浅谈数形结合思想在初中数学教学中的应用
数形结合思想在初中数学教学中的应用
数形结合思想在初中数学教学中的应用
数形结合思想是一种将数学与几何形状相结合的思维方式,通过观察几何形状的特点
和数学关系,来解决数学问题。
在初中数学教学中,数形结合思想可以应用于以下几个方面。
第一,在解决几何问题时,数形结合思想可以帮助学生理解几何形状的性质和关系。
在解决平面图形相关问题时,可以通过观察图形的对称性、边长比例、角度关系等来找到
解决问题的方法。
这样不仅可以提高学生对几何形状的理解,还能培养其观察和分析问题
的能力。
第四,在证明数学定理时,数形结合思想可以帮助学生通过观察几何图形的性质和数
学关系来理解和证明数学定理。
在证明三角形内角和为180度时,可以通过绘制三角形的
外接圆或内切圆来展示角度和边的关系,进而得出结论。
这样可以培养学生的逻辑思维和
证明能力,提高其对数学定理的理解和应用能力。
数形结合思想在初中数学教学中具有重要的应用价值。
通过将数学与几何形状相结合,可以帮助学生更好地理解数学概念和解决问题的方法,培养其观察、分析、解决问题的能力,提高其数学学习的兴趣和自信心。
在教学过程中,教师应该灵活运用这种思维方式,
将抽象的数学知识与具体的几何形状相结合,创设适合学生的情境,激发学生的思维活力,使数学学习更加生动、实践、有意义。
数形结合思想在初中数学中的应用
数形结合思想在初中数学中的应用数形结合思想是指在解决数学问题时,通过形状和图形的变化来帮助理解和解决问题的思维方式。
它将数学与几何形状相结合,通过对形状的分析和变换,揭示出数学问题的本质。
在初中数学中,数形结合思想广泛应用于代数、几何和概率的相关知识中。
下面将分别介绍这几个领域中数形结合思想的应用。
1. 代数:代数是数学中重要的一个分支,它研究的是数与数之间的关系和运算。
在代数中,数形结合思想主要应用于代数式的理解和方程的解法。
通过将代数式转化为几何图形,可以帮助学生更好地理解代数式的含义和性质。
对于分式的除法运算,可以用一个长方形来表示被除数和除数,通过形状的变化可以帮助学生理解分式除法的原理。
2. 几何:几何学是研究图形、形状和空间关系的数学学科。
在几何学中,数形结合思想的应用非常广泛。
通过将图形进行平移、旋转和缩放等变换,可以帮助学生理解几何运动的性质和规律。
数形结合思想还可以用于解决几何问题。
通过画图来辅助解决面积、周长和体积等计算问题,可以更直观地理解问题的解题思路。
3. 概率:概率是描述随机事件发生可能性的数学工具。
在概率中,数形结合思想可以用于模拟随机事件的发生和计算概率。
通过掷硬币和掷骰子等实验,可以直观地模拟和计算各种随机事件的概率。
数形结合思想还可以用于解决排列和组合等问题。
通过画图来辅助计算排列和组合的个数,可以更好地理解问题的解题方法。
数形结合思想在初中数学中的应用非常广泛。
它可以帮助学生更好地理解和解决各种数学问题,提高数学思维能力和解题能力。
通过将数学与几何形状相结合,数学不再枯燥乏味,而变得有趣和实用。
初中数学教学中应充分发挥数形结合思想的作用,培养学生的数学兴趣和创造力。
数形结合思想在初中数学中的应用
数形结合思想在初中数学中的应用数形结合思想是指通过数学和几何图形相结合来进行问题的分析和解决的一种思维方式。
在初中数学中,数形结合思想被广泛应用于解题和证明过程中,有助于学生理解和掌握数学概念,培养其数学思维能力和创造力。
以下是数形结合思想在初中数学中的应用。
一、解决几何问题通过数形结合思想可以解决许多几何问题,如证明等腰三角形的性质、证明角的平分线相交于顶点角平分线等。
通过画图观察,能够使问题的分析和解决更加直观和容易。
对于一个等腰三角形,我们可以通过画图观察来证明其性质。
我们画出一个等腰三角形ABC,其中AB=AC。
然后,我们在等腰三角形中找出一些特殊点,如重心、垂心等。
通过观察,我们发现等腰三角形的重心和垂心的位置,以及它们与三角形顶点的连线之间的关系,可以帮助我们证明等腰三角形的性质。
这个过程中,数学和几何图形相结合,既需要运用数学知识,又需要观察和想象能力,培养了学生的思维灵活性和创造力。
二、解决平面几何问题平面几何是初中数学中一个重要的内容,通过数形结合思想,可以帮助学生解决平面几何问题,如平行线的性质、相似三角形的性质等。
通过画图观察和推理,可以帮助学生理解和巩固这些数学概念。
对于平行线的性质,我们可以通过数形结合思想来解决问题。
我们画出两条平行线,然后引入一个横切线。
通过观察,我们发现两条平行线上对应的内角和外角是相等的,同时我们可以看到内、外角和横切线之间的关系。
这样,我们可以通过画图观察的方式,对平行线的性质进行分析和证明,加深学生对这个概念的理解。
三、解决函数与图像问题在函数与图像的学习中,数形结合思想也被广泛应用。
通过画出函数的图像,可以帮助学生理解函数的性质,如单调性、奇偶性等。
对于一个函数的单调性,可以通过数形结合思想来进行分析。
我们画出该函数的图像,然后观察函数的变化趋势。
通过观察,我们可以发现函数在某个区间上是单调递增或单调递减的,可以通过数学和几何图形相结合的方式来理解和证明函数的单调性。
数形结合思想在初中数学教学中的应用优秀获奖科研论文-2
数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。
数形结合思想在初中数学教学中的妙用
数形结合思想在初中数学教学中的妙用
