恒成立”问题函数,本题提供了三种解法,其中方法一和方法二较好地应用了函数的单调性.函数)(x f =xx 1-在)0,(-∞和),0(+∞上都是增函数.在)1,(-∞和)1,0(上小于零;在)0,1(-和),1(+∞上大于零.又例:已知函数)(x f =xax +2),0(R a x ∈≠, (1)判断函数)(x f 的奇偶性;(2)若)(x f 在区间),2[+∞是增函数,求实数a 的取值范围。
高中数学—函数的基本性质—完整版课件
• 当 > 时, − < ,则
• − = −
− = − = − ().
• 综上,对 ∈ (−∞,) ∪ (,+∞),
• ∴ ()为奇函数.
都有 − = − ().
奇偶性判定
• 【解析】 (4) =
−
−
• 定义域为 −, 关于原点对称
• ③一个奇函数,一个偶函数的积是 奇函数 .
函数的奇偶性
• 判断函数的奇偶性
• 1、首先分析函数的定义域,在分析时,不要把函数化简,而要根据
原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非
奇非偶函数.
• 2、如果满足定义域对称,则计算(−),看与()是否有相等或互为
相反数的关系.
−
−−
+
++
−+
• 即
= 恒成立,
• 则2(+)2+2=0对任意的实数恒成立.
• ∴ ==0.
函数的单调性
+
•
(2)∵ =
∈ 是奇函数, 只需研究(, +∞)上()的单调区间即可.
•
任取, ∈ (,+∞),且 < ,则
应值,故函数取得最值时,一定有相应的x的值.
抽象函数的单调性
• 函数()对任意的、 ∈ ,都有 + = + − ,并且当
> 时,() > .
• (1)求证:()是上的增函数;
• (2)若()=,解不等式( − − ) < .
抽象函数的单调性
• ∴ ()=, ∴原不等式可化为( − − ) < (),
• ∵ ()是上的增函数,
函数的基本性质(2)函数单调性
课题3.4 函数的基本性质(2)——函数单调性学 科:高中数学课程类型:基础型课式类型:新授课执教老师:田红兵授课班级:高一(2)班一、教学目标1.理解单调函数(增函数、减函数)、单调区间(增区间、减区间)的概念和图像特征,能根据函数的图象判断单调性、写出单调区间,能运用函数的单调性概念证明简单函数的单调性。
2.经历函数单调性概念抽象提炼的过程,体会数形结合的思想, 培养抽象概括、推理论证和语言表达的能力。
3.通过函数单调性概念的抽象过程,感受数学的严谨性,培养严谨的科学态度,养成良好的思维习惯。
二、教学重点及难点重点:函数单调性的概念难点:领悟函数单调性的本质, 掌握函数单调性的判断和证明三、教学用具准备:多媒体课件四、教学过程设计 策略与方法(一)情景引入1. 观察关于上海市园林绿地面积的图形,(见ppt )问题:从1990年到2000年上海市园林绿地面积变化 由生活情境引入新课,趋势如何? 激发兴趣,了解新概念预案:随年份的增加而增加。
在生活的原型,认识研问题:还能举出生活中其他的数据变化情况吗? 究单调性的必要性。
预案:长江水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的增加,函数值是增大还是减小,对于自变量增大时,函数值是增大还是减小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们继续研究这个问题。
(二).归纳探索,形成概念1.借助图象,直观感知问题1:观察函数x y 3=,22+-=x y ,x x y 22+-=,x y 1=的图象,自变量增大时,函数值有什么变化规律? 策略与方法预案:(1)函数x y 3=在整个定义域内 y 随x 的增大而增大; 从初中学过的四类(2)函数22+-=x y 在整个定义域内 y 随x 的增大而减小. 函数入手,通过观察图(3)函数x x y 22+-=在[)+∞,1上 y 随x 的增大而减小, 像直观感知函数单调性。
函数的基本性质知识点总结
函数的基本性质知识点总结一、函数的定义和表示方式1.定义:函数是一种特殊关系,它将一个集合中的每个元素与另一个集合中的唯一元素相对应。
2.表示方式:函数可以用图表、解析式、关系式等方式表示。
二、函数的定义域、值域和对应关系1.定义域:函数的定义域是指能使函数有意义的输入值的集合。
2.值域:函数的值域是指函数的所有可能的输出值的集合。
3.对应关系:对于函数中的每个输入值,都有一个唯一的输出值与之对应。
三、函数的图象和图像1.图象:函数的图象是函数在平面直角坐标系中的表示,其所有的点坐标满足函数的对应关系。
2.图像:函数的图像是函数的图象在控制显示器或打印机上的可视化表现。
四、函数的性质1.单调性:函数可以是递增的(单调递增)或递减的(单调递减)。
2.奇偶性:函数可以是奇函数(关于原点对称)或偶函数(关于y轴对称)。
