系统辨识课件-经典的辨识方法
《系统辨识》Ppt01-2016-09-24
2004.10– 2006.03–2006.05 2006.12–2007.02 2008.05–2008.12 2009.01–2009.10
江南大学“太湖学者”特聘教授、 硕士生导师、 博士生导师 香港科技大学研究员, 中国香港 加拿大渥太华 卡尔顿大学 (Carleton University)研究员 加拿大渥太华 卡尔顿大学(Carleton University)访问教授 加拿大多伦多 瑞尔森大学 (Ryerson University)研究员 数学建模; 系统辨识; 参数估计; 过程控制
令矩阵范数 X
t
2
:= tr[XX T]. 定义二次损失函数
J (θ ) :=
j =1
[y (j ) − ϕT(j )θ ]2 = (Yt − Htθ )T(Yt − Htθ ) = Yt − Htθ 2,
T = −2Ht (Yt − Htθ ) T ˆ (t) = H TYt. Ht)θ = 0. =⇒ (Ht t
Ht−1 T = Ht Ht−1 + ϕ(t)ϕT(t) T − 1 ϕ (t) (5)
= P −1(t − 1) + ϕ(t)ϕT(t), ˆ (t) = (H THt)−1H TYt = P (t)H TYt = P (t)[H T Yt−1 + ϕ(t)y (t)] θ t t t t−1
T = P (t)[P −1(t − 1)P (t − 1)Ht −1 Yt−1 + ϕ(t)y (t)]
系统:
y (t) + a1y (t − 1) + a2y (t − 2) + · · · + any (t − n) = b1u(t − 1) + b2u(t − 2) + · · · + bnu(t − n) + v (t). (2)
系统辨识经典辨识方法
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
《系统辨识》课件
可采用结构:
y(t)
G(s) K
y( )
Ts1
待估参数为:K,T
稳态增益: K y()
U0
将试验曲线标么化,即
y(t), y(t)
y()
t
y()1
26
第二章 过渡响应法和频率响应法
则标么化后响应:
y(t)
t
1e T
要确定 T ,只要一对观测数据:y*(t1),t1
G(s)T2s2K 2T s1es
先观察试验所得响应曲线的形状特征,据此判断,从模型类中确 定一种结构。然后进行参数估计,最后验证数据拟合程度,反复 多次,直至误差e(t)最小(验证数据拟合可只取若干点)。
25
第二章 过渡响应法和频率响应法
1)若阶跃响应曲线特征为: y (0 )my a (t)x ]0 [
理论建模的难点在于对有关学科知识及实际经验的掌 握,故不属于课程的讨论范围。
➢ 由于许多系统的机理和所处的环境越来越复杂,因 此,理论建模法的运用亦越来越困难,其局限性越 来越大, 需要建立新的建模方法。
➢ 在理论建模方法难以进行或难以达到要求的情况下,
系统辨识建模方法就幸运而生。
8
2、辨识建模法:
建立数学模型来预报。
4
第一章 概 述
2. 用于分析实际系统 工程上在分析一个新系统时,通常先进行数学仿真, 仿真的前提必须有数学模型。
3. 为了设计控制系统 目前,对被控系统的控制器的设计方法的选取,以及如 何进行具体的控制结构和参数的设计都广泛依赖于对 被控系统的理解及所建立的被控系统数学模型。
对于线性系统,脉冲响应,阶跃响应和方波响应之间
是可以相互转换的。
系统辨识课件5
T
cˆn
YN y(n 1) y(n N)T
eN e(n 1) e(n N)T
y(n) y(1) u(n 1) u(1) e(n) e(1)
ΦN
y(n 1)
y(2) u(n 2) u(2)
e(n 1)
e(2)
y(n N 1) y(N) u(N) u(N) e(n N 1) e(N)
N
(3)计算梯度矩阵及海赛矩阵
J nN e(k ) e(k )
θ k n1
θ
T
e(k ) θ
e(k )