数形结合是指将数学与几何图形有机结合起来,用图形表示数学问题,通过图形化的方式解决数学问题。
在初中数学教学中,数形结合思想的妙用主要体现在以下几个方面。
1. 让抽象的数学概念形象化。
在初中数学教学中,学生往往会遇到一些较为抽象的数学概念,如平方根、立方根、无理数等。
数形结合思想可以通过图形化的方式,将这些概念形象化,从而更容易让学生理解和掌握。
例如,在讲解平方根时,可以通过画图表示正方形的面积和边长的关系,从而引出平方根的概念。
在讲解立方根时,可以通过画立方体表示体积和边长的关系,引出立方根的概念。
2. 引出数学问题的几何本质。
在初中数学教学中,学生需要学习如何解决各种数学问题。
通过数形结合思想,可以将这些数学问题转化为几何图形问题,从而引出它们的几何本质。
例如,在解决关于多边形内角和的问题时,可以先通过画图表示多边形的内角取和的特性,再通过几何推理来解决问题。
3. 增强直观感知能力。
通过数形结合思想,学生不仅可以看到数学问题,还可以通过图形化的方式感知和理解问题,从而增强他们的直观感知能力。
例如,在讲解等差数列和时,可以通过画图来表示各项之间的关系,让学生更加直观地感受到等差数列和的性质。
4. 加强综合运用能力。
综上所述,数形结合思想在初中数学教学中有着广泛的应用。
通过数形结合的方式,不仅可以让学生更加容易地理解和掌握数学知识,还可以加强他们的直观感知能力和综合运用能力。
因此,在初中数学教学中,应该积极运用数形结合思想,让学生更好地掌握数学知识。
数形结合思想在初中数学教学中的应用
数形结合思想在初中数学教学中的应用
数形结合思想是指在解决数学问题时,通过对图形进行分析,探索其内在规律,从而
得出数学结论的方法。
在初中数学教学中,数形结合思想不仅可以帮助学生更深入地理解
几何问题,还可以帮助学生将抽象的数学概念与具体的图形进行结合,提高学生的数学应
用能力和解决问题的能力。
1. 解决几何问题
在初中几何学习中,学生将会学习到一些基本的几何图形,如平面图形、立体图形等,数形结合思想可以帮助学生更好地理解这些图形的特点,并通过对其面积、周长、体积等
数学量的分析,解决一些几何问题。
例如,当学习矩形的面积与周长时,可以将其画成图形,将其边长表示为数值,然后
用乘法、加法等数学运算来求出其面积与周长。
此外,在学习三角形的相似性质时,可以
结合图形来解决复杂的三角形相似问题,从而深入理解三角形的特性。
2. 统计图表分析
例如,当学习条形图时,可以将其画成长方形,用长方形的面积表示各个项目的数量,从而更加直观地比较两个项目之间的差异。
又如,在学习饼图时,可以将其看成一个圆形,用圆形的面积来表示各个部分的比例,从而更加准确地理解各个部分的占比。
除了帮助学生更好地理解数学问题之外,数形结合思想还可以帮助学生将抽象的数学
概念与实际问题结合起来,解决实际问题。
例如,在学习平均数时,可以通过将班上同学的身高画成柱状图,然后求出其平均值,从而更好地帮助学生理解平均数的概念。
此外,在学习速度、时间、距离等实际问题时,
可以通过对其进行图形化分析,从而更加直观地解决这些实际问题。
数形结合思想在初中数学中的应用
数形结合思想在初中数学中的应用数形结合思想是指在数学问题中,将几何图形与数学运算相结合,通过图形的变化和特点来解决数学问题。
它是一种抽象思维和几何思维相结合的思维模式,广泛应用于初中数学的教学和学习中。
1. 公式的认识和应用:通过几何图形的变换和特点,帮助学生认识和理解各种数学公式的含义和应用。
通过画图解释勾股定理,可以帮助学生更好地理解三角形的边与角的关系,加深他们对勾股定理的理解和记忆。
2. 解决面积和体积问题:通过将几何图形与数学计算相结合,解决面积和体积等问题。
将平行四边形切割成若干小三角形,然后通过计算每个小三角形的面积来求解整个平行四边形的面积;通过将长方体切割成若干个立方体,然后通过计算每个立方体的体积来求解整个长方体的体积。
3. 解决比例问题:通过绘制比例图形,帮助学生理解和解决比例问题。
通过绘制两个图形的比例尺,可以帮助学生直观地理解两个量的大小关系,并通过比例尺的计算来解决实际问题。
5. 解决几何证明问题:通过绘制几何图形,帮助学生理解和解决几何证明问题。
通过绘制垂直角的图形,可以帮助学生理解垂直角的性质,并利用垂直角的性质证明几何定理。
6. 解决几何问题的思路和方法:通过数形结合思想,帮助学生培养解决几何问题的思路和方法。
通过绘制几何图形,找出其中的规律和特点,从而推导出问题的解决方法。
需要指出的是,数形结合思想并不仅仅应用于初中数学,它在高中和大学数学中同样有广泛的应用。
通过数形结合思想,可以帮助学生发展抽象思维和几何思维,培养他们解决数学问题的能力和思维方式。
在初中数学中,运用数形结合思想是非常重要的一种教学方法,能够提高学生的数学素养和创新意识,促进他们的综合能力的提高。
数形结合思想在初中数学中的应用
数形结合思想在初中数学中的应用数形结合思想是指通过对数学问题进行图形化的表示和解释,从而提供直观的解决问题的思路和方法。
在初中数学中,数形结合思想的应用主要包括以下几个方面。
一、图形与几何问题的解决数形结合思想在解决几何问题时起到了至关重要的作用。
通过将几何问题转化为图形问题,可以直观地理解问题的本质,并通过观察和推理得到解决问题的方法。
当求解一个三角形的面积时,可以通过将三角形划分成若干个简单的图形,计算它们的面积然后相加来得到整个三角形的面积。
这种数形结合思想的应用,帮助学生理解并解决了许多几何问题。