3.周期性:函数可以是周期函数,即函数在一定区间内具有重复的规律。
4.奇点和间断点:函数的奇点是指函数在定义域内的特定点,其函数值不存在或趋于无穷;间断点是指函数在特定点不连续。
五、函数的极限与连续性1.极限:函数的极限是指当自变量趋于一些值时,函数值的趋向或趋近的特性。
2.连续性:函数在定义域内的所有点都连续,当且仅当函数在这些点的极限存在且等于这些点的函数值。
六、函数的导数与微分1.导数:函数的导数描述了函数在其中一点处的变化率。
导数表示为函数的斜率或函数的变化速率。
2.微分:函数的微分可以理解为函数在其中一点处的无穷小增量。
七、函数的极值与最值1.极值:函数在极值点处的函数值称为极大值或极小值。
极大值是函数在该点附近所有函数值中最大的值,极小值是函数在该点附近所有函数值中最小的值。
2.最值:函数的最大值和最小值称为函数的最值。
八、函数的反函数1.反函数:如果函数f的定义域与值域互换,且对于f的每一个输出值,存在唯一的输入值与之对应,则这个函数称为f的反函数。
以上是函数的基本性质的总结,函数理论是数学中的基础内容,也是其他学科中的重要概念。
高中数学必修1函数的基本性质
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高一数学第2课-函数的基本性质
第2讲 函数的基本性质一、要点精讲1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为偶函数。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否 ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 = 0,则f (x )是奇函数。
(3)函数的图像与性质:奇函数的图象关于 对称;偶函数的图象关于 对称; 2.单调性(1)定义:注意:① 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;② 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是 或是 ,那么就说函数y =f (x )在这一区间具有 ,区间D 叫做y =f (x )的 。
(3)判断函数单调性的方法(ⅰ)定义法:利用定义严格判断(ⅱ)利用已知函数的单调性如若()f x 、)(x g 为增函数,则①()f x +)(x g 为 ;②1()f x 为 (()f x >0);为 (()f x ≥0);④-()f x 为 (ⅲ)利用复合函数【y = f (u ),其中u =g(x ) 】的关系判断单调性:复合函数的单调性法则是“ ” (ⅳ)图象法(ⅴ)利用奇偶函数的性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; 3.最值:利用函数单调性的判断函数的最大(小)值的方法:○1 利用二次函数的性质(配方法)求函数的最大(小)值; ○2 利用图象求函数的最大(小)值; ○3 利用函数单调性的判断函数的最大(小)值: 4.周期性(1)定义:如果存在一个 常数T ,使得对于函数定义域内的 ,都有 ,则称f (x )为周期函数;(2)f (x+T )= f (x )常常写作),2()2(Tx f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为||ωT 。
函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)
[答案] 求解二次函数最值问题的方法:
(1)确定对称轴与抛物线的开口方向并作图.
(2)在图象上标出定义域的位置.
(3)观察函数图象,通过函数的单调性写出最值.
新知生成
二次函数 具有对称性、增减性、最值等性质,即对于 ,①其图象是抛物线,关于直线 成轴对称图形;②若 ,则函数在区间 上单调递减,在区间 上单调递增;③若 ,则函数在区间 上单调递增,在区间 上单调递减;④若 ,则当 时, 有最小值,为 ,若 ,则当 时, 有最大值,为 .
A. , B. , C. , D. ,
C
[解析] 由图可得,函数 在 处取得最小值,最小值为 ,在 处取得最大值,最大值为2,故选C.
3.函数 在区间 上的最大值、最小值分别是( ).A. , B. , C. , D.以上都不对
B
[解析] 因为 ,且 ,所以当 时, ;当 时, .故选B.
(2) 求函数 的最大值.
[解析] 当 时, , ;当 时, , ;当 时, , .综上所述, .
1.函数 在 上的图象如图所示,则此函数在 上的最大值、最小值分别为( ).
A. , B. , C. ,无最小值 D. ,
C
[解析] 观察图象可知,图象的最高点坐标是 ,故其最大值是3;无最低点,即该函数不存在最小值.故选C.
