材料力学课件-第三章-轴向拉压变形
合集下载
材料力学第3章 轴向拉压变形
![材料力学第3章 轴向拉压变形](https://img.taocdn.com/s3/m/40a46e82a0116c175f0e488b.png)
Fy 0 :FN1 sin 30 FN3 sin 30 F
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程
切
B点水平位移:
线 代
圆
Fa
弧
Bx BB1 l1 EA ()
B点铅垂位移:
By
BB'
l2 sin 45
l1
tan
45
(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan
l2
sin
l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1
FN1l1 E1 A1
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程
切
B点水平位移:
线 代
圆
Fa
弧
Bx BB1 l1 EA ()
B点铅垂位移:
By
BB'
l2 sin 45
l1
tan
45
(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan
l2
sin
l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1
FN1l1 E1 A1
材料力学课件:3-3 桁架节点位移与小变形概念
![材料力学课件:3-3 桁架节点位移与小变形概念](https://img.taocdn.com/s3/m/fa8474b76294dd88d0d26bb1.png)
Page 9
第三章 轴向拉压变形
例:求A,C相对位移
FA
D
O
B
*设想固定BD中点 和BD方位
C C
F
*D点随OD杆变形
发 生位移,DC杆平 移、伸长、转动, 由对称性,C点到 达C’点。
AC 2CC '
Page10
第三章 轴向拉压变形
§3-4 拉压与剪切应变能
两条平行的研究途径(从物理、理力到材力)
单向受力
Page15
第三章 轴向拉压变形
•单向受力体应变能
2
V v dxdydz 2E dxdydz
•拉压杆
(x)= FN ( x ) , dydz A
V
l
FN2 ( x) dx 2EA( x)
A (变力变截面杆)
y
V
FN2 l 2EA
(常应力等直杆)
dz
dx
•纯剪应变能密度
dVε
dxdz dy
第三章 轴向拉压变形
外力功、应变能与功能原理
F
F
•外力功( W):构件变形时,外力在相应位移上做的功。
•应变能( V):构件因变形贮存能量。
Page12
第三章 轴向拉压变形
•弹性体功能原理: Vε W (根据能量守恒定律)
•功能原理成立条件:载体由零逐渐缓慢增加,动能与
热能等的变化可忽略不计。
答:切线代圆弧的近似。
Page 6
第三章 轴向拉压变形 例:零力杆:求A点的位移。
*AB杆不受力,不伸长转动。
Page 7
例:画节点A的位移
第三章 轴向拉压变形
1
2
3
B
A
B
A
第三章 轴向拉压变形
例:求A,C相对位移
FA
D
O
B
*设想固定BD中点 和BD方位
C C
F
*D点随OD杆变形
发 生位移,DC杆平 移、伸长、转动, 由对称性,C点到 达C’点。
AC 2CC '
Page10
第三章 轴向拉压变形
§3-4 拉压与剪切应变能
两条平行的研究途径(从物理、理力到材力)
单向受力
Page15
第三章 轴向拉压变形
•单向受力体应变能
2
V v dxdydz 2E dxdydz
•拉压杆
(x)= FN ( x ) , dydz A
V
l
FN2 ( x) dx 2EA( x)
A (变力变截面杆)
y
V
FN2 l 2EA
(常应力等直杆)
dz
dx
•纯剪应变能密度
dVε
dxdz dy
第三章 轴向拉压变形
外力功、应变能与功能原理
F
F
•外力功( W):构件变形时,外力在相应位移上做的功。
•应变能( V):构件因变形贮存能量。
Page12
第三章 轴向拉压变形
•弹性体功能原理: Vε W (根据能量守恒定律)
•功能原理成立条件:载体由零逐渐缓慢增加,动能与
热能等的变化可忽略不计。
答:切线代圆弧的近似。
Page 6
第三章 轴向拉压变形 例:零力杆:求A点的位移。
*AB杆不受力,不伸长转动。
Page 7
例:画节点A的位移
第三章 轴向拉压变形
1
2
3
B
A
B
A
材料力学之四大基本变形 ppt课件
![材料力学之四大基本变形 ppt课件](https://img.taocdn.com/s3/m/163eb04610661ed9ad51f384.png)
1.轴力:拉正压负。轴力图
2.横截面上的应力: N 或 = FN
A
A
3.变形公式:l Nl 或l FNl
EA
EA
4.强度条件: max [ ]
5.材料的力学性能: ~ 曲线
两个强度指标,两个塑性指标
ppt课件
3
例1-1 图示为一悬臂吊车, BC为
C
实心圆管,横截面积A1 = 100mm2, AB为矩形截面,横截面积 A2 = 200mm2,假设起吊物重为 Q = 10KN,求各杆的应力。