二、函数与图像的分析在初中数学中,我们接触到的函数种类较为简单,但是通过对函数图像的观察,可以对函数进行初步的分析和判断。
通过观察一元一次函数(y = kx + b)的图像,可以看出当 k>0 时函数是递增的,而当 k<0 时函数是递减的。
通过对图像的观察和比较,可以得到一些函数的性质和规律。
图形化的表示和解释使得函数的学习更加直观和有趣。
三、统计与数据分析数形结合思想在统计和数据分析中也有重要的应用。
在分析一个统计数据时,可以通过绘制柱状图、折线图等图形来直观地展示和比较数据的特征。
通过观察图形,我们可以得出一些有关数据的结论和推断。
图形化的表达也使得数据的理解和分析更加简单和直观。
四、证明与推理在初中数学中,我们也经常需要进行一些证明和推理的工作。
数形结合思想通过图形的表示和解释,可以帮助学生更好地理解和掌握证明和推理的方法。
在证明两个三角形全等时,可以通过绘制它们的图形表示,并观察图形的对应部分是否相等来进行验证。
这种数形结合的思考方式,帮助学生更好地理解和运用证明和推理的方法。
数形结合思想在初中数学中的应用十分广泛。
通过将抽象的概念和问题进行图形化的表示和解释,数形结合思想可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力和思维方式。
数形结合思想在初中数学的教学中起到了重要的作用,同时也培养了学生的创造力和想象力,使学习数学变得更加有趣和实用。
数形结合思想在初中数学教学中的应用
数形结合思想在初中数学教学中的应用数形结合思想是一种把数学问题和几何问题结合在一起的思考方法,它在初中数学教学中具有非常重要的应用价值。
本文将从几何图形的计算和应用、算术与代数的联系和分析证明等方面探讨数形结合思想在初中数学教学中的应用。
一、几何图形的计算和应用数形结合思想最常见的应用就是在几何图形计算中,它能够将一个抽象的数学概念通过几何图形形象化,使学生更加易于理解和记忆。
比如,平面图形的面积、周长和体积就是典型的数形结合题目。
例如,在计算矩形面积时,可以让学生想象一个由两条平行边和两条垂直边组成的图形,并通过单位面积上的方格个数来进行计算,这样可以增强学生的空间感。
另外,在应用层面,数形结合思想也可以帮助学生更好地理解并解决实际问题。
例如,在解决班级容量问题时,可以通过将教室平面图形和学生个数进行相互转化,进而得出容量结论。
二、算术与代数的联系数形结合思想还可以帮助初中学生更好地理解算术与代数之间的联系。
代数式本质上是一个良好的抽象概念,但它对初中学生来说可能过于抽象,难以理解和记忆。
而数形结合思想则可以将代数式与几何图形结合,使它更加形象化,加深学生的记忆和理解。
例如,学生在学习一元二次方程的解法时,可以通过将代数式与抛物线图形相结合,让学生更好地理解函数图像的形态和方程解的特点,使学生更加清晰地理解一元二次方程。
三、分析证明在学习初中数学时,学生需要学会进行基本的分析和证明,通过形式化的证明来加深对数学知识的理解。
数形结合思想同样可以用于这个过程。
例如,在证明一些基本几何公式时,可以先从几何图形出发,通过简单的数学运算和推导得到推论,然后再用代数式进行加强。
这样既可以使证明更加清晰,也可以帮助学生知道什么时候可以用数学公式来代替几何图形,什么时候需要进行证明。
初中数学教学中数形结合思想的应用分析
初中数学教学中数形结合思想的应用分析
一、数形结合思想的内涵
数形结合思想是数学教学中一种重要的思想,它指的是将数学中的数字和图形结合起来进行分析和推理,以求解数学问题。
它要求学生不仅要掌握数学的计算方法,而且要能够把数学的概念、定理和方法应用于实际问题中。
二、初中数学教学中数形结合思想的应用
1. 利用数学图形来进行数学解决问题。
在数学教学中,学生可以利用数学图形来解决问题,如通过图形可以更容易地确定函数的性质,求解几何问题,分析数学模型等。
2. 利用图形来解释数学概念。
利用图形来解释数学概念,可以更好地让学生理解数学概念,如可以利用图形来解释比例、比率、比值、百分比等概念,以及比例的性质等。
3. 利用图形来求解数学问题。
学生可以利用图形来求解数学问题,如通过图形可以更容易地求解几何问题,比较数学模型的优劣等。
4. 利用图形来理解数学模型。
学生可以利用图形来理解数学模型,如可以利用图形来理解线性函数、指数函数、双曲线等数学模型,以及它们的特性等。
三、结论
数形结合思想是初中数学教学中一种重要的思想,它要求学生不仅要掌握数学的计算方法,而且要能够把数学的概念、定理和方法应用于实际问题中。
谈数形结合思想在教学中的应用
谈数形结合思想在教学中的应用数形结合思想是指将数学中的抽象概念和几何图形相结合进行思考和应用的方法。
数形结合思想在数学教学中的应用也越来越广泛,可以帮助学生更好地理解和掌握数学知识。
在初中数学中,数形结合思想被广泛地应用在平面几何以及立体几何的教学中。
例如,通过绘制图形来刻画几何问题,能够帮助学生直观地理解和掌握几何概念和性质。
在学习平面几何中,通过数形结合思想,学生可以轻松地证明各种几何定理,例如全等三角形的性质、角平分线定理、垂直平分线定理等等。
在学习立体几何中,数形结合思想也同样适用,例如用画立体图形的方法刻画空间位置关系、用角的度数来计算空间角等等。
除了在几何教学中的应用,数形结合思想在其他数学知识的理解中也有着很好的应用。
例如,在学习函数时,用图像的方式来刻画函数的性质,可以使学生更加直观地理解函数的概念和函数的性质。