×
(2) 若函数有最值,则最值一定是其值域中的一个元素.( )
√
(3) 若函数的值域是确定的,则它一定有最值.( )
×
(4) 函数调递减,则函数 在区间 上的最大值为 .( )
√
自学检测
2.函数 在 上的图象如图所示,则此函数的最小值、最大值分别是( ).
函数的基本性质含答案
当 时,
, ,
则 当 时,
, ,
则 故 .
∴f〔-*〕=-f〔*〕.∴f〔*〕是奇函数.
〔2〕证明:任取*1、*2∈R,且*1<*2,则f〔*1〕-f〔*2〕=f〔*1〕-f[*1+〔*2-*1〕]=f〔*1〕-[f〔*1〕+f〔*2-*1〕]=-f〔*2-*1〕.由*1<*2,∴*2-*1>0.∴f〔*2-*1〕<0.
∴-f〔*2-*1〕>0,即f〔*1〕>f〔*2〕,从而f〔*〕在R上是减函数.
4.如果偶函数在 具有最大值,则该函数在 有〔 〕
A.最大值 B.最小值C .没有最大值D. 没有最小值
5.函数 , 是〔 〕
A.偶函数B.奇函数C.不具有奇偶函数D.与 有关
6.函数 在 和 都是增函数,假设 ,且 则〔 〕
A. B.
C. D.无法确定
7.函数 在区间 是增函数,则 的递增区间是〔 〕
〔3〕解:由于f〔*〕在R上是减函数,故f〔*〕在[-3,3]上的最大值是f〔-3〕,最小值是f〔3〕.由f〔1〕=-2,得f〔3〕=f〔1+2〕=f〔1〕+f〔2〕=f〔1〕+f〔1+1〕=f〔1〕+f〔1〕+f〔1〕=3f〔1〕=3×〔-2〕=-6,f〔-3〕=-f〔3〕=6.从而最大值是6,最小值是-6.
C. D.
2.如果奇函数 在区间[3,7]上是增函数且最小值为5,则 在区间 上是 ( )
A.增函数且最小值为 B.增函数且最大值为
C.减函数且最小值为 D.减函数且最大ቤተ መጻሕፍቲ ባይዱ为
3.以下函数中,在区间(0,2)上为增函数的是 ( )
A. B. C. D.
4.对于定义域是R的任意奇函数 有 ( )
高中数学:函数的基本性质
⾼中数学:函数的基本性质⼀、知识点1、函数(1)了解构成函数的要素,会求⼀些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的⽅法(如图象法、列表法、解析法)表⽰函数.(3)了解简单的分段函数,并能简单应⽤.(4)理解函数的单调性、最⼤(⼩)值及其⼏何意义;结合具体函数,了解函数奇偶性的含义.(5)会运⽤函数图象理解和研究函数的性质.2、指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点.(4)知道指数函数是⼀类重要的函数模型.3、对数函数(1)理解对数的概念及其运算性质,知道⽤换底公式能将⼀般对数转化成⾃然对数或常⽤对数;了解对数在简化运算中的作⽤.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点。
(3)知道对数函数是⼀类重要的函数模型.(4)了解指数函数与对数函数互为反函数.4、幂函数(1)了解幂函数的概念(2)结合函数的图象,了解它们的变化情况.5、函数与⽅程(1)结合⼆次函数的图象,了解函数的零点与⽅程根的联系,判断⼀元⼆次⽅程根的存在性及根的个数.(2)根据具体函数的图象,能够⽤⼆分法求相应⽅程的近似解.6、函数模型及其应⽤(1)指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)函数模型(如指数函数、对数函数、幂函数、分段函数等)在社会⽣活中普遍使⽤的函数模型)的⼴泛应⽤.⼆、点拨:1、关于映射和函数的基本概念在应⽤时应注意把重点放在它们的⼏个要素上,从定义⼊⼿,其规律⽅法是:(1)映射的定义是有⽅向性的,即从集合A到B与从集合B到A的映射是两个不同的映射,映射是⼀种特殊对应关系,只有⼀对⼀、多对⼀的对应才是映射。
(2)函数的定义有两种形式,都描述了定义域、值域和从定义域到值域的对应法则。
高中数学函数的基本性质
考点三 函数的周期性 1.周期函数的概念 设函数y=f(x),x∈D.如存在非零常数T,使得对任何x∈D都有f(x+T)=f(x), 则函数f(x)为周期函数,T为y=f(x)的一个周期. 2.关于函数周期性的几个常用结论 (1)若T为函数f(x)的一个周期,则kT(k为非零整数)也是函数f(x)的周期,这 就是说,一个函数如果有周期,就有无数多个.