a1
e(k ) an
e(k) b0
e(k ) bn
e(k) c1
e(k )
cn
2 J
θ 2
nN e(k) k n1 θ
e(k) θ
T
nN k n1
e(k
)
2e(k θ 2
lnL 0 θ
(4.2)
由(4.1)或(4.2)解出的θ即为极大似然估计 θˆ ML
4.2 差分方程的极大似然辨识
1.白噪声情况
系统差分方程:
a(z-1) y(k ) b(z-1)u(k ) ξ(k )
式中,ξ(k)为高斯白噪声序列且与u(k)无关。 上式写成向量形式为:
YN Φ N θ ξ
系统估计残差为:
eN YN ΦNθˆ
eN e(n 1) e(n 2) e(n N)T
由于ξ(k)为高斯白噪声,故而e(k)也为高斯白噪声。
设e(k) 方差为 2。
因为高斯分布概率密度函数:
p (e(k) θˆ)
1
e2 (k)
exp[
]
(2πσ 2 )1/ 2
《系统辨识》课件
脉冲响应法
总结词
脉冲响应法是一种通过输入和输出数据 估计系统脉冲响应的非参数方法。
VS
详细描述
脉冲响应法利用系统对单位脉冲函数的响 应来估计系统的动态特性。通过观察系统 对脉冲输入的输出,可以提取出系统的传 递函数。这种方法同样适用于线性时不变 系统,且不需要知道系统的具体数学模型 。
随机输入响应法
。
线性系统模型具有叠加性和齐次性,即 多个输入产生的输出等于各自输入产生 的输出的叠加,且相同输入产生的输出
与输入的倍数关系保持不变。
线性系统模型可以通过频域法和时域法 进行辨识,频域法主要通过频率响应函 数进行辨识,时域法则通过输入和输出
数据直接计算系统参数。
非线性系统模型
非线性系统模型具有非叠加性和非齐次性,即多个输 入产生的输出不等于各自输入产生的输出的叠加,且 相同输入产生的输出与输入的倍数关系不保持不变。
递归最小二乘法
递归最小二乘法是一种在线参数估计方法,通过递归地更新参数估计值来处理动态系统。在系统辨识中,递归最小二乘法常 用于实时估计系统的参数。
递归最小二乘法的优点是能够实时处理动态数据,且对数据量较大的情况有较好的性能表现。但其对初始参数估计值敏感, 且容易陷入局部最优解。
广义最小二乘法
广义最小二乘法是一种改进的最小二乘法,通过考虑误差的 方差和协方差来估计参数。在系统辨识中,广义最小二乘法 常用于处理相关性和异方差性问题。
系统辨识
目录
• 系统辨识简介 • 系统模型 • 参数估计方法 • 非参数估计方法 • 系统辨识的局限性与挑战 • 系统辨识的应用案例
01
系统辨识简介
定义与概念
定义
系统辨识是根据系统的输入和输出数 据来估计系统动态特性的过程。
系统辨识课件方崇智
e
ˆ (假设的数学关系) f
系统的 实际输 出
(1)数学模型
• 数学模型和真实系统的区别
不可测干扰 可测 输入
u, d , f z
可测 输出
可测 输入
e
综合误差
ˆ (假设的数学关系) f
ˆ , e拟合u, z关系 u, z f
可测 输出
(1)数学模型
• 数学模型的两类形式及其用途
可测 输入
第6章 模型阶次辨识 内 容:Hankel矩阵法、F-Test定阶法。
第7章 系统辨识在实际中注意的问题
参考书:
1.方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京 2.李言俊,张科编著,《系统辨识理论及应用》,国防工业出版社,北京 3.蔡季冰编著,《系统辨识》,北京理工大学出版社,北京
预修课程:自动控制原理,概率统计与随机过程
e
综合误差
可测 输出 •系统分析 •系统设计
ˆ (假设的数学关系) f
ˆ f
•预测(预测控制) •性能监测与故障诊断 •仿真
ˆ z
•在线估计和软测量 •模型评价与系统辨识
(1)数学模型
• 数学模型的近似性和外特性等价
u u
d f
e ˆ f u
z
近似性
ˆ f
ˆ z
d
u u
从黑箱角度出 发,外特性等价 (统计意义)
(1)设计辨识实验,获取实验数据
数据集是辨识的三要素之一
min J fˆ , K ( z (1)