在学习数列时,通过画出数列项的图形,可以帮助学生更好地发现数列的规律和性质,使学生更加容易理解数列的概念和方法。
数形结合思想的应用不仅仅可以帮助学生更好地理解和掌握数学知识,还可以提高学生的学习兴趣。
通过绘制图形来解决数学问题,既可以帮助学生深入地思考问题,又可以激发学生的创造力,使学生具有更强的数学思维和创新能力。
数形结合思想在数学教学中的应用,需要教师针对不同的教学内容和学生的不同情况来选择合适的应用方式。
在应用数形结合思想时,还需要注意真正把抽象和具体结合起来,关注现象背后的本质,从而更好地促进学生的数学学习和思考。
综上所述,数形结合思想在数学教学中的应用具有非常重要的意义。
数形结合思想能够通过具体的图形展示,使数学变得更加直观和易于理解,也能够激发学生的兴趣和创造力,是一种非常有效的教学方法。
浅谈初中数学教学中数形结合思想的运用
浅谈初中数学教学中数形结合思想的运用在初中数学教学中,数形结合思想是一种有效的教学方法,通过将抽象的数学概念与具象的图形相结合,可以提高学生的学习兴趣,帮助他们更好地理解和应用数学知识。
数形结合思想可以帮助学生形成直观的概念。
数学中有很多抽象的概念,如平行线、垂直线、三角形等,在单纯的文字描述下,学生很难真正理解其含义。
而通过图形的描绘和展示,学生可以更直观地感受到这些概念所代表的几何形状和关系,从而更容易掌握和记忆。
数形结合思想可以帮助学生理解和应用数学知识。
在解决数学问题时,数形结合思想可以帮助学生将问题抽象成几何图形,从而更好地进行分析和推理。
在解决平面几何中的证明问题时,通过画图可以帮助学生找到问题的关键点、线索和方法,推导出正确的结论。
数形结合思想还可以帮助学生学会如何将抽象的数学概念应用到实际生活中,提高他们的问题解决能力和实际应用能力。
数形结合思想可以培养学生的空间思维能力。
在数学学习中,空间思维是非常重要的能力之一。
通过数形结合,在几何形状的转换、相似性、对称性等方面的学习中,可以培养学生的空间想象力和观察能力,提高他们的空间思维能力。
这种能力的培养对于学生解决几何问题和应用数学知识至关重要。
数形结合思想可以激发学生的探究兴趣和创新思维。
通过观察和分析几何图形的特征,学生可以自主发现一些规律和问题的解法,培养他们的探究和创新思维。
在数学教学中,老师可以引导学生思考问题,并鼓励他们尝试不同的解决方法,培养他们的独立思考和解决问题的能力。
数形结合思想在初中数学教学中的运用具有重要的意义。
它可以帮助学生形成直观的概念,理解和应用数学知识;培养学生的空间思维能力;激发学生的探究兴趣和创新思维。
教师在教学中应该积极运用数形结合思想,提供多样的图形材料和实例,创设丰富的情境,激发学生的学习兴趣,并培养他们的数学思维。
学生也应积极配合,主动观察和思考,通过数形结合思想,不断提高自己的数学素养和解决问题的能力。
数形结合思想在初中数学教学中的作用分析
数形结合思想在初中数学教学中的作用分析
数形结合是一种将数学概念与几何图形相结合的教学方法。
在初中数学教学中,数形结合思想被广泛应用,其作用主要体现在以下几个方面:
一、激发学生的学习兴趣和思维能力
数形结合教学法能够通过视觉和触觉刺激学生的感官,使他们更加主动地参与到学习中来,并且能够激发学生的学习兴趣。
学生在观察几何图形的过程中,能够发现图形中的规律和特点,从而培养他们的思维能力和创造力。
二、促进学生的认知和理解
数形结合教学法能够将抽象的数学概念通过几何图形直观地展现出来,有助于学生更加深入地认知和理解这些概念。
例如,在学习简单的线性函数时,可以通过画出函数图像来帮助学生理解函数的定义和性质,以及函数与直线之间的关系。
三、拓展学生的思维方式和解题思路
数形结合教学法能够拓展学生的思维方式和解题思路,让他们在解决数学问题的过程中更加灵活多样,从而提高他们的应用能力。
例如,在学习三角函数的概念时,可以通过画出三角形来帮助学生理解三角函数的定义和性质,然后再通过搭配恰当的数学运算来解决相关问题。
四、提高学生的实际应用能力
总之,数形结合思想在初中数学教学中具有重要的作用,可以激发学生的学习兴趣和思维能力,促进学生的认知和理解,拓展学生的思维方式和解题思路,提高学生的实际应用能力。
初中数学教学中数形结合思想的应用探讨
初中数学教学中数形结合思想的应用探讨数学是一门抽象的科学,而数形结合则是数学教学中的一种重要思想。
数形结合的教学方法是以几何图形为载体,将代数表达式和方程式转化成图形进行观察、理解和解决问题的教学方法。
这种教学方法既能有效地激发学生的学习兴趣,又能提高学生的数学思维能力和解题能力。
本文将探讨初中数学教学中数形结合思想的应用,以及如何有效地将数形结合的思想融入到数学教学中。
1. 数形结合带来的教学效果在数学教学中,数形结合思想的应用能够使抽象的代数概念具体化,增强学生对数学知识的理解和记忆,激发学生对数学的兴趣。
通过呈现在图形中,学生更容易理解和记忆抽象的数学概念,例如方程、不等式等。
数形结合也可以帮助学生更好地发现问题本质,提高问题解决的效率,培养学生的数学思维能力。
2. 数形结合的具体应用在初中数学教学中,数形结合思想的应用是多方面的,涉及到各个数学知识点的教学。
在代数方程中,通过绘制坐标系和曲线图形,可以让学生更清楚地理解代数方程的解法和求解过程。
在几何知识中,也可以通过数形结合的方法,让学生更直观地理解和掌握相关性质和定理,提高学生的几何解题能力。
在解决实际问题时,数形结合思想也能起到积极的作用,通过构造几何图形或坐标系,将实际问题转化为数学问题,提高学生解决实际问题的能力。