1 x x2 1
x 2 1 )=-f(x),∴f(x)是奇函数. =-log2(x+
解法二:易知f(x)的定义域为R. ∵f(-x)+f(x)=log2[(-x)+ ( x)2 1 ]+log2(x+ x 2 1 )=log21=0,∴f(-x)=-f(x),
∴f(x)为奇函数.
∵定义域关于原点不对称,∴函数f(x)是非奇非偶函数. (2)函数的定义域为{x|x≠0},关于原点对称, 当x>0时,-x<0, f(-x)=x2-2x-1=-f(x); 当x<0时,-x>0, f(-x)=-x2-2x+1=-f(x), ∴f(-x)=-f(x),即函数是奇函数.
4 x 2 0, (3)由题意知 ⇒-2≤x≤2且x≠0, | x 3 | 3
解题导引
求出f(x)的周期为8 f(80),f(11) 在[-2,2]内求f(-25),
根据f(x)为奇函数且在[0,2]上是 结论
增函数得f(x)在[-2,2]上是增函数
解析 ∵f(x+4)=-f(x),∴f(x+8)=-f(x+4), ∴f(x+8)=f(x), ∴f(x)的周期为8,∴f(-25)=f(-1), f(80)=f(0), f(11)=f(3)=f(-1+4)=-f(-1)=f(1), 又∵奇函数f(x)在区间[0,2]上是增函数, ∴f(x)在区间[-2,2]上是增函数, ∴f(-25)<f(80)<f(11),故选D.
人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课教学课件复习(函数的单调性)
函数,则实数 a 的取值范围是________.
(2)已知函数 y=f(x)是(-∞,+∞)上的增函数,且 f(2x-3)>f(5x-6), 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件 课件
课件 课件
课件 课件
课件
课件
课件
课件
则实数 x 的取值范围为________.
D.y=1-x
栏目导航
3.函数 f(x)=x2-2x+3 的单调
(-∞,1] [因为 f(x)=x2-2x+3
减区间是________.
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
是图象开口向上的二次函数,其对称 轴为 x=1,所以函数 f(x)的单调减区
所以 a 的取值范围为(-∞,-3]∪[-2,+∞).
栏目导航
2.(变条件)若本例(2)的函数 f(x)是定义在(0,+∞)上的减函数,求 x
的范围.
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
[解] 由题意可知,
2x-3>0,
5x-6>0, 2x-3<5x-6,
若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
2.决定二次函数 f(x)=ax2+bx+c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母 a 的符号及-2ba的大小.
高一数学函数的基本性质知识总结
函数的性质要求层次重点难点单调性C①概念和图象特征 ②熟知函数的性质和图象①函数单调性的证明和判断②简单函数单调区间的求法奇偶性 B简单函数奇偶性的判断和证明①复合函数的奇偶性判断与证明②抽象函数的奇偶性周期性 B简单函数周期性的判断和证明①复合函数的周期性判断与证明②抽象函数的周期性一知识内容1.函数单调性的定义:①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数;当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数.知识框架高考要求例题精讲函数的基本性质板块一:函数的单调性②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]12,,x x a b ∈,那么()()()12120f x f x f x x x ->⇔-在[],a b 是增函数;()()()12120f x f x f x x x -<⇔-在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数.3.复合函数单调性的判断:“同增异减”4.函数单调性的应用.利用定义都是充要性命题.即若()f x 在区间D 上递增递减且1212()()f x f x x x <⇔<1x 2,x D ∈; 若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.1x 2,x D ∈. ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等二主要方法1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有: ⑴用定义;用定义法证明函数单调性的一般步骤:①取值:即设1x ,2x 是该区间内的任意两个值,且12x x <②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形. ③定号:确定差12()()f x f x -或21()()f x f x -的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间. ⑵用已知函数的单调性; ⑶利用函数的导数;⑷如果()f x 在区间D 上是增减函数,那么()f x 在D 的任一非空子区间上也是增减函数;⑸图象法;⑹复合函数的单调性结论:“同增异减” ; 复合函数的概念:如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()u f u =叫做外层函数,()u g x =叫做内层函数. 注意:只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x . ⑺奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. ⑻互为反函数的两个函数具有相同的单调性.