内径d=15mm,承受轴向载荷F=20kN作用, 材料的屈服应力σs=235MPa,安全因数ns= 1.5。试校核杆的强度。
ppt课件
8
解:杆件横截面上的正应力为
N
A
(
4F D2
d
2
)
4(20103 N )
[(0.020m)2 (0.015m)2]
1.45108 Pa 145MPa
76.4Nm
mB
9550 NB n
9550 10 500
191Nm
mC
9550 NC n
9550 6 500
114.6 Nm
计算扭矩:
mA
x
T1
MX 0
MX 0
T1 mA 0
mc T2
AB段 BC段
T1设为正的 T2设为正的
T1 mA 76.4Nm
86.6 MPa
ppt课件
5
例1-2:图示杆,1段为直径 d1=20mm的圆 杆,2段为边长a=25mm的方杆,3段为直径 d3=12mm的圆杆。已知2段杆内的应力σ 2=30MPa,E=210GPa,求整个杆的伸长△l
材料力学 轴向拉压3
![材料力学 轴向拉压3](https://img.taocdn.com/s3/m/876b000dba1aa8114431d9c5.png)
课堂讨论题
低碳钢加载→卸载→ 再加载路径有以下四种, 请判断哪一个是正确的: (A)OAB →BC →COAB ; (B)OAB →BD →DOAB ; (C)OAB →BAO→ODB; (D)OAB →BD →DB。 正确答案是( D ) 关于材料的力学一般性能,有如下结论,请判断哪一个是正确的: (A)脆性材料的抗拉能力低于其抗压能力; (B)脆性材料的抗拉能力高于其抗压能力; (C)塑性材料的抗拉能力高于其抗压能力; (D)脆性材料的抗拉能力等于其抗压能力。 正确答案是( ) A
§2-5 材料在拉伸与压缩时的力学性能
力学性能:材料在受力后的表现出的变形和破坏特性。 力学性能:材料在受力后的表现出的变形和破坏特性。 不同的材料具有不同的力学性能。 不同的材料具有不同的力学性能。 材料的力学性能可通过实验得到。 材料的力学性能可通过实验得到。 通过实验得到 一、试件与设备
压缩标准试件 拉伸标准试样
4、对应力集中的敏感性 当杆件上有圆孔、凹槽时,受力后,在截面突变处的附近, 当杆件上有圆孔、凹槽时,受力后,在截面突变处的附近,有应力 集中现象。 集中现象。 对于塑性材料来说, 对于塑性材料来说,因为有较 长的屈服阶段, 长的屈服阶段,所以在孔边最大应 力到达屈服极限时, 力到达屈服极限时,若继续加力, 圆孔边缘的应力仍在屈服极限值, 圆孔边缘的应力仍在屈服极限值, 所以应力并不增加, 所以应力并不增加,所增加的外力 只使屈服区域不断扩展。 只使屈服区域不断扩展。 而脆性材料随着外力的增加, 而脆性材料随着外力的增加,孔边应力也急剧地上升并始终保持最 大值。当达到强度极限时,该处首先破裂。 大值。当达到强度极限时,该处首先破裂。 所以,脆性材料对于应力集中十分敏感。而塑性材料则相反。 所以,脆性材料对于应力集中十分敏感。而塑性材料则相反。因 此,应力集中使脆性材料的承载能力显著降低,即使在静载下,也应 应力集中使脆性材料的承载能力显著降低,即使在静载下, 考虑应力集中对构件强度的影响。 考虑应力集中对构件强度的影响。
建筑力学第3章轴向拉伸与压缩
![建筑力学第3章轴向拉伸与压缩](https://img.taocdn.com/s3/m/6a44970bb7360b4c2e3f64c0.png)
A
F
x
0
FN 1 cos 45 FN 2 0
FN 2 45° B
F
x
F
45°
y
0
B F
C
FN 1 sin 45 - F 0
FN 1 28.3kN FN 2 -20kN
A
2、计算各杆件的应力。
45°
C
B
FN 1 28.3 10 90MPa A1 20 2 4
斜截面上全应力:
p 0 cos
k
③pa 分解为:
p
P
P
p cos 0 cos 2
p sin 0 cossin
0
2
k
k
sin2
P
P
k
反映:通过构件上一点不同截面上应力变化情况。 当 = 0时, 当 = 90°时, 当 = ±45°时, 当 = 0,90°时,
Ⅱ段柱横截面上的正应力
FN 2 - 150 103 -1.1 MPa Ⅱ 2 A2 370
所以,最大工作应力为
max= = -1.1 MPa (压应力)
三、 轴向拉(压)杆斜截面上的应力
上述讨论的横截面上的正应力是今后强度计算的基础。 但不同的材料实验表明,拉(压)杆的破坏并不总是沿横截 面发生,有时确是沿斜截面发生的,为此,应进一步讨论斜 截面上的应力。为了全面分析拉(压)杆的强度,应研究它 斜截面上的应力情况。
解(1)、(2)曲线交点处:
30
60
B 31;PB 54.4kN
1 1
PB1 ,60 A /cos60/sin604601024/ 355.44kN
材料力学单辉祖第三章轴向拉压变形
![材料力学单辉祖第三章轴向拉压变形](https://img.taocdn.com/s3/m/09f028d876eeaeaad1f3301c.png)
o x
FN q
q
L
最大正应力发生在x = 0处
P
max
FN (0) P ql (0) A A
P
x
22
Example-变轴力杆
取长度为dx的微元体 由胡克定理知,微元体伸长为
FN ( x) d dx EA
FN ( x) P q(l x)
o x
FN
dx dFN对微段变形忽略