二、数形结合思想在数学教学中的有效融入1. 设计富有启发性的教学活动为了有效地融入数形结合思想到数学教学中,教师可以设计富有启发性的教学活动。
在代数知识的教学中,可以通过给学生一组代数方程,并要求他们在坐标系中绘制出对应的图形,再通过观察图形特点来解答问题,从而激发学生对数学知识的兴趣。
在几何知识的教学中,也可以设计各种有趣的几何问题,引导学生利用代数知识和图形知识解决问题,从而提高学生的数学综合运用能力。
三、数形结合思想对学生的意义1. 培养学生的数学综合应用能力数形结合思想的应用能够帮助学生更好地理解和运用数学知识,从而培养学生的数学综合应用能力。
数形结合思想在初中数学教学中的运用研究
数形结合思想在初中数学教学中的运用研究一、数形结合思想是数学中一个重要的思维方式和方法论,在初中数学教学中,将这一思想运用到教学实践中,可以促进学生对数学知识的理解和掌握,提高数学思维能力和解决问题的能力。
本文将结合实例,论述数形结合思想在初中数学教学中的运用。
二、数形结合思想概述数形结合思想是指在解决数学问题时,将数学知识和几何图形结合起来,通过图形的特征和性质对问题进行分析和解答的思维方式。
数形结合思想可以帮助学生更直观地理解抽象的数学概念和定理,增强数学思维的感性认识和几何直觉。
三、数形结合思想在初中数学教学中的运用(一)代数和几何的结合初中数学中许多知识点都是代数和几何相互联系的,如平面图形的性质与面积公式的推导、速度、时间、距离等量的换算等。
这时,我们可以采用数形结合的方法,通过几何图形的形式引入代数式,让抽象的代数符号通过图形形象化。
例如,面积公式的推导就是典型的数形结合思想的应用,通过画出一个高为h、底为b的梯形,再将它划分成小矩形,用已经知道的面积公式求得所有小矩形的面积,然后将这些小矩形面积加起来,就得到了梯形的面积公式S=(a+b)h/2。
(二)解决几何问题初中数学中,学生需要掌握许多的几何定理,例如,勾股定理、相似的判定法等几何问题。
这些几何定理和知识对于学生来说可能会感到较抽象,难以理解。
但在实际操作时,我们可以通过数形结合思想的方式,将几何图形与代数运算结合起来,用更加直观的方式解决问题。
例如,在教学勾股定理时,可以将其对应于一个单位圆内一条斜率为k的直线与与x轴垂直的直线所围成的三角形,更加具体地理解未知边长所代表的具体数值,帮助学生直接用数值求解勾股数。
(三)提高解题能力通过数形结合思想,可以更加直观地帮助学生理解和掌握数学知识和技能,从而有助于提高学生解决数学问题的能力。
例如,在解决数列求和问题中,可以引入图形表示数列中每个数的大小和位置,从而帮助学生理解数列求和的规律和方法;在解决方程组问题中,也可以通过图形来表示方程组的解,从而帮助学生直观地理解方程组的解法。
数形结合思想在初中数学教学中的应用
数形结合思想在初中数学教学中的应用数形结合思想是数学教学中一个重要而又具有挑战性的教学理念。
数形结合思想最早是由中国著名数学家华罗庚提出的,他强调数学不仅仅是抽象的符号和运算,更应该与形式、结构和图形联系起来。
数形结合思想的提出开启了数学教学新的篇章,为学生提供了更丰富的数学学习体验。
在初中数学教学中,数形结合思想的应用不仅能够增强学生对数学概念的理解,还能够提高他们的学习兴趣和动手能力,促进他们对数学的热爱和深入。
数形结合思想能够促进数学概念的深入理解。
通过将数学概念与形式和结构相联系,学生可以更加直观地理解数学的概念和原理。
比如在初中数学教学中,教师可以利用几何图形来解释平方根的概念,让学生在观察图形的基础上理解平方根的定义,并通过实际操作来计算平方根的近似值。
这样一来,学生不仅能够在形式上理解平方根的概念,还能够通过实际操作深入理解平方根的意义和运用。
数形结合思想的应用使得数学不再是一种抽象的符号和运算,而是具有形象和实际意义的学科,从而更有利于学生对数学概念的深入理解。
数形结合思想能够提高学生的学习兴趣和动手能力。
在传统的数学教学中,学生往往认为数学是枯燥乏味的,容易产生学习疲劳情绪。
而数形结合思想的应用能够使数学变得更加有趣和生动。
通过利用形象和实际的例子来解释数学原理,学生在学习中能够更加主动、积极,从而提高他们的学习兴趣。
数形结合思想的应用也能够促进学生的动手能力。
通过绘图、实验等形式,学生能够更加直观地感受到数学的魅力和实际应用,从而增强他们的动手能力和观察能力。
这样一来,学生不仅能够在学习中获得乐趣,还能够积极参与到数学教学中来,带动整个班级的学习氛围。
浅析初中数学教学中数形结合思想的应用
浅析初中数学教学中数形结合思想的应用一、数形结合思想是什么数形结合思想是指数学中的具体形象与抽象概念相结合的一种教学理念。
这种思想主张在数学教学中,要注意将抽象的数学概念与具体的形象相结合,通过形象化的教学手段,使学生更直观、更生动地理解和掌握数学知识。
1. 几何图形与公式的结合在初中数学中,几何图形与几何公式的结合是数形结合思想的一个重要应用。
例如在学习计算圆的面积时,可以通过平面几何图形的绘制和计算过程相结合,使学生更加直观地理解圆的面积公式πr²,并掌握面积计算的方法。
通过数形结合的教学方法,学生不仅可以理解公式的意义,还能够将公式与具体的图形联系起来,形成系统的认知。
2. 长方体与容积的结合在学习长方体的容积时,可以通过长方体的实际模型和容积计算公式的结合,让学生通过观察实际模型来理解容积的概念,进而掌握计算容积的方法。