⑼在公共定义域内,增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;增函数⑽函数(0,0)by ax a b x =+>>在,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减.3.证明函数单调性的方法:⑴利用单调性定义①;⑵利用单调性定义②三典例分析【例1】如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数【例2】【例3】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例4】根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例5】证明函数()f x =【例6】证明函数3y x =在定义域上是增函数.【例7】求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+0x >.【例8】求下列函数的单调区间:⑴|1||24|y x x =-++;⑵ 22||3y x x =-++【例9】作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例10】讨论函数2()1xf x x =-(11)x -<<的单调性.【例11】讨论函数2()23f x x ax =-+在(2,2)-内的单调性.拓展:若2()23f x x px =++在(,1]-∞是减函数,在[1,)+∞上是增函数,则(1)f =______【例12】讨论函数y =【例13】求函数212y x x =++的单调区间.【例14】设1n >,()f x 是定义在有限集合{}1,2,3,,A n =上的单调递增函数,且对任何,x y A ∈,有()()()()f x f x f y f y =.那么, A .2n = B .3n = C .4n = D .5n ≥【例15】若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为 .A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,【例16】函数21x y x =-x ∈R ,1x ≠的递增区间是A .2x ≥B .0x ≤或2x ≥C .0x ≤D .1x ≤或x【例17】已知2()()2x x af x a a a -=⋅--0a >且1a ≠是R 上的增函数.则实数a 的取值范围是 . A .(01), B .()(01)2+∞,,C .)+∞D .)(01)2⎡+∞⎣,,【例18】已知()f x 是定义在(0,)+∞上的增函数,且当*n ∈N 时,*()f n ∈N ,[()]3f f n n =,则(1)(2)f f += .【例19】求函数1()f x x x=+,0x >的最小值.点评 由对函数1(),0f x x x x=+>的分析,可以很快得到函数2(),0a f x x a x=+>的性质:⑴函数()f x 为奇函数;⑵函数()f x 在x a <-上为增函数,在0a x -<<上 为减函数,在0x a <<上为减函数,在x a >上为 增函数;⑶函数()f x 在0x >上有最小值为2a ,在0x <上有最大值为2a -.【例20】求函数y =【例21】求函数y =【例22】已知()f x 是定义在+R 上的增函数,且()()()xf f x f y y=-.⑴求证:(1)0f =,()()()f xy f x f y =+;⑵若(2)1f =,解不等式1()()23f x f x -≤-.【例23】已知函数()f x 对任意实数x ,y 均有()()()f x y f x f y +=+.且当x >0时,()0f x >,试判断()f x 的单调性,并说明理由.【例24】已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.【例25】设a 是实数,2()()21xf x a x =-∈+R , ⑴试证明对于任意a ,()f x 为增函数;⑵试确定a 值,使()f x 为奇函数.一 主要知识:1.奇函数:如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数;板块二:函数的奇偶性()g x 就叫做偶函数.3.图象特征:如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形,反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数;如果一个函数是偶函数,则它的的图象是以y 轴为对称轴的轴对称图形,反之,如果一个函数的图象关于y 轴对称,则这个函数是偶函数. 4.奇偶函数的性质:⑴函数具有奇偶性的必要条件是其定义域关于原点对称;⑵()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称; ⑶奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. ⑷()f x 为偶函数()()(||)f x f x f x ⇔=-=. ⑸若奇函数()f x 的定义域包含0,则(0)0f =.二主要方法:1.判断函数的奇偶性的方法:⑴定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ⑵图象法;⑶性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;2.判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.三典例分析:【例26】判断下列函数的奇偶性:⑴4()f x x =; ⑵5()f x x =; ⑶1()f x x x =+; ⑷21()f x x=.【例27】判断下列函数的奇偶性:⑴ 1y x=;⑵ 422y x x =++;⑶ 3y x x =+; ⑷ 31y x =-.⑴ ()(f x x =- ⑵ 11()()()12x f x F x a =+-,其中0a >且1a ≠,()F x 为奇函数.【例29】判断下列函数的奇偶性并说明理由:⑴ 221()1xxa f x a +=-(0a >且1)a ≠;⑵ ()f x =;⑶ 2()5||f x x x =+.【例30】已知函数22()(1)(1)2f x m x m x n =-+-++,当,m n 为何值时,()f x 是奇函数 【例31】【例32】⑴ 若()f x 是定义在R 上的奇函数,则(0)f =__________;⑵若()f x 是定义在R 上的奇函数,(3)2f =,且对一切实数x 都有(4)()f x f x +=,则(25)f =__________;⑶设函数()y f x =(R x ∈且0x ≠对任意非零实数12,x x 满足1212()()()f x x f x f x ⋅=+,则函数()y f x =是___________指明函数的奇偶性【例33】设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,那么当(,0)x ∈-∞时,()f x =_________.【例34】已知函数()f x 为R 上的奇函数,且当0x >时()(1)f x x x =-.求函数()f x 的解析式.【例35】()y f x =图象关于1x =对称,当1x ≤时,2()1f x x =+,求当1x >时()f x 的表达式.【例36】设函数()f x 对于一切实数x 都有(2)(2)f x f x +=-,如果方程()0f x =有且只有两个不相等的实数根,那么这两根之和等于_____.【例37】已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数并证明你的判断.对奇函数有没有相应的结论.【例38】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例39】设函数322||2()2||x x x xf x x x +++=+的最大值为M ,最小值为m ,则M 与m 满足 .A .2M m +=B .4M m +=C .2M m -=D .4M m -=【例40】已知()ln(4f x ax c x =+++a 、b 、c 为实数,且3(lglog 10)5f =.则(lg lg3)f 的值是 . A .5-B .3-C .3D .随a 、b 、c 而变【例41】已知()f x =)()lgg x x =.则乘积函数()()()F x f x g x =在公共定义域上的奇偶性为 .A .是奇函数而不是偶函数B .是偶函数而不是奇函数C .既是奇函数又是偶函数D .既非奇函数又非偶函数【例42】函数()y f x =与()y g x =有相同的定义域,对定义域中任何x ,有()()0f x f x +-=,()()1g x g x -=,则2()()()()1f x F x f xg x =+-是A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数【例43】已知函数()f x ,当,R x y ∈时恒有 ()()()f x y f x f y +=+ .①求证:函数()f x 是奇函数; ②若(3)f a -=,试用a 表示(24)f . ③如果R x +∈时()0f x <,且(1)0.5f =-.试判断()f x 的单调性,并求它在区间[2,6]-上的最大值与最小值.【例44】已知(),()f x g x 都是奇函数,()0f x >的解集是2(,)a b ,()0g x >的解集是2,22a b ⎛⎫ ⎪⎝⎭,22ba >,那么求()()0f x g x >的解集.【例45】已知函数()f x 是奇函数;2()(1)()21x F x f x =+-x ≠0是偶函数,且()f x 不恒为0,判断()f x 的奇偶性.【例46】已知()f x 是奇函数,()g x 是偶函数并且()()1f x g x x +=+,则求()f x 与()g x 的表达式.【例47】函数()f x =为奇函数,则a 的取值范围是 .A .10a -<≤或01a <≤B .1a -≤或1a ≥C .0a >D .0a <【例48】已知函数3()2f x x x =--.若1x 、2x 、3x ∈R 且120x x +>,230x x +>,310x x +>.则123()()()f x f x f x ++ .A .大于零B .小于零C .等于零D .大于零或小于零【例49】函数()f x 在R 上有定义,且满足①()f x 是偶函数;②(0)2005f =;③()(1)g x f x =-是奇函数;求(2005)f 的值.【例50】已知()y f x =为()-∞+∞,上的奇函数,且在(0)+∞,上是增函数.⑴求证:()y f x =在(0)-∞,上也是增函数;⑵若1()12f =,解不等式41(log )0f x -<≤,【例51】设函数()y f x =x ∈R 且0)x ≠对任意非零实数12,x x ,恒有1212()()()f x x f x f x =+,⑴求证:(1)(1)0f f =-=; ⑵求证:()y f x =是偶函数;⑶已知()y f x =为(0,)+∞上的增函数,求适合1()()02f x f x +-≤的x 的取值范围.一 主要知识:1.周期函数:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT ,0k Z k ∈≠也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.2.几种特殊的抽象函数:具有周期性的抽象函数: 函数()y f x =满足对定义域内任一实数x 其中a 为常数, ①()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数;板块三:函数的周期性③()()1f x a f x +=±,则()f x 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()f x 是以2T a =为周期的周期函数; ⑤1()()1()f x f x a f x -+=+,则()f x 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()f x 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()f x 是以4T a =为周期的周期函数.