z ( L), u(1)
u( L), )
数据集性质→影响辨识结果,u →数据集,因 此要设计辨识实验(重点设计u)
(1)设计辨识实验,获取实验数据
系统辨识的经典方法
⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T
+τ
,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法
系统辨识课件-经典的辨识方法
ˆ (t ) Ru (t )dt Ruz ( ) g
0
此为辨识过程脉冲响应的理论依据
2 Ru ( ) u ( ) 白噪声输入时 ˆ 1 g ( ) Ruz ( ) 2 u
4.5.2 用M序列作输入信号的离散算法
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
《系统辨识第三章》PPT课件
(N+1)时刻的估计输出值
之差。
第五十五页,共161页。
55
递推公式基本形成,但其中涉及矩阵求逆运算,即 为了避免求逆运算,由矩阵反演公式: 令
第五十六页,共161页。
56
最后,加权最小二乘递推算法归纳如下:
在上列式中,令
,得最小二乘递推算法。
第五十七页,共161页。
57
二、初值的确定
进行递推估计,必须设定初值
由于最小二乘法比较简单实用,而且又可与其他辨识
方法相组合,因此最小二乘辨识是一种基本的、重要的辨 识方法。
第四页,共161页。
4
§3-1 最小二乘法
一、最小二乘辨识方程
用最小二乘辨识技术辨识系统的数字模型的原理方 块图如下:
被辨识系统
测量装置
D/A
A/D
计算机
(最小二乘辨识 算法)
数学模型
第五页,共161页。
但由于简单实用,仍不失为一种好的参数估计方法,
为了克服最小二乘法的不足,在最小二乘法的基础
上,发展了辅助变量法和广义最小二乘法,但计算
量较大。
第三十一页,共161页。
31
例3-2 设有下列二阶系统
输入序列 为振幅等于1的伪随机二位式序列, 噪声 为零均值且方差为 可调正态 分布随机数序列。试说明最小二乘估计精度。
5
被辨识系统
测量装置
D/A
A/D
计算机
(最小二乘辨识算法)
数学模型
设被辨识系统的脉冲传递函数为
第六页,共161页。
6
则当存在观测误差 及建模误差时,相应的差分方程:
式中, 称为方程误差, 为模型参数向量;若令 代 表真实参数向量,显然有
系统辨识课件-04-2011
则似然函数L为: L
ˆ ˆ L (e N θ ) = ∏ p ( e ( k ) θ ) =
k = n +1 n+ N
1 ( 2πσ 2 ) N / 2
∑ e 2 (k ) exp[ − ] 2 2σ
⇒ L(e N
ˆ ˆ (YN − Φ N θ) T (YN − Φ N θ) 1 ˆ) = θ exp(− ) (2πσ 2 ) N / 2 2σ 2
11
辨识θ的原则就是使得L达到极大值,即: θ L
∂L = 0 ∂θ
(4.1)
通常对L取对数求解,即 L
ln L = ln f (V1 θ) + L + ln f (Vn θ)
lnL取得极大则L取得极大,则有:
∂ lnL = 0 ∂θ
(4.2)
ˆ 由(4.1)或(4.2)解出的θ即为极大似然估计 θ ML
∂ 2 J ˆ ˆ θ 1 = θ 0 − 2 ∂ θ
−1
∂J ∂θ ˆ θ =θ 0
(5) 计算残差方差比 返回(2)进行循环迭代,若:
垐 σ12 − σ 02 < 0.01% 2 ˆ σ0
则终止迭代。
21
∂ e (k ) ∂θ
的解算
∂e(k ) ∂e(k ) ∂e(k ) ∂e(k ) ∂e(k ) ∂e(k ) ∂e(k ) = L L L ∂θ ∂a1 ∂an ∂b0 ∂bn ∂c1 ∂cn
n+ N T
∂ 2 e(k ) + ∑ e(k ) ∂θ 2 k = n +1
n+ N
当估值比较接近真值θ时,e(k)接近于0,后一项可忽略, 则海赛矩阵为:
系统辨识讲义
一个极简单的参数方法例子
我们测得0—N采样时刻的输入输出数据,即