杆件在外力F2作用下 的伸长为
l
2P
P
3l P
2P
l2 P
FN 2 L 2 Pl EA EA
19
Example-多力杆
杆件的总伸长为
l l P l2 P
方法一答案
2 Pl l l1 l2 EA ()
2 Pl EA
2P
P
l
3l
20
Example-变轴力杆
B
60 0
F2 l
F1
l
C A
C"
D
C´ A´
几何关系
45
Example-Bracket
利用几何关系, 得A点垂直位移AA´
A 2CC CD 2 6.0 mm 0 sin 30
l B
600
F2
F1
l
C A
C"
D
C´ A´
几何关系
46
Example-零力杆
求A点的位移
*AB杆不受力不伸长,只转动
()
41
Example-Bracket
图示托架,AB为刚梁,CD为支撑杆,已知 F1=5kN,F2=10kN,l=1m,斜支撑CD为铝 管,弹性模量为E=70GPa,横截面面积为 A=440mm2,求刚梁AB端点A的铅垂位移。
FN q
q
L
最大正应力发生在x = 0处
P
max
FN (0) P ql (0) A A
P
x
22
Example-变轴力杆
取长度为dx的微元体 由胡克定理知,微元体伸长为
FN ( x) d dx EA
FN ( x) P q(l x)
o x
FN
dx dFN对微段变形忽略
杆件在外力F2作用下 的伸长为
l
2P
P
3l P
2P
l2 P
FN 2 L 2 Pl EA EA
19
Example-多力杆
杆件的总伸长为
l l P l2 P
方法一答案
2 Pl l l1 l2 EA ()
2 Pl EA
2P
P
l
3l
20
Example-变轴力杆
B
60 0
F2 l
F1
l
C A
C"
D
C´ A´
几何关系
45
Example-Bracket
利用几何关系, 得A点垂直位移AA´
A 2CC CD 2 6.0 mm 0 sin 30
l B
600
F2
F1
l
C A
C"
D
C´ A´
几何关系
46
Example-零力杆
求A点的位移
*AB杆不受力不伸长,只转动
()
41
Example-Bracket
图示托架,AB为刚梁,CD为支撑杆,已知 F1=5kN,F2=10kN,l=1m,斜支撑CD为铝 管,弹性模量为E=70GPa,横截面面积为 A=440mm2,求刚梁AB端点A的铅垂位移。
材料力学第三章 轴向拉压变形
![材料力学第三章 轴向拉压变形](https://img.taocdn.com/s3/m/b2a04c4cf7ec4afe04a1df60.png)
FB = 2 FA
由⑵式与⑷式联立解得得: 式与⑷式联立解得得: ⑷
B FB
F FA = FN AC = 3 2F FB = FN BC = 3
×
装配应力 ⒈ 装配应力 超静定结构,由于构件制造误差, 超静定结构,由于构件制造误差,在装配时构件内部会 产生装配应力。静定结构不会产生装配应力。 产生装配应力。静定结构不会产生装配应力。 装配应力 装配应力 静定结构
⑷
FN 1 + 2 FN 2 − 2 F = 0
FN 2 = 2 FN 1
解得: 解得:
}
FN 1
2P 4P = , FN 2 = 5 5
×
解拉压超静定问题的方法和步骤: 解拉压超静定问题的方法和步骤: ⑴画变形的几何图; 画变形的几何图; ⑵根据变形图,建立变形的几何方程; 根据变形图,建立变形的几何方程; ⑶画受力图,其中杆件的轴力应根据变形图来画,即变 画受力图,其中杆件的轴力应根据变形图来画, 形为拉伸杆件的轴力按拉力画, 形为拉伸杆件的轴力按拉力画,变形为压缩杆件的轴力按压 力画; 力画; ⑷根据受力图,建立平衡方程; 根据受力图,建立平衡方程; ⑸根据虎克定律,建立物理方程; 根据虎克定律,建立物理方程; ⑹将物理方程代入几何方程得补充方程; 将物理方程代入几何方程得补充方程; ⑺联立平衡方程与补充方程求解未知量。 联立平衡方程与补充方程求解未知量。
×
求图示结构中刚性杆AB 中点 的位移δC。 中点C 例4 求图示结构中刚性杆
① 2EA EA ②
解:由平衡方程得 l
A
δA
a δC
C a
δB
B
F
P FN 1 = FN 2 = 2 FN 1l Fl δ A = ∆l1 = = EA 2 EA FN 2 l Fl δ B = ∆l 2 = = 2 EA 4 EA
由⑵式与⑷式联立解得得: 式与⑷式联立解得得: ⑷
B FB
F FA = FN AC = 3 2F FB = FN BC = 3
×
装配应力 ⒈ 装配应力 超静定结构,由于构件制造误差, 超静定结构,由于构件制造误差,在装配时构件内部会 产生装配应力。静定结构不会产生装配应力。 产生装配应力。静定结构不会产生装配应力。 装配应力 装配应力 静定结构
⑷
FN 1 + 2 FN 2 − 2 F = 0
FN 2 = 2 FN 1
解得: 解得:
}
FN 1
2P 4P = , FN 2 = 5 5
×