数形结合思想的应用可以使学生更容易地掌握抽象概念,减少学习难度。
3. 数据统计与图表的结合在学习数据统计的时候,可以通过绘制各种图表形式,如条形图、折线图等,将数据呈现出直观的形象,帮助学生更容易地理解数据之间的关系及趋势,从而更好地掌握数据统计的方法和技巧。
在初中代数学习过程中,方程式是一个重要的内容。
通过将方程式与对应的图形相结合,可以帮助学生更好地理解方程式的含义和解法,并能够将抽象的数学问题变成具体的图形问题,使学生更容易地解决问题。
5. 图形变换与坐标系的结合在学习图形变换和坐标系的时候,可以引入具体的图形案例,通过变换前后的坐标关系进行对比,帮助学生更加直观地理解图形的变化规律和坐标系的运用,从而更好地掌握相关知识。
通过以上几个方面的应用,我们可以看到数形结合思想在初中数学教学中的重要性。
数形结合思想的应用能够直观地帮助学生理解和掌握数学知识,激发学生对数学的兴趣,提高学生的数学学习能力。
三、数形结合思想的教学策略在实际教学中,老师可以通过以下几种策略来应用数形结合思想:1. 利用教学实例在教学中,可以利用大量的具体例子和实例来让学生参与到探索中来,通过观察和操作,帮助学生更加直观地理解和掌握数学知识。
浅析初中数学教学中数形结合思想的应用
浅析初中数学教学中数形结合思想的应用在初中数学教学中,数形结合思想是一种非常重要的应用方法。
通过数学图形和数学公式的结合,可以更加直观、深入地理解和掌握数学知识,提高学生的数学学习效果。
本文将从以下几个方面进行浅析。
一、数形结合的概念所谓数形结合,就是将数学中的抽象概念和具体图形相结合,通过图形的形象性来更好地理解抽象概念。
例如,几何图形中的面积、周长等概念,与数学中的乘法、加法等概念的结合,可以实现把抽象数学概念形象化的目标,帮助学生更好地理解、记忆和应用。
(一)数学知识的理解在教学中,通过让学生观察、分析不同形状的图形,可以使学生对于数学公式有更为深刻的理解。
以求长方形面积为例,学生可以先理解面积的定义,然后通过画图形的方法,很容易由面积的定义推导出长方形面积的公式——面积=长×宽。
(二)数学问题的解决在解决数学问题时,数形结合思想也可以起到很好的作用。
例如,如何求出一个不规则图形的面积和体积。
这时我们可以通过把图形分成若干小段,然后再用数学中的知识来求解。
这样既可以通过图形更好地直观体会到分段求和的方式,又可以通过数学公式来计算得出最终结论。
在应用数学知识时,数形结合思想同样会带来很大的帮助。
例如,解决一些实际问题时,我们可以通过图形的模拟来更好地理解和记忆数学知识,同时也可以让学生更直观地感受到数学在实际生活中的应用。
三、数形结合的教学案例教师在讲解数学知识时,可以通过图形的演示和实际例子的介绍来帮助学生更好地掌握数学知识。
以平方根的教学为例,教师可以让学生通过观察图形,直接感性理解平方根的概念。
然后再引导学生进一步分析图形,并用数学公式来计算出平方根的值。
通过这样的练习,学生既提高了图形分析的能力,也掌握了平方根的计算方法。
四、数形结合的实际应用数形结合思想不仅在教学中有重要应用,同时在科学研究中也起到不可或缺的作用。
对于一些复杂的数学问题,科学家们也会借助计算机辅助绘制出相关的图形和模型,通过图形和模型的分析和计算实现问题的解决。
数形结合思想对初中数学教学的意义
数形结合思想对初中数学教学的意义数学是一门基础学科,也是培养学生分析、思考和解决问题能力的重要学科之一。
而数学教学,尤其是初中数学教学,作为学生基础知识的奠基阶段,如何培养学生对数学的兴趣和理解能力,是当前教育教学改革中亟待解决的问题之一。
在教学中,应用数形结合思想,将数学理论与几何图形结合起来,可以增强学生对数学概念的理解、应用和掌握能力,培养学生创新思维和解决实际问题的能力,提高初中数学教学的效果。
一、数形结合思想的内涵和意义1.数形结合思想的内涵数形结合思想是一种教学方法,通过将数学理论与几何图形相结合,使学生能从图形的变化和关系中发现数学规律,从而加深对数学概念及其应用的理解。
2.数形结合思想的意义(1)激发学生兴趣。
数学教学常常让学生感到乏味和抽象,而通过数形结合思想的应用,可以使学生通过观察和发现图形的规律,产生强烈的兴趣和好奇心,从而提高学习的主动性和积极性。
(2)促进思维发展。
在数形结合的教学过程中,学生需要进行观察、比较、推理等一系列思维活动,这些活动可以开发学生的逻辑思维和创新思维,培养他们分析和解决问题的能力。
(3)强化数学概念的理解。
数形结合思想通过将数学概念与实际图形相结合,可以使学生更直观地理解数学概念,形成数学概念之间的联系和应用,帮助学生深入理解数学知识。
(4)提高应用能力。
数形结合思想可以使学生学会将数学应用于实际问题的解决,培养学生分析和解决实际问题的能力,增强他们对数学的应用意识。
二、数形结合思想在初中数学教学中的应用1.几何图形与数学概念的关联在初中数学教学中,几何图形与数学概念的关联是数形结合思想的核心内容之一。
通过观察不同几何图形的特点和规律,可以引出相关的数学概念,并通过数学方法进行解决。
例如,在讲解平面图形的相似性质时,可以通过比较其对应边的长度比和角的相等关系,引出相似三角形的概念,并应用相似三角形的性质解决实际问题。
2.实际问题与数学模型的建立数形结合思想还可以帮助学生建立实际问题与数学模型之间的联系。
数形结合思想在初中数学中的应用
数形结合思想在初中数学中的应用数形结合思想是指数学中的数学问题和几何问题相互转化、相互运用的一种思维方式。