u (0), u (1)," , u ( N − 1), u ( N ) y (0), y (1)," , y ( N − 1), y ( N )
假定系统的模型属于如下的模型类:
y ( k ) + ay ( k − 1) = bu (k − 1) + v(k )
k =1
N
∂V (θ ) N = ∑ 2ay 2 (k − 1) + 2 y (k ) y (k − 1) − 2by (k − 1)u (k − 1) ∂a k =1 ∂V (θ ) N = ∑ 2bu 2 (k − 1) − 2 y (k )u (k − 1) − 2ay (k − 1)u (k − 1) ∂b k 等:子空间辨识
1990年代,为了克服PEM针对多变量系统辨识
时需要进行非线性优化,以及IV不能同时辨识 出噪声模型的缺点。Bart De Moor, Verhaegen 等提出了针对多变量系统的subspace identification methods。该类方法不是基于优化 某个criterion,主要用到矩阵的奇异值分解, 无需非线性优化,因而计算量较小。
1.2 模型
数学模型是用来描述系统行为的数学语
言。 非线性系统的数学模型是非线性状态方 程和输出方程。线性系统的数学模型可 以有多种相互等价的形式:状态空间方 程、传递函数、阶跃响应、差分方程等。
扰 动 输入
系统
输出
1.3 建模的两大类方法
机理分析法(first principles modeling)或称为白
何求取参数估计值。least-squares, prediction error, instrumental variable 参数估计算法的统计性质:无偏性、一致性。 如何验证所得模型的有效性?如何选择模型阶数?
现代控制工程-第8章系统辨识
航空航天领域
总结词
系统辨识在航空航天领域中具有重要应用价值,主要用于飞行器控制、导航和监测系统 的设计和改进。
详细描述
通过对飞行器动力学特性进行系统辨识,可以精确建模飞行器的动态行为,为飞行控制 系统提供准确的数学模型。同时,系统辨识技术还可以用于导航和监测系统的误差分析
和修正,提高航空航天器的安全性和精度。
感谢您的观看
THANKS
环境监测系统
总结词
系统辨识在环境监测系统中应用广泛,主要用于建立环 境参数的数学模型,实现环境质量的实时监测和预警。
详细描述
通过系统辨识技术对环境监测数据进行处理和分析,可 以精确获取环境参数的变化趋势和规律,为环境治理和 保护提供科学依据。同时,系统辨识技术还可以用于建 立环境质量预警系统,及时发现环境异常情况并采取应 对措施,保障生态安全和人类健康。
模糊逻辑系统辨识
模糊逻辑系统辨识是基于模糊逻辑理论的系统 辨识方法。它通过建立模糊逻辑模型来描述系 统的动态行为,能够处理不确定性和模糊性。
模糊逻辑系统辨识的优势在于能够处理语言变 量和不确定信息,同时具有较强的推理能力和 鲁棒性。
然而,模糊逻辑系统辨识也存在一些挑战,例 如隶属度函数的选择和模糊规则的制定等。
提高控制性能
准确的数学模型有助于设计出性能更优的控制策略。
预测与优化
通过系统辨识,可以对未来系统行为进行预测,并优 化系统性能。
故障诊断
系统辨识可用于诊断系统故障,提高系统的可靠性和 安全性。
系统辨识的基本步骤
01
数据采集
采集系统的输入和输出数据,确保 数据的准确性和完整性。
模型建立
根据处理后的数据,选择合适的数 学模型进行建模。
系统辨识的基本概念课件
实际应用与改进
将建立的模型应用于实际问题中,并根据实际应用的效果和反馈,对模型进行必要的调整和优化。模型的优化可以通过改进模型结构、调整参数或采用更先进的算法来实现。
系统辨识的挑战与解决方案
05
数据噪声和异常值是系统辨识中的常见问题,对辨识精度和稳定性产生影响。
数据噪声是由于测量设备、环境等因素引起的数据随机误差。为了减小噪声对辨识结果的影响,可以采用滤波器对数据进行预处理,如低通滤波器去除高频噪声。对于异常值,可以采用统计学方法进行检测和剔除,如基于距离的异常值检测算法。