解拉压超静定问题的方法和步骤: 解拉压超静定问题的方法和步骤: ⑴画变形的几何图; 画变形的几何图; ⑵根据变形图,建立变形的几何方程; 根据变形图,建立变形的几何方程; ⑶画受力图,其中杆件的轴力应根据变形图来画,即变 画受力图,其中杆件的轴力应根据变形图来画, 形为拉伸杆件的轴力按拉力画, 形为拉伸杆件的轴力按拉力画,变形为压缩杆件的轴力按压 力画; 力画; ⑷根据受力图,建立平衡方程; 根据受力图,建立平衡方程; ⑸根据虎克定律,建立物理方程; 根据虎克定律,建立物理方程; ⑹将物理方程代入几何方程得补充方程; 将物理方程代入几何方程得补充方程; ⑺联立平衡方程与补充方程求解未知量。 联立平衡方程与补充方程求解未知量。
×
求图示结构中刚性杆AB 中点 的位移δC。 中点C 例4 求图示结构中刚性杆
① 2EA EA ②
解:由平衡方程得 l
A
δA
a δC
C a
δB
B
F
P FN 1 = FN 2 = 2 FN 1l Fl δ A = ∆l1 = = EA 2 EA FN 2 l Fl δ B = ∆l 2 = = 2 EA 4 EA
第三章北航 材料力学 全部课件 习题答案
![第三章北航 材料力学 全部课件 习题答案](https://img.taocdn.com/s3/m/ff8103d650e2524de5187ea9.png)
δ
Fl 4 EA
3-9
图示刚性横梁 AB,由钢丝绳并经无摩擦滑轮所支持。设钢丝绳的轴向刚度(即
产生单位轴向变形所需之力)为 k,试求当载荷 F 作用时端点 B 的铅垂位移。
题 3-9 图 解:载荷 F 作用后,刚性梁 AB 倾斜如图(见图 3-9)。设钢丝绳中的轴力为 FN ,其总伸长 为 Δl 。
图 3-9 以刚性梁为研究对象,由平衡方程 M A 0 得
FN a FN (a b) F (2a b)
由此得
FN F
由图 3-9 可以看出,
y (2a b)
Δl Δy1 Δy2 a (a b) (2a b)
可见,
Δy Δl
联立求解方程(a)与(b),得
(b)
tanθ
由此得
FN1 FN2 (16 8) 103 0.1925 3 ( FN1 FN2 ) 3 (16 8) 103
θ 10.89 10.9
F
FN1 FN2 (16 8) 103 N 2.12104 N 21.2kN 2sinθ 2sin10.89
-4 -4 2 变分别为ε ε 1 = 4.0×10 与 2 = 2.0×10 。已知杆 1 与杆 2 的横截面面积 A1= A2=200mm ,弹性
模量 E1= E2=200GPa。试确定载荷 F 及其方位角 之值。
题 3-5 图 解:1.求各杆轴力
FN1 E1ε1 A1 200109 4.0 104 200106 N 1.6 104 N 16kN FN2 E2 ε2 A2 200109 2.0 104 200106 N 8 103 N 8kN
工程力学(材料力学)1_3轴向拉伸与压缩
![工程力学(材料力学)1_3轴向拉伸与压缩](https://img.taocdn.com/s3/m/f43d5f5bb9f3f90f76c61bce.png)
BC
D
PB PC N3 C
PC N4
5P +
–
PD D
PD D
PD
P
x
P8-9 例题
A 3F
1
2
B
C
F
2F
1
2
1
2
3F
F
1
2
3.应力
应力的表示:
(1)平均应力
(A上平均内力集度)
p平均
ΔP ΔA
P
M
A
(2)实际应力 (M点内力集度)
lim p
ΔP dP
ΔA0 ΔA dA
应力分解
垂直于截面的应力称为“正应力” (Normal Stress);
平杆BC为2杆)用截面法取节点B为研究对象
Fx 0 Fy 0
N1 cos 45 N2 0 N1sin 45 P 0
N1 28.3kN (拉力) N2 20kN (压力)
45° B C
p
N1
y
N2 45° B x
P
(2)计算各杆件的应力
1
N1 A1
28.3103 202 106
轴力的正负规定: N 与外法线同向,为正轴力(拉力); N
N与外法线反向,为负轴力(压力)。 N
轴力图—— N (x) 的图象表示。
N N>0 N
N<0
意 (1)轴力与截面位置的变化关系,较直观;
义
(2)最大轴力的数值及其所在面的位置,即危险截面位
置,为强度计算提供依据。 N
P
+
x
例1 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 1P 的力,方向如图,试画出杆的轴力图。
材料力学轴向拉伸与压缩第三讲
![材料力学轴向拉伸与压缩第三讲](https://img.taocdn.com/s3/m/bd80aa74cec789eb172ded630b1c59eef8c79a8f.png)
FN2
x
A
F
B
DC
1
3
2
A
A'
物理及受力方面都是对称,所以变形后A点将沿铅垂方向下移。
变形协调条件是变形后三杆仍铰结在一起。
4
B
DC
1
3
2
A
F 变形几何方程为 物理方程为
得到:
(3)补充方程
B
DC
1
3
2
A
1 32
A
Δl1
Δl3
A'
A'
Δl1 Δl3 cos
Δl1
FN1l EA
Δl3
FN3l cos
10
§2-8-2 温度应力和装配应力
1.装配应力
B
图示杆系,若3杆尺寸有
1
微小误差,则在杆系装配好 后,各杆将处于图中位置,因 而产生轴力。 3杆旳轴力为 拉力,1、2杆旳轴力为压力. 这种附加旳内力就称为装配
内力. 与之相相应旳应力称
为装配应力。
D
3
A
A
C
2
l
11
Δl3 代表杆3旳伸长
B
Δl1 代表杆1或杆2旳缩短
95.3MPa
bs
综上,键满足强度要求.
37
例题2-15 一销钉连接如图所示,
已知外力 F=18kN,被连接旳构件
A 和 B 旳厚度分别为 =8mm 和
1=5mm ,销钉直径 d=15mm ,
销钉材料旳许用切应力为
[] = 60MPa ,许用挤压应力为
d
[bs]= 200MPa .试校核销钉旳强度.
Δl2
FN2l EA
得到补充方程
2材料力学轴向拉压.ppt课件
![2材料力学轴向拉压.ppt课件](https://img.taocdn.com/s3/m/eccfc98ba98271fe900ef9ac.png)
斜FA 布p纵α上切截=。截应c±面面力o4A5上FA上成so的截对p面全A dFA应Ac力mmm oia 可nxp9s i分0AAn 4α45解—A —59 ——为d0 c2 正横 斜Ao20 截截应s面面p力面面9 和积A 积0 4 4切550 应2F2力
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
材料力学课件_轴向拉伸和压缩
![材料力学课件_轴向拉伸和压缩](https://img.taocdn.com/s3/m/ae76df325727a5e9856a614d.png)
用 截 面 法 求 出 各 段 轴 力
4
N4
P4
③根据轴力图的作法即可画出轴力图
N
单位:KN
x
0
选一个坐标系,用其横坐标 表示横截面的位置,纵坐标 表示相应截面上的轴力。 拉力绘在x轴的上侧, 压力绘在x轴的下侧。
思考题
在画轴力图之前,能否使用理论力学中学过 的力的平移原理将力平移后再作轴力图?
max
应力正负号规定
N max A
规定拉应力为正,压应力为负(同轴力相同) 。
2、公式(2-1)的应用范围:
①外力的合力作用必须与杆件轴线重合
②不适用于集中力作用点附近的区域
③当杆件的横截面沿轴线方向变化缓
慢,而且外力作用线与杆件轴线重 合时,也可近似地应用该公式。
如左图
N x x A x
1 2 3
4
0 R 10KN
② 用截面法求AB段轴力,保留1-1截面左部
X 0
N1 R 0
N1 10NK
同理可求出BC、CD、DE段内的轴力分别为:
N 2 R P1 50KN 拉力 N 4 20KN 拉力
N 3 P3 P4 5KN 压力
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由 杆件处于平衡状态可知,内力合力的作用线也必 然与杆件的轴线相重合。
(2)定义:上述内力的合力N就称为轴力 (其作用线因与杆件的轴线重合而得名)。
2.轴力正负号规定:
①规定引起杆件拉伸时的轴力为正,即拉力为正;
F
}F
F/2 F/2
F/2 F/2
} F
F
材料力学_轴向拉伸和压缩
![材料力学_轴向拉伸和压缩](https://img.taocdn.com/s3/m/e17c319fa76e58fafbb00300.png)
§ 2-3拉(压)杆截面上的应力
例2.2 图2.7(a)所示三角托架中,AB杆为圆截面钢 杆,直径d =30mm;BC杆为正方形截面木杆,截面边 长a=100mm。已知F =50kN,试求各杆的应力。
A
σ FN
FNAB 2F 100kN
A
FNBC - 3F -86.6kN
F NAB
30o
➢应力的正、负号约定:正应力 以拉应力
为正,压应力为负;切应力 以使所作用的微段绕其内部任
意点有顺时针方向转动趋势者为正,反之为负。
➢应力的单位:帕斯卡 (pa)、兆帕(Mpa)、吉帕(Gpa) 1帕=1牛顿 / 米2 ( N/m2 ) 1MPa =1N/mm2 = 106 Pa 1GPa = 109 Pa 注意:1、在谈到应力时,必须指明应力所在的平面及点的位置; 2、没有特别说明的情况下,提到应力一般指正应力和切应力。
m
图。
m F
平衡 对分离体列平衡方程
Fx 0
m
m FN
FN = F
m
F FN
F
§2-2 轴力、轴力图
二、轴力的符号约定
FN
➢轴力方向以使所作用的杆微段拉伸为正;
压缩为负。即拉为正,压为负。 (正号 轴力的指向是背离截面的,负号轴力的
FN
指向则是指向截面的)。
三、轴力图
FN F N > 0 FN F N < 0
内力是由外力引起的,仅表示某截面上分布内力向 截面形心简化的结果。而构件的变形和强度不仅取决 于内力,还取决于构件截面的形状和大小以及内力在 截面上的分布情况。为此,需引入应力的概念。
F
FF
F
一、应力的概念 ——所谓应力是指截面上某点处单位面积内的分 布内力,即内力集度。
《材料力学》第三章 轴向拉压变形
![《材料力学》第三章 轴向拉压变形](https://img.taocdn.com/s3/m/61aea60902020740be1e9b90.png)
-3(共 4 页)
第三章 轴向拉压变形
*四、温度应力、装配应力 一)温度应力:由温度引起杆变形而产生的应力(热应力) 。 温度引起的变形量—— L tL 1、静定问题无温度应力。 2、超静定问题存在温度应力。 二)装配应力——预应力、初应力:由于构件制造尺寸产生的制造误差,在装配时产生变形而引起的应 力。 1、静定问题无装配应力 2、超静定问题存在装配应力。 轴向拉压变形小结 一、拉压杆的变形(重点) 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 3、横向变形系数(泊松比) : 4、变形——构件在外力作用下或温度影响下所引起的形状尺寸的变化。 5、弹性变形——外力撤除后,能消失的变形。 6、塑性变形——外力撤除后,不能消失的变形。 3、横向变形系数 7、位移——构件内的点或截面,在变形前后位置的改变量。 8、正应变——微小线段单位长度的变形。
4、求变形: L
FN L EA
LAB
FNAB LAB 240 3.4 104 2.67(m m) EAAB 2.114.54
LCD 0.91mm LEF 1.74mm
5、求位移,变形图如图
LGH 1.63mm
D
LEF LGH DG LGH 1.70 mm EG
第三章 轴向拉压变形
第三章
一、概念 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 二、分析两种变形
轴向拉压变形
§3—1 轴向拉压杆的变形
b
L F F
b1
L1
1、轴向变形:Δ L=L1-L ,
L L F L (2) 、在弹性范围内: L N A
(1) 、轴向正应变线应变:
第三章 轴向拉压变形
*四、温度应力、装配应力 一)温度应力:由温度引起杆变形而产生的应力(热应力) 。 温度引起的变形量—— L tL 1、静定问题无温度应力。 2、超静定问题存在温度应力。 二)装配应力——预应力、初应力:由于构件制造尺寸产生的制造误差,在装配时产生变形而引起的应 力。 1、静定问题无装配应力 2、超静定问题存在装配应力。 轴向拉压变形小结 一、拉压杆的变形(重点) 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 3、横向变形系数(泊松比) : 4、变形——构件在外力作用下或温度影响下所引起的形状尺寸的变化。 5、弹性变形——外力撤除后,能消失的变形。 6、塑性变形——外力撤除后,不能消失的变形。 3、横向变形系数 7、位移——构件内的点或截面,在变形前后位置的改变量。 8、正应变——微小线段单位长度的变形。
4、求变形: L
FN L EA
LAB
FNAB LAB 240 3.4 104 2.67(m m) EAAB 2.114.54
LCD 0.91mm LEF 1.74mm
5、求位移,变形图如图
LGH 1.63mm
D
LEF LGH DG LGH 1.70 mm EG
第三章 轴向拉压变形
第三章
一、概念 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 二、分析两种变形
轴向拉压变形
§3—1 轴向拉压杆的变形
b
L F F
b1
L1
1、轴向变形:Δ L=L1-L ,
L L F L (2) 、在弹性范围内: L N A
(1) 、轴向正应变线应变:
渔用材料力学-轴向拉压变形3-1
![渔用材料力学-轴向拉压变形3-1](https://img.taocdn.com/s3/m/9b3aecc89b89680203d825d7.png)
渔用材料力学
1、轴向拉伸或压缩(axial tension and compression)
F
F
F
F
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。
轴向拉伸:杆的变形是轴向伸长,横向缩短。
轴向压缩:杆的变形是轴向缩短,横向变粗F。
P1=2kN,P2=3kN,P3=1kN, 试求杆各段的轴力,并画轴力图。
P1
1
P2 2
P3
1
P1
Fx 0
F N1P1 0
F N1 P1 2KN
2
FN1
x
P3
FN2
Fx 0
F N 2P3 0
F N 2 P3 1KN
1
P1
1
F N1 2KN
P2 2
P3
F
轴向载荷:作用线沿杆件轴线的载荷。
2、轴力(axial force)
由于杆件产生轴向拉伸或压缩变形而引起的横截面上的,作用线与杆 的轴线一致的内力称为轴力,用FN表示。
轴力的符号规定:
Hale Waihona Puke 轴力的正负号:与该截面的外法线方向一致的为正;相反为负。 轴力以拉为正,以压为负。
FN FN
+
F
大小计算:
同一位置处左、右侧截面上内力分 量必须具有相同的正负号。
2
F N 2 1KN
FN
2KN
x
1KN
例2 已知F=50KN,求截面1、2 的轴力,并画轴力图
50kN
50kN
1
1
3m
3m
2
2
4m
4m
1、轴向拉伸或压缩(axial tension and compression)
F
F
F
F
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。
轴向拉伸:杆的变形是轴向伸长,横向缩短。
轴向压缩:杆的变形是轴向缩短,横向变粗F。
P1=2kN,P2=3kN,P3=1kN, 试求杆各段的轴力,并画轴力图。
P1
1
P2 2
P3
1
P1
Fx 0
F N1P1 0
F N1 P1 2KN
2
FN1
x
P3
FN2
Fx 0
F N 2P3 0
F N 2 P3 1KN
1
P1
1
F N1 2KN
P2 2
P3
F
轴向载荷:作用线沿杆件轴线的载荷。
2、轴力(axial force)
由于杆件产生轴向拉伸或压缩变形而引起的横截面上的,作用线与杆 的轴线一致的内力称为轴力,用FN表示。
轴力的符号规定:
Hale Waihona Puke 轴力的正负号:与该截面的外法线方向一致的为正;相反为负。 轴力以拉为正,以压为负。
FN FN
+
F
大小计算:
同一位置处左、右侧截面上内力分 量必须具有相同的正负号。
2
F N 2 1KN
FN
2KN
x
1KN
例2 已知F=50KN,求截面1、2 的轴力,并画轴力图
50kN
50kN
1
1
3m
3m
2
2
4m
4m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Δ
F
f
o
d
A
d
•弹性体功能原理:Vε W ,
f df
• 拉压杆应变能
2 FN l V ε 2 EA
Page28
BUAA
MECHANICS OF MATERIALS
*非线性弹性材料
F
f
•外力功计算
W fd
0
F W 2
•功能原理是否成立? •应变能如何计算计算?
dx
dz
dy
x
•单向受力体应变能
V v dxdydz dxdydz 2E
2
z
单向受力
Page30
BUAA
MECHANICS OF MATERIALS
2 dxdydz •单向受力体应变能 V v dxdydz 2E FN ( x ) •拉压杆 (x)= , dydz A A 2 FN ( x ) V dx (变力变截面杆) y 2 EA( x ) l 2 FN l dx (常应力等直杆) V dz 2 EA •纯剪应变能密度 dy dxdz dy dxdydz dVε 2 2 2 1 2 z v G 纯剪切
BUAA
MECHANICS OF MATERIALS
第三章
§3-1 §3-2 §3-3 §3-4
§3-5 §3-6
轴向拉压变形
引言 拉压杆的变形与叠加原理 桁架的节点位移 拉压与剪切应变能
简单拉压静不定问题 热应力与预应力
Page1
BUAA
MECHANICS OF MATERIALS
本章主要研究:
Page7
BUAA
MECHANICS OF MATERIALS
泊松比研究简史 1829年,泊松用纳维—柯西方法讨论板的平衡问题时 指出,各向同性弹性杆受到单向拉伸,产生纵向应 变,同时会联带产生横向收缩,此横向应变为-x, 并证明=1/4。纳维—柯西—泊松的单常数理论 许多人进行试验来验证泊松比为1/4的理论结论 维尔泰姆(1848):试验结果表明接近1/3; 基尔霍夫(1859):测出了三种钢材和两种黄铜, 1/4; 科尔纽(1869):光学干涉法测出玻璃=0.237; 1879年,马洛克测出了一系列材料的泊松比,指出泊松 比是独立的材料常数,否定了单常数理论。
1
2
45
C
A2
A
Fl Ax AA2 l2 EA
A1
l1 2 2Fl Fl Ay l 2 cos 45 EA EA 2 2 1 Fl
A
EA
Page21
BUAA
MECHANICS OF MATERIALS
例:ABC刚性杆,求节点C的位移。 解:先计算杆1内力 FN 1 与伸长 l1
l
FN x dx EA
Байду номын сангаас
qxdx EA
总伸长为
qxdx ql 2dx l d l 0 0 EA 2 EA
Page17
BUAA
MECHANICS OF MATERIALS
§3-3
B
1
桁架的节点位移
解:1、轴力与两杆伸长(缩短) 由节点A的平衡
例:已知 E1 A1 E2 A2 EA, l2 l ,求桁架节点A的水平与铅垂位移
E
Page4
BUAA
MECHANICS OF MATERIALS
拉压杆的轴向变形与胡克定律
F
b
b1
l l1
F
•轴向变形 l l1 -l (伸长为正) 胡克定律
•横向变形 b b1 b
E ( p )
FN , A
l
l
FN l E A l
o
Vε W ?
Page29
BUAA
MECHANICS OF MATERIALS
二、拉压与剪切应变能密度 应变能密度:单位体积内的应变能,用 v 表示 •单向受力应变能密度
y
dxdz dy dxdydz dVε 2 2 2 1 2 v E
2 2E 2
F1
F2
l
F1
O l1
O
l2
l
O
l1
l *
l
Page16
BUAA
MECHANICS OF MATERIALS
例:已知 q , l , E , A ,求 l ( q 为常量)
q
解:距端点x处截面的轴力为
l
FN x qx
dx 微段伸长
FN x
q
x
dx
l
d l
Page15
BUAA
MECHANICS OF MATERIALS
材料线性问题
F F
l * l1 l2 , 叠加原理成立。
F
F1 F2
F1
F2
l1
l O
F1
O
l2
l
O
l1
l2
l *
l
材料非线性问题
F F
l * l1 l2 , 叠加原理不成立。
F
F1 F2
FN l l EA
拉压刚度
适用范围:线弹性体,比例极限范围内
Page5
BUAA
MECHANICS OF MATERIALS
二、拉压杆的横向变形与泊松比
b
F
b1
l l1
F
b b
横向正应变
b b1 b
且异号。 试验表明:对传统材料,在比例极限内,
定义:
作业:习题3-4、3-10(a)
Page26
BUAA
MECHANICS OF MATERIALS
§3-4
拉压与剪切应变能
外力功、应变能与功能原理
F
F
•外力功( W ):构件变形时,外力在相应位移上做的功。 •应变能( V ):构件因变形贮存能量。 •弹性体功能原理:
Vε W (根据能量守恒定律)
轴向拉压变形分析的基本原理
简单拉压静不定问题分析
热应力与预应力分析
Page2
BUAA
MECHANICS OF MATERIALS
§3-1
引言
1 2 3 4 5
A
A
F
F
思考:为什么要研究变形? 下述问题是否与变形(小变形)相关?
•A点位移? •各杆内力? •各杆材料不同,温度变化时内力?
Page3
BUAA
MECHANICS OF MATERIALS
§3-2
拉压杆的变形与叠加原理
一、拉压杆的轴向变形与胡克定律 历史回顾: “胡克定律” 1678年由Robert Hooke提出。 Hooke 是伦敦皇家学会第一任会长(1662), 他对弹性体作了许多实验。
单向应力状态下,比例极限内,正应力 与正应变成正比-胡克定律
BUAA
MECHANICS OF MATERIALS
讨论:
FN i li •阶梯形杆: l i 1 E i Ai
n-总段数 FNi-杆段 i 轴力
•变截面变轴力杆
FN ( x )dx d( l ) EA( x )
n
FN ( x) l dx l EA(x )
Page13
BUAA
MECHANICS OF MATERIALS
例:求节点A的位移
B
B
A F 轴力 变形 变形 C
A
C 计算 外力 平移
变形图
转动
Page24
BUAA
MECHANICS OF MATERIALS
例:求节点AB的相对位移
D F A C B F A
D B
C
Page25
BUAA
MECHANICS OF MATERIALS
F F d D
F 4F 解: E AE D 2 d 2 E
4 F D2 d 2 E
du=’ds
先求内周长,设ds 弧长改变量为du, ’=du/ds
u
d
0
ds 0
d
4 F 4 Fd ds ( D2 d 2 )E ( D 2 d 2 )E
4 Fd d d 2 2 ( D d )E
u
D D
4 FD D2 d 2 E
Page11
BUAA
MECHANICS OF MATERIALS
三、多力杆的变形与叠加原理 例:已知E,A1,A2,求总伸长
A1
A2
l2
l
FN 1 FN 2 F , FN 3 F
E G 2(1 )
Page9
BUAA
MECHANICS OF MATERIALS
例:已知E,D,d,F,求D和d的改变量。
F F D
d
思考:当圆管受拉时,外径 减小,内径增大还是减小?
Page10
BUAA
MECHANICS OF MATERIALS
例:已知E,D,d,F,求D和d的改变量。
0 0.5 ,
——泊松比
Page6
BUAA
MECHANICS OF MATERIALS
泊松(1781-1840)是法国数学家、物理学家 和力学家。1798年入巴黎综合工科学校, 成为拉格朗日、拉普拉斯的得意门生。 1802年任巴黎理学院教授(21岁),1812 年当选为法国科学院院士(31岁),1816年 应聘为索邦大学教授,1826年被选为彼得 堡科学院名誉院士.1837年被封为男爵。 材料泊松比由他最先计算此值而得名。在数学中以他命名的 有:泊松定理、泊松公式、泊松方程、泊松分布、泊松过程、 泊松积分、泊松级数、泊松变换、泊松代数、泊松比、泊松 流、泊松核、泊松括号、泊松稳定性、泊松积分表示、泊松 求和法……等。