在初中数学中,数形结合思想的应用主要体现在以下几个方面:一、用几何图形解决代数问题在学习代数知识时,许多问题可以通过几何图形来直观地展现。
在解一元一次方程时,可以通过画图的方式来帮助学生理解方程的意义。
教师可以选取和学生相关的实际问题,用几何图形的方式来解决,这样不仅可以让学生更好地理解代数问题的本质,还可以培养学生的数学建模能力。
在学习几何知识时,代数方法也可以被应用到许多几何问题的解决中。
比如在计算几何图形的面积或周长时,可以通过代数式的运算来得到结果。
这种方法不仅简单直观,而且可以加深学生对代数知识的理解和运用。
三、将数学问题转化为几何问题有些数学问题在代数形式下可能比较抽象,难以理解,而将这些问题转化成几何问题时,学生可能会更容易理解和解决。
比如在概率问题中,可以用几何图形来表示事件的发生,从而让学生更加直观地理解概率的概念和计算方法。
在初中阶段,学生学习的数学知识往往和实际问题有着密切的联系。
几何方法在解决实际问题时,不仅可以用来求解图形的面积、体积等几何问题,还可以帮助学生理解实际问题的本质和解决方法。
比如在解决日常生活中的测量、建模等问题时,几何方法的应用可以让学生更好地理解问题的背后数学原理。
数形结合思想的应用不仅可以帮助学生更好地理解和掌握数学知识,还可以激发学生对数学的兴趣。
但是在教学中,如果不能很好地将数形结合思想融入到教学实践中,可能会达不到理想的效果。
教师在教学中需要灵活地运用数形结合思想,结合具体的教学内容和教学目标,设计出符合学生学习特点的教学方法。
教师需要结合教学内容,合理设计教学活动。
比如在教学一元一次方程时,可以设计一些与生活相关的问题,并通过几何方法来解决,这样可以让学生更好地理解代数方程的实际意义。
教师需要引导学生学会灵活运用数形结合思想。
在解决数学问题的过程中,学生需要通过分析问题,选择合适的数学工具和方法,从而达到数形结合的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈数形结合思想在初中数学教学中的应用永吉35中王萍数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
数"和"形"是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状,大小,位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合是培养和发展学生的空间观念和数感,进行形象思维与抽象思维的交叉运用,使多种思维互相促进,和谐发展的主要形式;数形结合教学又有助于培养学生灵活运用知识的能力。
从初中学习数轴开始,我们就建立起了有理数与数轴上点的对应关系。
这可以算是数与形结合的开端。
即而,学习实数之后,把这种对应转变为实数与数轴上点的一一对应。
因而数形结合通常是与数轴、平面直角坐标系相联系的。
新一轮课程改革中的数学课程,其基本出发点是促进学生全面、和谐、持续的发展,它要求学生通过学习数学知识、技能和方法,逐渐形成自己的数学思想和方法,让学生学会用数学的眼光看待生活中的人和事物,学会用数学的方法解决生活中的实际问题,那么,作为最基本的数学思想之一的数形结合思想在新课程中又是怎样体现的呢?下面我结合它在以下几方面的运用浅谈一下。
一、数与代数中的数形结合这部分内容与原教学大纲比,数形结合的内容有很大改变和加强。
它重视渗透和揭示基本的数学思想方法,加强数学内部的联系及其相关学科的联系,如提前安排平面直角坐标系,用坐标的方法处理更多的内容包括二元一次方程组,平移变换,对称变换,函数等。
又如,它改变了“先集中出方程,后集中出函数”的做法,而是按照一次和二次的数量关系,使方程和函数交替出现,分层递进,螺旋上升。
在数与代数的教学里,我认为,应该抓住实数与树轴上的点一一对应的关系,有序实数对与坐标平面上的点的一一对应关系,从数形结合的角度出发,借助数轴处理好相反数和绝对值的意义,有理数大小的比较,有理数的分类,有理数的加法运算,不等式的解集在数轴上的表示等。
教师要赋予这些系统内容新的活力,采用符合课标理念的教法,在吃透新课程标准和教材的基础上,让学生经历试验、探索的过程,体验如何用数形结合思想分析和解决,培养学生学习和应用的能力,从而激发其学习数学的原动力。
例1、一元二次方程解的意义:ax2+bx+c=0(a≠0)是一元二次方程。
它的解可以理解为函数y= ax2+bx+c的图象与常值函数y=0,即x轴的交点的横坐标。
那么当公共点有两个时,对应的一元二次方程有两个不相等的实数解;当公共点只有一个时,对应的一元二次方程有两个相等的实数解;当没有公共点时,对应的一元二次方程没有实数解。
例:①x 2-x-6=0,x 1=-2,x 2=3,y=x 2-x-6与x 轴的公共点A(-2,0),B(3,0)。
②x 2-2x+1=0,x 1=x 2=1,y= x 2-2x+1与x 轴的公共点A(1,0)。
③x 2+1=0,没有实数解,y= x 2+1与x 轴没有公共点。
图① 图② 图③例2、二元一次方程组的解的意义:二元一次方程组11122200a x b y c a x b y c ++=⎧⎨++=⎩的解有三种情况: ① 无解;②无数个解;③ 只有一个解。
这三种情况可以转化为两条直线a 1x+b 1y+c 1=0、a 2x+b 2y+c 2=0的三种位置关系:①平行;②重合;③ 相交。
方程组的解转化为两条直线的交点。