通过系统辨识,确定控制系统的参数,提高控制效果。
控制系统设计
故障诊断
信号处理
通过系统辨识,确定设备的故障模式和参数变化,实现故障预警和诊断。
在信号处理中,系统辨识用于确定信号的传输特性,如滤波器设计等。
03
02
01
通过系统辨识,可以优化系统的性能参数,提高系统的稳定性和动态响应能力。
提高系统性能
通过系统辨识,可以预测系统的寿命和故障模式,提前进行维护和修复,降低维护成本。
系统辨识的基本概念课件
系统辨识简介系统辨识的基本原理系统辨识的方法与技术系统辨识的步骤与流程系统辨识的挑战与解决方案系统辨识的案例分析
系统辨识简介
01
系统辨识是根据系统的输入和输出数据来估计系统动态行为的过程。
定义
通过分析系统的输入和输出数据,建立系统的数学模型,用于描述系统的动态行为。
概念
详细描述
多变量系统的辨识需要同时估计多个参数,并且需要考虑变量之间的耦合关系。可以采用基于状态空间模型的辨识方法,通过建立状态方程和观测方程来描述系统动态,并采用优化算法对参数进行估计。此外,基于独立分量分析的方法也可以用于多变量系统的辨识,通过分离出各个独立分量来降低系统维度,简化辨识问题。
系统辨识课件-08-2011
n1
计算不同n1、n2、n3时的AIC值,取最小的AIC值对应的n1、 n2、n3值为系统的阶次。
8.3 按残差白色定阶
定阶原理: 定阶原理:若阶次n设计合适,则残差近似为白噪声。因此可 利用计算残差e(k)的自相关函数来检查白色性。 自相关函数的计算如下:
1 ˆ R (i ) = N
H( l,k ) = 0
但存在噪声则无上述结论,因此定义指标:
D= H (l , k )行列式的平均值 H (l + 1, k )行列式的平均值
当D达到极大时L值即为系统阶次n。
另一种求D 另一种求D的方法
计算脉冲响应序列的自相关值:
N −i 1 R g (i ) = ∑ g k g k −i N − i + 1 k =0
ε(k)为服从正态分布的白噪声, 经推导,得:
ˆ AIC = N ln σ ε2 + 2 ( n1 + n 2 + n 3 )
式中:
1 ˆ σε = N
2
∑ εˆ
k =1
N
2
(k )
n2 n3
ˆ ˆ ˆ ˆˆ ε (k) = y(k) + ∑ai y(k − i) − ∑bi u(k − i) − ∑ciε (k − i)
由
∂ lnL ˆ = 0 ⇒ θ = ( Φ T Φ ) −1 Φ T Y ∂θ ∂ lnL 1 T 2 ˆ ˆ ˆ = 0 ⇒ σe = e e 2 N ∂ σe
⇒ lnL( | θ) = − Y
N 2 lnσe + const 2
N 2 Y lnL( | θ) = − lnσe + const 2 由 p = n1+ n2 + 2
系统辨识的基本概念 PPT课件
3
1.1 系统和模型
1.1.1 系统
(system/process)
● 系统的描述框图
● 系统的行为特性表现在过
程的输入输出数据之中。
● 根据“黑箱”所表现出来
的输入输出信息,建立与
“黑箱”特性等价的过程外
特性模型。
系统=过程特征:
完整性、相对性
4
1.1.2 模型(model)
1.6 辨识的内容和步骤
1.7 辨识的应用
2
对实际系统的分析、设计、估计、综合和控制,都有 赖于获得对该系统正确描述的数学摸型。
系统正确描述系统动态性能的数学摸型——就成了自 动控制 理论 和工程实践的重要组成部分。
系统辨识就是从对系统进行观察和测量所获得的信
息重提取系统数学模型的一种理论和方法。日渐成熟。
29
●系统辨识的精度
原因:结构近似、数据污染和数据长度有限。 辨识结果精度需要有评价的标准,不同的标准会有不同的精 度。 最终的评价标准是它在实际应用中的效果。
●系统辨识的基本方法
根据数学模型的形式:
非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、
谱分析法。
参数辨识——现代辨识方法(最小二乘法等)
13
又置:
log P(k ) log V (k ) log c
令