⑧函数()y f x =满足()()f a x f a x +=-0a >,若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x ∈R 的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x ∈R 的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;二主要方法:1.判断一个函数是否是周期函数要抓住两点: 一是对定义域中任意的x 恒有()()f x T f x +=;二是能找到适合这一等式的非零常数T ,一般来说,周期函数的定义域均为无限集. 2.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值.三典例分析:【例52】已知定义在R 上的函数()f x 的图象关于点304⎛⎫- ⎪⎝⎭,成中心对称图形,且满足3()2f x f x ⎛⎫=-+ ⎪⎝⎭,(1)1f -=,(0)2f =-.那么,(1)(2)(2006)f f f +++的值是A .1B .2C .1-D .2-【例53】定义在R 上的函数()f x 满足(3)()0f x f x ++=,且函数32f x ⎛⎫- ⎪⎝⎭为奇函数.给出以下3个命题:①函数()f x 的周期是6;②函数()f x 的图象关于点302⎛⎫- ⎪⎝⎭,对称;③函数()f x 的图象关于y 轴对称,其中,真命题的个数是 . A .3B .2C .1D .0【例54】已知()f x 为定义在区间(-∞,)+∞上以2为周期的函数,对k ∈Z ,用k I 表示区间(21k -,21]k +,已知0x I ∈时,2()f x x =. ⑴求()f x 在k I 上的解析式;⑵对自然数k ,求集合{|k M a =使方程()f x ax =在k I 上有两个不相等的实根}.【例55】已知函数()f x 对于任意,a b ∈R ,都有()()f a b f a b ++-2()()f a f b =⋅,且(0)0f ≠.⑴求证:()f x 为偶函数;⑵若存在正数m 使得()0f m =,求满足()()f x T f x +=的1个T 值T ≠0.【例56】设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称.且对任意121,[0,]2x x ∈,都有1212()()()f x x f x f x +=⋅,(1)0f a =>.⑴求1()2f 及1()4f ;⑵证明()f x 是周期函数;⑶记1(2)2n a f n n=+,求lim(ln )n n a →∞.【例57】函数()g x f xf=;⑶()(1)=-是奇函f x是偶函数;⑵(0)999f x在R上有意义,且满足:⑴()数,求(2008)f.【例58】()++≥,设f x f xf x f xf x是定义在R上的函数,对任意的x∈R,都有(3)()3++≤和(2)()2 =-,g x f x x()()⑴求证()g x是周期函数;⑵如果f998=1002,求f2000的值.。
人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)
第三章 函数的概念与性质
利用奇偶性求函数解析式的思路 (1)“求谁设谁”,即在哪个区间求解析式,x 就设在哪个区间 内. (2)利用已知区间的解析式代入. (3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).
栏目 导引
第三章 函数的概念与性质
1.设 f(x)是偶函数,g(x)是奇函数,且 f(x)+g(x)=x2+2x,求 函数 f(x),g(x)的解析式. 解:因为 f(x)是偶函数,g(x)是奇函数, 所以 f(-x)=f(x),g(-x)=-g(x), 由 f(x)+g(x)=2x+x2.① 用-x 代替 x 得 f(-x)+g(-x)=-2x+(-x)2, 所以 f(x)-g(x)=-2x+x2,② (①+②)÷2,得 f(x)=x2. (①-②)÷2,得 g(x)=2x.
条件 当 x1<x2 时
都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就说函数 f(x)在区间 D 上 那么就说函数 f(x)在区间 D 上
结论
是增函数
是减函数
栏目导航
图示
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
栏目导航
思考 1:增(减)函数定义中的 x1,x2 有什么特征?
栏目 导引
第三章 函数的概念与性质
2.(2019·襄阳检测)已知偶函数 f(x)在区间[0,+∞)上单调递减,
则满足 f(2x-1)>f13的实数 x 的取值范围是(
)
A.13,23
高一数学必修一函数的概念与性质思维导图
高一数学必修一函数的概念与性质思维导图一、函数及其表示
二、函数的基本性质
1. 单调性常用结论
①函数f(x)和f(x)+c单调性相同;
②k>0时,f(x)与kf(x)单调性相同,反之亦然;
③f(x)恒正或恒负,f(x)与1/f(x)具有相反的单调性;
④若f(x),g(x)都是增(减)函数,则f(x)+g(x)是增(减)函数;
⑤若f(x),g(x)都是增(减)函数,则f(x)·g(x)当两者都恒大于0时,是增(减)函数;当两者都恒小于0时,是减(增)函数。
2. 奇偶性常用结论
①二次函数y=ax^2+bx+c(a≠0)为偶函数b=0;
②若f(x)为偶函数,则f(x)=f(|x|);
③奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的基本性质
【要点】1.单调性:若对于属于定义域内某个区间上的任意两个自变量的值,,21x x 当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在这个区间上是增函数;
2.奇偶性:若函数)(x f 对于定义域内的任意自变量x ,都有)()(x f x f =-成立,那么就说函数)(x f 是偶函数;
3.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反之亦然.
4.函数的单调性证明方法:比较法(以比差法为主,兼顾比商法)
5.函数奇偶性的判定:
①函数的定义域必须是关于原点的对称区间;
②"对定义域内任一个x ":都有)()(x f x f -=-或)()(x f x f =-。
重点知识回顾::
1. 单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f (x 1)-f (x 2)x 1-x 2
>0⇔f (x )在[a ,b ]上是单调________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f (x 1)-f (x 2)x 1-x 2
<0⇔f (x )在[a ,b ]上是单调________.
2. 奇偶函数的性质
(1)f (x )为奇函数⇔f (-x )=-f (x )⇔f (-x )+f (x )=____;
f (x )为偶函数⇔f (x )=f (-x )=f (|x |)⇔f (x )-f (-x )=____.
3. 奇函数在对称的单调区间内有________的单调性;偶函数在对称的单调区间内有______
的单调性.
4. 函数y =x +a x
(a >0)在 (-∞,-a ),(a ,+∞)上单调________;在(-a ,0),(0,a )上单调________;函数y =x +a x
(a <0)在____________上单调递增. 5. 函数的周期性
(1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x +T )=______,则称f (x )为______函数,其中T 称作f (x )的周期.若T 存在一个最小的正数,则称它为f (x )的________.
6. (2)性质: ①f (x +T )=f (x )常常写作f (x +T 2)=f (x -T 2
). ②如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x ).
③若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f (x )
或f (x +a )=-1f (x )
(a 是常数且a ≠0),则f (x )是以______为一个周期的周期函数. 基础训练
1. 下列函数中,在其定义域内既是奇函数又是减函数的是 ( )
(A )R x x y ∈-=,3 (B ) R x x y ∈=,sin
(C ) R x x y ∈=, (D ) R x x y ∈=,)2
1(
2. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )
A .)2()1()23(f f f <-<-
B .)2()2
3()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()2
3()2(-<-<f f f 3. 已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( )
A .2-
B .4-
C .6-
D .10-
4. 22()21
x x a a f x +-=+·为奇函数,则实数a =____ 5. (2015·江西改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)=________.
例题分析:
1. 函数)2(log ax y a -=在[0,1]上是减函数,则a 的取值范围是:
(A )()1,0 (B )()2,0 (C )()2,1 (D )()+∞,2
2. 函数11-=x y 的单调性的正确说法是( ). (A )单调递减函数 (B )在(-∞,0)上是减函数,在(0,+∞)上是增函数
(C )在(-∞,1)上是减函数,在(1,+∞)上是减函数
(D )除x =1点外,在(-∞,+∞)上是单调递减函数
3. 已知函数)(x f y =在)2,0(上是增函数,函数)2(+x f 是偶函数,则( ).
(A) )27()25()1(f f f << (B) )2
5
()1()27(f f f <<
(C) )1()25()27(f f f << (D) )2
7()1()25(f f f << 4. 已知函数22-++=a bx ax y 是定义在[]a a 2,1-上的偶函数,则a = ;b = .
5. 已知函数)(x f 是奇函数,当0>x 时,)1()(x x x f +=,当0<x 时,)(x f 的表达式为 .
6. 若a x x x f +-+=)2lg()(2为奇函数,则实数a 的值为 .
7. (Ⅰ)证明函数x
1x )x (f +=在),1[+∞上单调递增; (Ⅱ)试利用(I )中的结论,求函数4
x 5x )x (g 22++=的最小值.
8. 已知函数)(x f 和)(x g 的图像关于原点对称,且ax x x f 2)(2+=.
(Ⅰ)求函数)(x g 的解析式;
(Ⅱ)若当21≤≤-x 时,函数)(x g y =的最大值为2,求实数a 的值.
9. 设函数)x (f y =是定义在+R 上的函数,并且满足下面三个条件:(1)对任意正数y x 、,
都有)y (f )x (f )xy (f +=;(2)当1x >时,0)x (f <;(3)1)3(f -=,
(I )求)1(f 、)9
1
(f 的值; (II )如果不等式2)x 2(f )x (f <-+成立,求x 的取值范围.
(III )如果存在正数k ,使不等式2)x 2(f )kx (f <-+有解,求正数k 的取值范围.
10. 已知)(x f 是定义在R 上的奇函数,且对于任意的a ,R b ∈,当b a -≠时,都有
0)()(<++b
a b f a f . (1)判断)(x f 在R 上的单调性,并用定义证明你的结论;
(2)如果对于任意的∈x [0,2ln ],不等式0)e 4()e 2e (2≥-+-x x x k f f 恒成立,试求
常数k 的最小值.。