当a 1:a 2=b 1:b 2≠c 1:c 2时,两条直线的斜率相同,y 轴上的截距不同。
此时两条直线平行,无交点,因而方程组无解。
当a 1:a 2=b 1:b 2=c 1:c 2时,两条直线的斜率相同,y 轴上的截距相同。
此时两条直线重合,有无数个公共点,因而方程组有无数个解。
当a 1:a 2≠b 1:b 2时,两条直线的斜率不相同,两条直线相交,只有一个交点,因而方程组只有一个解。
例:①2304410x y x y ++=⎧⎨++=⎩,方程组无解。
两条直线2x+y+3=0、4x+2y+1=0的位置关系如图:平行。
②21020x y x y ++=⎧⎨+=⎩,方程组只有一个解。
两条直线2x+y+1=0、x+2y=0的位置关系如图:相交。
③24020x y x y +=⎧⎨+=⎩,方程组有无数个解。
两条直线2x+4y=0、x+2y=0的位置关系如图:重合。
例3、图形隐含条件:例:在数轴上的位置如图,化简:|a-b|-|b-c|+2|a+c|。
解:∵b<0,c<0,b>c,a>b,|c|>|a|∴a-b>0,b-c>0,a+c<0。
|a-b|-|b-c|+2|a+c|=(a-b)-(b-c)-2(a+c)=-a-2b-c 。
例4、教师任意写出一个关于a 和b 的二次式,此二次式能分解成两个一次式的乘积,且各项系数都是正整数,如: 2a +2ab+2b ,x x(1) (2) (3)c b 0 a x2项数末项)(首项⨯+152551=⨯+)(505021001001=⨯+)(22a +5ab+22b 等。
学生根据教师给出的二次式,选取相应种类和数量的卡片,尝试拼成一个矩形,讨论矩形的代数意义学生在这一活动中能很好地体会代数与几何的联系,实现数量关系和图形性质的相应转化,这一活动达到了让学生手脑并用的目的,无疑对启迪学生的智慧起到助推器的作用。
例5、完成下列计算,1+2=?1+2+3=?1+2+3+4=?如果以1+2+3+4为例,如图:由此可知,1+2+3+4=10=1+2+3+4+5=? 1+2+3+ …+100=? 1+2+3+…+n=?由此可知,1+2+3+4=10= 2414)(+⨯a bb a教师先让学生思考,让学生经历观察、比较、归纳、提出猜想的过程后提供以上图形,运用图形的直观性帮助学生理解,使学生从数与形的联系中发现规律,让学生了解这两个代数知识的几何背景,感受数学的神奇魅力。
在“数与代数”的教学中,教师应强调数与形的结合,让学生建立由数想到形,由形想倒数的思想,这样可以加深学生对“数与代数”的理解和认识,如利用图形理解完全平方公式、平方差公式,利用函数图像理解函数的变化趋势等都是培养学生数形结合思想的极好的方法。
二、“空间与图形”中的数形结合新课程中的几何内容做了较大的删改,削弱了以演绎推理为主要形式的定理证明,降低了论证过程形式化的要求和证明的难度。
我想,这无疑给了教师充分脱脂的空间。
教师要把握好数学思想方法在整个教学发展中的地位,对于“数形结合”,教师要善于挖掘教材和生活中的素材,从形到数,揭示“形”中“数”的本质。
例6、如图,是连接在一起的两个正方形,大正方形的边长是小正方形边长的2倍。
问:若只许剪两刀应如何裁剪,使之能拼成一个新的大正方形?对于这一问题学生往往采取实验的方法,这里裁一刀,那里试(1) (2) (1)(2)一剪,但却极少有人能在短时间内拼凑好。
如果对题目认真加以分析,我们不难发现,从已知到结论,图形虽然变了,但其中却还有没变的东西——面积,若设小正方形的面积为1,则其边长就是1,这样一来,我们仅需沿着图4中边长为5的线段去考虑裁剪即可,而图中这样的线段没有几条,于是很快就能找到答案。
问题之所以能很快解决,关键是我们从问题“变”中看到了“不变”,从“形”的表面找到了“数”这一实质。
一个似乎是纯几何的问题,在“数”的引导下获得了最好的解决方式,这种由表及里,形中有数的思想方法,正是数学中“数形结合”的思想方法。
又如,以下几个题目也是数形结合的很好的例子。
例7、(1)如图,用长30m的篱笆与一堵墙围一方土地,求篱笆能包围的土地的最大面积。
(2)如图,用长30m的篱笆与两堵墙(两堵墙成120°角)围一方土地,求篱笆能包围的土地的最大面积。
(3)如图8,用长12m的木方,做一个有一条横档的矩形窗子,围使透进的阳光最多,应选择窗子的长宽各为多少m?在教学中,教师应该不失时机的让学生透过形的外表,触及其内在的数量关系,探索由形到数的联系与规律。
三、“统计与概率”中的数形结合黄 黄 黄 白 白 白 白白 白 新课标中的统计与概率,在内部编排和内容要求上却由所加强,真正让学生经历统计的全过程,发现并提出问题,运用适当的方法,收集和整理数据,运用合适的统计表统计图来展示数据做出决策。
例6如图(略)概率是新增加的内容,其抽象性使它成为教学的难点,在计算简单事件的概率时,采用画树状图的方法,树形结合,能收到化难为易的效果。
例7、一布袋中方有黄、白两种球,其中一个黄球,两个白球,它们除颜色外其它都一样,小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球,求两次都摸到白球的概率。
由于数形结合具有形象直观、易于接受的优点,它对于沟通中知识间的联系,活跃课堂气氛,开阔学生的思路,发展学生的潜能,提高学生的创造思维能力和开拓精神,使学生充分张扬个性,充分发挥潜能,真正实现个体的最优化发展都有很大帮助。
-2132-14-2 1 0 3 2 -14 图9 图10。