y(k) z(k )
log log V
P(k ),1 (k ),2
log
c
h(k) [z(k),1]t
[1,2 ]
则y(k)和h(k )都是可观测的变量,对应的最小二乘格式为
注意辨识表达式的输入量ht已不再是原来的输入量ut了噪声项ek也不是原来的测量噪声wk了注意辨识表达式的输入量ht已不再是原来的输入量ut了噪声项ek也不是原来的测量噪声wk了16ppt学习交流17基本原理图14辨识算法的基本原理被辨识系统17ppt学习交流18可以看到
系统辨识之经典辨识法
系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ai
0
i 2 (t ) i 1 (t ) j [1 h (t )] Байду номын сангаасt Ai j 1 [1 h (t )] dt (i 1,2,, n m) 0 (i 1)! j! j 0
b1 An b A 2 n 1 bm An m1
bm s m bm1 s m1 b1 s b0 G( s) an s n an1 s n1 a1 1
K 0 lim h(t ) lim G ( s ) b0
t s 0
(n m)
h1 (t )
t
[K
0
t
0
h( )]d
w0 G( s) 2 , (0 1) 2 s 2w0 s w0
2
(3)Hankel矩阵法 ● 考虑 n 阶的脉冲传递函数
b1 z 1 b2 z 2 bn z n G( z ) 1 a1 z 1 a2 z 2 an z n
0 1 An 2
0 0 A1
b1 0 A1 b2 0 A2 bm 1 An 0
● 传递函数阶次的确定: 判别各阶面积是否大于零
● Laplace极限定理求过程的传递函数 设:
An 1 An An m 2
An m1 An m 2 An
1
An 1 A n2 An m
a1 1 a A 2 1 an An 1
● 当阶次比较底,或m=0时适用
4.3 脉冲响应法 4.3.1过程脉冲响应的辨识(确定性情形) ● 通过输入矩形脉冲获得
● 由阶跃响应的差分获得
1 g (k ) [h(k ) h(k 1)] T0
4.3.2 由脉冲响应求过程的传递函数 (1)一阶过程
G(s)
K Ts 1
(2)二阶过程
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
0
t
(r 2,3,, n m)
K r lim h r (t )
t
K 0 b0 K K a b 1 0 1 1 K 2 K 1 a1 K 0 a 2 b1 r 0,1,2,, n m r r 1 K ( 1 ) b K a K a ( 1 ) K 0 ar r r 1 1 r 2 2 r
输出: h (t ) h(t ) / h()
● 传递函数为:
bm s m bm 1s m 1 b1s 1 G( s) K (n m) an s n an 1s n 1 a1s 1
● 算法: K h() / U0
A1 {1 h (t )}dt
1
● Hankel矩阵的定义
g (k 1) g (k ) g (k 1) g (k 2) H (l , k ) g (k l 1) g (k l ) g (k l 1) g (k l ) g (k 2l 2)
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
● 确定参数的方程:
g (1) g (2) g ( n) g ( n) a n g (n 1) a g (n 2) g (3) g (n 1) n 1 g (n 1) g (2n 1) a1 g ( 2n) g (2)
4.2 阶跃响应法 4.2.1 阶跃响应的辨识 通过手动操作,使过程工作在所需测试的负荷下,稳定运行一段时间 ,快速改变过程的输入量,并用记录仪或数据采集系统同时记录过程输入 和输出的变化曲线。
4.2.2 阶跃响应求过程的传递函数 ● 归一化: u (t ) u(t ) / U0 U 0 为输入信号幅度 输入: