《机械原理》复习资料-基础部分
机械原理考试复习提纲
机械原理复习绪论部分基本内容:1.机械系统的概念及其组成;2.运动副:低副:通过面接触的运动副,如转动副、移动副。
高副:通过点或线接触的运动副,如齿轮副、凸轮副。
3.机器、机构及其作用典型考题:1.由机械原理知识可知,手表应属于___A___。
A 机器B 机构C通用零件 D 专用零件2. ____ B _是构成机械的最小单元,也是制造机械时的最小单元。
A.机器B.零件C.构件D.机构。
3.平面运动副按其接触特性,可分为___B___。
A移动副与高副 B 低副与高副 C 转动副与高副 D 转动副与移动副4. 机构中的构件是由一个或多个零件所组成,这些零件间 B 产生相对运动。
A.可以 B.不能 C.不一定能5 .机构是由构件和零件两个要素组成。
(运动副)(F )6.运动副是机构中两构件直接接触的可动联接。
(T )第一章:平面机构具有确定运动的条件基本内容:1.平面机构具有确定运动的条件(1)可动性;(2)机构原动件的数目必须等于机构的自由度数目。
2.机构自由度的计算(主要要考虑复合铰链、局部自由度、虚约束)。
典型考题:概念题1、机构的自由度就是构件的自由度。
(F )2、一切自由度不为1的机构,其各构件之间的相对运动是不确定的。
( T )不具有确定的运动n = 7,PL = 9;Ph=2F = 3n-2PL - Ph= 3×7-2×9-2 = 1B处为局部自由度;E处虚约束; H处为复合铰链具有确定的运动n = 6,PL = 8;Ph=1F = 3n-2PL - Ph= 3×6-2×8-1= 1B处为局部自由度;DE、J处虚约束; H处为复合铰链具有确定的运动n = 5,PL = 6;Ph=2F = 3n-2PL - Ph= 3×5-2×6-2 = 1具有确定的运动n = 4,PL = 4;Ph=2F = 3n-2PL - Ph= 3×4-2×4-2 = 2具有确定的运动,如果在凸轮上再给一个输入作为原动件,可以使系统具有确定的运动.第二章平面连杆机构基本内容:1.四杆机构的基本形式2.判断四杆机构的类型和方法;3.平面四杆机构具有急回特性的条件;4.最小传动角的计算,学会判断曲柄的转向;5.机构的“死点”问题;5.平面机构的设计,重点按行程速度变化系数设计。
机械原理复习资料(doc 7页)
一、单项选择题1. 两构件组成运动副必须具备的条件是两构件( )。
A. 相对转动或相对移动B. 都是运动副C. 相对运动恒定不变 D .直接接触且保持一定的相对运动2. 高副低代的条件是( )。
A. 自由度数不变B. 约束数目不变C. 自由度数不变和瞬时速度、瞬时加速度不变3.曲柄滑块机构共有( )瞬心。
A .4个B .6个 C. 8个 D. 10个4. 两构件直接接触,其相对滚动兼滑动的瞬心在( )。
A. 接触点B. 接触点的法线上C. 接触点法线的无穷远处D. 垂直于导路的无穷远处5.最简单的平面连杆机构是( )机构。
A .一杆B .两杆 C. 三杆 D. 四杆6. 机构的运动简图与( )无关。
A. 构件数目B. 运动副的数目、类型C. 运动副的相对位置D. 构件和运动副的结构7.机构在死点位置时( )。
A .γ=90°B .γ=45° C. α=0° D. α=90°8. 曲柄摇杆机构以( )为原动件时,机构有死点。
A. 曲柄B. 连杆C.摇杆D. 任一活动构件9.凸轮的基圆半径是指( )半径。
A .凸轮转动中心至实际轮廓的最小B .凸轮转动中心至理论轮廓的最小C. 凸轮理论轮廓的最小曲率 D .从动件静止位置凸轮轮廓的10. 从动件的推程采用等速运动规律时,在( )会产生刚性冲击。
A. 推程的始点B. 推程的中点C. 推程的终点D. 推程的始点和终点11.一对齿轮在啮合过程中,啮合角的大小是( )变化的。
A. 由小到大再逐渐变小 B .由大到小逐渐变小C. 先由大到小再到大 D .始终保持定值,不12. 齿轮机构安装中心距等于标准中心距时,节圆直径与分度圆相比较,结论是( )。
A. 节圆直径大B. 分度圆直径大C. 两圆直径相等D. 视具体情况而定13.在斜齿轮模数计算中,下面正确的计算式为( )。
A .βcos t n m m = B. βsin t n m m =C .αcos t n m m =D βcos n t m m =14. 标准直齿圆柱齿轮机构的重合度ε值的范围是( )。
机械原理基础知识点总结,复习重点
机械原理知识点总结第一章平面机构的结构分析3一. 基本概念31. 机械: 机器与机构的总称。
32. 构件与零件33. 运动副34. 运动副的分类35. 运动链36. 机构3二. 基本知识和技能31. 机构运动简图的绘制与识别图32.平面机构的自由度的计算及机构运动确定性的判别33. 机构的结构分析4第二章平面机构的运动分析6一. 基本概念:6二. 基本知识和基本技能6第三章平面连杆机构7一. 基本概念7(一)平面四杆机构类型与演化7二)平面四杆机构的性质7二. 基本知识和基本技能8第四章凸轮机构8一.基本知识8(一)名词术语8(二)从动件常用运动规律的特性及选用原则8三)凸轮机构基本尺寸的确定8二. 基本技能9(一)根据反转原理作凸轮廓线的图解设计9(二)根据反转原理作凸轮廓线的解析设计10(三)其他10第五章齿轮机构10一. 基本知识10(一)啮合原理10(二)渐开线齿轮——直齿圆柱齿轮11(三)其它齿轮机构,应知道:12第六章轮系14一. 定轴轮系的传动比14二.基本周转(差动)轮系的传动比14三.复合轮系的传动比15第七章其它机构151.万向联轴节:152.螺旋机构163.棘轮机构164. 槽轮机构166. 不完全齿轮机构、凸轮式间歇运动机构177. 组合机构17第九章平面机构的力分析17一. 基本概念17(一)作用在机械上的力17(二)构件的惯性力17(三)运动副中的摩擦力(摩擦力矩)与总反力的作用线17二. 基本技能18第十章平面机构的平衡18一、基本概念18(一)刚性转子的静平衡条件18(二)刚性转子的动平衡条件18(三)许用不平衡量及平衡精度18(四)机构的平衡(机架上的平衡)18二. 基本技能18(一)刚性转子的静平衡计算18(二)刚性转子的动平衡计算18第十一章机器的机械效率18一、基本知识18(一)机械的效率18(二)机械的自锁19二. 基本技能20第十二章机械的运转及调速20一. 基本知识20(一)机器的等效动力学模型20(二)机器周期性速度波动的调节20(三)机器非周期性速度波动的调节20二. 基本技能20(一)等效量的计算20(二)飞轮转动惯量的计算20第一章平面机构的结构分析一. 基本概念1. 机械: 机器与机构的总称。
机械原理复习重点
• 2、变位的基本原理
• 3、变位齿轮与标准齿轮的齿形比较
• 4、变位齿轮啮合传动
•
传动类型--优缺点
第十章 齿轮机构
• 八、平行轴斜齿圆柱齿轮传动 • 正确啮合条件、 尺寸计算、优缺点--与直齿轮
的关系>>当量齿轮含义及其作用、当量齿数 • 九、其他齿轮传动 • 参照斜齿轮复习
轮系
• 重点掌握是各种轮系传动比的计算方法,特 别是复合轮系传动比的计算;
• 6、典型机械的效率和自锁条件分析
– 斜面、螺纹等
2019/8/31
13
第六章 机械的平衡
• 掌握刚性转子平衡设计的方法
– 静平衡、动平衡适用的场合、平衡原理、平衡条件
• 了解平面机构平衡设计的方法
2019/8/31
14
第七章 机械的运转及其速度波动的调节
• 1、真实运动
– 等效动力学模型的建立
•
2019/8/31
21
2019/8/31
22
连杆机构的传力性能
Fn γ C
F • 压力角α:作用于输
α
Ft vc
出件上的力与力作 用点速度所夹的锐
角。
B
• α越大,传力性越差
• 传动角γ:压力角的 余角
A
D
• 设计要求: γmin≥[γ]
2019/8/31
23
死点:传动角为0的位置
死点和机构的极位是机构的同一个位置,只 不过原动件不同。死点是机构运动的转折点
2019/8/31
24
第九章 凸轮机构
• 一、凸轮机构的应用、命名和分类 • 二、凸轮机构常见的运动规律 • >>>冲击特性含义
(完整word版)《机械原理》基础知识点
《机械原理》基础知识点1构件:具有确定运动的单元体组成的,这些运动单元体称为构件零件:组成构件的制造单元体运动副:两构件直接接触的可动联接构件的自由度:构件的独立运动数目运动链:若干个构件通过运动副所构成的系统机架:固定的构件原动件:机构中做独立运动的构件从动件:机构中除原动件外其余的活动构件运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构2机构运动简图:表示机构中各构件间相对运动关系的简单图形。
机构运动简图必须与原机械具有完全相同的运动特性。
示意图:只为了表明机械的结构,不按比例来绘制简图3约束和自由度的关系:增加一个约束,构件就失去一个自由度4机构具有确定运动的条件:机构自由度等于机构的原动件数5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心绝对瞬心:运动构件上瞬时绝对速度为零的点相对瞬心:两运动构件上瞬时绝对速度相等的重合点6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。
7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。
8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。
自锁条件:η≤0 机械发生自锁9连杆机构(低副机构):若干个构件通过低副联接所组成的机构10平面四杆机构基本形式:铰链四杆机构11曲柄:在两连杆中能做整周回转机构摇杆:只能在一定角度范围内摆动的构件周转副:将两构件能做360°相对转动的转动副摆动副:不能将两构件能做360°相对转动的转动副12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和2连架杆和机架中有一杆是最短杆13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构;14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构无急回运动:对心曲柄滑块机构和双摇杆机构15死点位置:压力角为90°,传动角为0°。
机械原理复习
机械原理复习机械原理是机械工程专业的重要基础课程,它是研究机械运动和力的学科。
在学习机械原理的过程中,我们需要掌握一些基本概念和原理,以便能够应用到实际工程中。
本文将对机械原理的一些重要知识点进行复习,希望能够帮助大家更好地理解和掌握这门课程。
首先,我们来复习一下机械原理中的力学基础知识。
在力学中,力是导致物体产生运动、形变或者停止的原因。
力的大小通常用牛顿(N)作为单位,方向则是力的作用方向。
此外,力的作用点也非常重要,它决定了物体受力的效果。
力的合成和分解是力学中的重要内容,它们可以帮助我们分析复杂的力的作用情况。
其次,我们需要复习一些关于机械运动的知识。
机械运动是指物体在空间中的运动状态,它可以分为平动和转动两种基本形式。
在机械原理中,我们需要学习如何描述和分析物体的运动状态,包括位移、速度、加速度等概念。
同时,我们还需要了解一些常见的机械运动形式,如直线运动、曲线运动、往复运动、旋转运动等。
另外,机械原理中还涉及到一些重要的力学定律和原理。
例如,牛顿运动定律是研究物体运动规律的基础,它包括惯性定律、动量定律和作用-反作用定律。
此外,能量守恒定律和动量守恒定律也是机械原理中的重要内容,它们可以帮助我们分析和解决实际工程中的问题。
最后,我们需要复习一些机械原理中的重要工程应用。
例如,机械传动是机械工程中常见的问题,它涉及到齿轮、带传动、链传动等内容。
此外,机械结构分析、机械振动、机械制图等内容也是机械原理中的重要应用领域。
综上所述,机械原理是机械工程专业的重要基础课程,它涉及到力学基础知识、机械运动、力学定律和原理以及重要工程应用。
通过对这些知识点的复习,我们可以更好地理解和掌握机械原理这门课程,为日后的学习和工作打下坚实的基础。
希望本文能够对大家有所帮助,谢谢阅读!。
机械原理基础复习题(含答案)
机械原理基础复习题(含答案)一、单选题(共70题,每题1分,共70分)1、周转轮系传动比的计算通常采用()。
:A、反转法B、阻抗力法C、摩擦力法D、正转法正确答案:A2、()的自由度等于2,两个中心轮都运动,给定2个原动件机构的运动才是确定的。
:A、差动轮系B、定轴轮系C、行星轮系D、周转轮系正确答案:A3、一对标准齿轮,其安装距离大于标准安装中心距时,压力角()。
:A、不一定B、变大C、变小D、不变正确答案:B4、平面机构自由度的计算公式为F=3n-2PL-PH,其中n为活动构件个数,PL为低副个数,PH为()个数。
:A、活动构件B、低副C、高副D、机架正确答案:C5、对于满足杆长条件的四杆机构,若最短杆为机架,为()。
:A、曲柄滑块机构B、曲柄摇杆机构C、双摇杆机构D、双曲柄机构正确答案:D6、2K-H型周转轮系是具有()个太阳轮()个行星架的周转轮系。
:A、2、2B、1、1C、1、2D、2、1正确答案:D7、齿轮轮廓是()齿廓,此齿廓的提出已有近两百多年的历史,目前还没有其它曲线可以替代。
主要在于它具有很好的传动性能,而且便于制造、安装、测量和互换使用等优点。
:A、抛物线B、渐开线C、直线D、五次曲线正确答案:B8、()是指由于摩擦的原因,机构有效驱动力总是小于等于其摩擦力,使得机构无法运动的现象。
这种机构的自由度大于零。
:A、自由度F小于等于零B、死点C、自锁正确答案:C9、()机构用来传递任意两轴间的运动和动力,是机械中应用最广泛的一种传动机构。
:A、齿轮B、连杆C、间歇运动D、凸轮正确答案:A10、()接触面积大,表面接触应力小,润滑方便,不易磨损,制造较为容易,但能实现的相对运动少,适用于载荷较大、运动不是很复杂的场合。
:A、空间副B、高副C、平面副D、低副正确答案:D11、一对标准齿轮,模数为4,齿数分别为20,80,则其顶隙为()mm。
:A、2B、3C、4D、1正确答案:D12、对于满足杆长条件的四杆机构,最短杆的邻边为机架,得到()。
机械原理全部知识点总结
机械原理全部知识点总结一、牛顿定律1. 牛顿第一定律:物体在外力作用下静止或匀速直线运动,除非有外力作用,否则不会改变其状态。
2. 牛顿第二定律:物体受力作用时,其加速度与作用力成正比,与物体质量成反比,方向与力的方向相同。
3. 牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在不同物体上。
二、运动学1. 位移、速度和加速度的定义及关系2. 直线运动和曲线运动的描述和分析3. 相对运动和相对运动问题的解决方法4. 圆周运动和角速度、角加速度的计算5. 瞬时速度和瞬时加速度的概念及计算方法三、动力学1. 动量和动量定理:动量的定义和计算方法,动量守恒定律的应用2. 动能和动能定理:动能的定义和计算方法,动能定理的应用3. 动力和动力定理:动力的定义和计算方法,动力定理的应用4. 质点受力分析:引力、弹力、摩擦力等力的计算和分析5. 动能、动量和功率的关系:能量守恒定律和功率的计算方法四、静力学1. 平衡条件和平衡方法:受力平衡条件的表述和计算方法2. 力的合成和分解:力的合成定理和力的分解定理的应用3. 各向同性和各向异性材料的力学性质4. 梁的静力学分析方法:简支梁、固支梁和悬臂梁的静力学分析方法五、轴系1. 轴系的分类和特点:一般轴系、滚动轴系和滑动轴系的特点和应用2. 轴系的受力分析:轴系受力平衡条件和计算方法3. 轴系的设计与选用:轴系的设计原则和选材方法4. 轴系的传动:轴系的传动原理和传动装置的种类及应用六、传动1. 传动的分类和特点:齿轮传动、带传动、链传动和齿条传动的特点和应用2. 传动的传递特性:传动的传递比、效率和传动比的计算方法3. 传动装置的设计与选用:传动装置的设计原则和选用方法4. 传动装置的振动和噪音控制:传动装置的振动和噪音控制原理和方法七、机构1. 机构的分类和特点:平面机构、空间机构、连杆机构和歧杆机构的特点和应用2. 机构的运动分析:机构的运动规律、运动轨迹和运动参数的计算方法3. 机构的静力学分析:机构的受力平衡条件和受力分析方法4. 机构的动力学分析:机构的运动学和动力学分析方法八、机器人1. 机器人的分类和特点:工业机器人、服务机器人和专用机器人的特点和应用2. 机器人的结构和工作原理:机器人的机械结构和工作原理3. 机器人的传感器和执行器:机器人的传感器和执行器的种类和应用4. 机器人的控制系统:机器人的控制系统和编程方法以上是机械原理的全部知识点总结,涵盖了牛顿定律、运动学、动力学、静力学、轴系、传动、机构和机器人等内容。
机械原理考试知识点.doc
《机械原理》考试知识点第一篇基本机构及常用机构的运动学设计第一章绪论1.了解机械原理的研究对象及主要内容;2.了解机械原理的地位和作用;3.了解机械原理的学习目的和方法。
第二章机构的结构分析与综合1.掌握有关机构的概念,如构件、运动副、运动链、杆组等;2.掌握平面机构运动简图的绘制方法和步骤,能根据实际机械正确绘制机构运动简图;3.掌握机构具有确定运动的条件及平面机构自由度的计算,并注意复合铰链、局部自由度和虚约束等情况;4.掌握平面机构中高副低代的方法,要求代替前后,机构的自由度和机构的瞬时运动不变;5.掌握平面低副机构的结构分析和组成原理,能根据给定的机构运动简图进行拆杆组,进行机构的结构分析,并确定机构的级别。
第三章平面连杆机构及其设计1.了解平面连杆机构的类型、应用及其主要特点;2.掌握平面连杆机构特别是它的基本形式——平面铰链四杆机构的一些基本概念和基本知识及其演化方法和应用;3.掌握平面连杆机构的运动特性和传力特性:如有曲柄的条件、急回特性和行程速度变化系数、压力角与传动角、死点位置、运动连续性等;4.掌握等视角定理及几何法刚体导引机构的设计;5.掌握机构的刚化反转法及几何法函数生成机构的设计;6.掌握急回机构的设计;7.掌握用速度瞬心法作平面机构的速度分析方法;8.掌握用相对运动图解法进行机构的运动分析方法;9.掌握用复数矢量法进行机构的运动分析的方法。
第四章凸轮机构及其设计1.掌握凸轮机构的基本概念、凸轮机构的分类及应用;2.掌握从动件常用的运动规律及从动件运动规律的设计原则;3.掌握凸轮机构的反转法原理;4.掌握图解法设计平面凸轮轮廓曲线的设计方法;5.掌握解析法设计平面凸轮轮廓曲线的设计方法;6.掌握凸轮机构的压力角及基本尺寸的设计。
第五章齿轮机构及其设计1.了解齿轮机构的类型和应用;2.掌握齿廓啮合基本定律;3.掌握渐开线的形成及其性质;4.掌握渐开线标准直齿圆柱齿轮的基本参数和几何尺寸计算;5.掌握渐开线直齿圆柱齿轮的啮合传动特点,包括:1)定传动比;2)啮合线与啮合角;3)中心距的可分性;3)正确啮合条件;4)连续传动条件;5)标准中心距和安装中心距;6)无侧隙啮合条件等。
机械原理课程知识点总结
机械原理课程知识点总结1. 牛顿运动定律牛顿运动定律是机械原理课程中最为基础的知识点之一。
根据牛顿运动定律,物体在外力作用下会产生加速度,加速度的大小与物体的质量和外力的大小成正比,与外力的方向相同。
牛顿运动定律分为三条:(1)牛顿第一定律:物体静止或匀速直线运动的时候,施加在它上面的合力为零。
(2)牛顿第二定律:物体所获加速度与净合力成正比,方向与净合力方向相同,与物体的质量成反比。
(3)牛顿第三定律:任何两个物体之间,它们的相互作用力之间有相等大小、方向相反的反作用力。
通过学习牛顿运动定律,我们可以了解物体在不同力作用下的运动规律,为后续的机械传动和机构运动分析提供了基础。
2. 机械传动机械传动是机械原理课程中的另一个重要知识点。
机械传动是指通过各种传动机构来传递动力和运动的一种方式,它可以实现力的传递、速度的调节和方向的变换。
常见的机械传动包括齿轮传动、带传动、链传动等。
(1)齿轮传动:齿轮传动是利用相互啮合的齿轮来传递动力和运动的一种方法,通过齿轮传动可以实现速度比的调节和方向的变换。
(2)带传动:带传动是利用传动带将动力和运动传递到不同轴上的一种方式,通过改变带轮的直径比来实现速度比的调节。
(3)链传动:链传动是利用链条将动力和运动传递到不同轴上的一种方式,通过改变链轮的齿数比来实现速度比的调节。
通过学习机械传动,我们可以了解各种传动方式的特点和应用范围,为后续的机构运动分析和机械设计提供了重要的基础知识。
3. 平衡力分析平衡力分析是机械原理课程中的重要内容之一。
平衡力分析是指通过分析物体所受外力的大小和方向来判断物体的平衡状态,以及确定物体的平衡条件和平衡位置。
(1)静力学平衡:静力学平衡是指物体在受力平衡的状态下不发生运动,通过分析物体所受外力的大小和方向来确定物体的平衡条件和平衡位置。
(2)平衡力矩分析:平衡力矩分析是指通过分析物体所受外力的力矩来确定物体的平衡条件和平衡位置,力矩的大小和方向可以决定物体的平衡状态。
《机械原理》期末复习资料
《机械原理》期末复习资料第一章平面机构运动简图和自由度◆这种能实现确定的机械运动,又能做有用的机械功或完成能量、物料与信息转换和传递的装置称为机器。
◆无论机器还是机构,最基本的一点是都能实现确定的机械运动。
从结构和运动观点看,二者之间并无区别,所以统称为机械。
◆机械零件可分为两大类:一类是在各种机器中都能用到的零件,称为通用零件。
另一类则是在特定类型的机械中才能用到的零件,称为专用零件。
◆三个单元:装配单元、运动单元、制造单元1、零件:机械的制造单元,如螺钉、螺母、曲轴等。
通用零件:在各种机器中都能用到的零件。
专用零件:在特定类型的机器中才能用到的零件。
2、部件:由一组协同工作的零件组成的独立制造装配的组合件,如减速器、离合器、制动器等。
部件是装配的单元。
3、构件:机构中形成相对运动的各个运动单元。
可以是单一的零件,也可以是由若干零件组成的运动单元。
◆机器主要由5个部分组成,包括动力部分、控制部分、传动部分、执行部分、支撑及辅助部分。
◆机械设计的程序:1.计划阶段 2.方案计划阶段 3.技术设计阶段 4.技术文件编制阶段◆判断高低副两构件通过面接触形成的运动副,称为低副。
两构件通过点或线接触形成的运动副,称为高副。
◆自由度的计算公式:F=3n-2PL-PH◆复合铰链:两个以上构件在同一轴线处共同参与形成的转动副,称为复合铰链(两个转动副◆局部自由度:机构中与输出构件运动无关的自由度,称为局部自由度。
(可忽略)◆机构具有确定运动的条件:机构的构件之间应具有确定的相对运动。
(标箭头的都是原动件。
)✔原动件个数等于机构的自由度数。
若原动件数小于自由度数,则机构无确定运动。
若原动件数大于自由度数,则机构可能在薄弱处损坏。
第二章平面连杆机构◆铰链四杆机构的基本类型:曲柄摇杆机构:转动运动转变成往复摆动运动双曲柄机构:等速转动变为变速转动双摇杆机构:主动摇杆的摆动变为从动摇杆的摆动(补充)曲柄滑块机构:转动运动转换成往复直线运动,也可把往复直线运动转换成转动运动◆铰链四杆机构存在曲柄的条件:①机构中是否存在整转副;②选择哪个构件作为机架。
机械原理知识资料复习
第一章绪论基本要求1.机械原理的研究对象和内容;2.机构、机器、机械的基本概念;3.机械运动计划设计的基本要求;复习题1. 机械原理:研究机构和机器的运动及动力特性以及机械运动计划设计的一门基础技术学科. 内容包括机构结构分析机构运动分析机器动力学常用机构分析与设计机构系统的计划设计2. 机械――机构与机器的总称3机器――是一种由人为物体组成的具有决定机械运动的装置,它用来完成一定的工作过程,以代替人类的劳动。
4机构――具有决定运动的构件系统5构件――是机器中运动的单元体6执行动作:完成机器工艺动作过程中的某一动作7执行构件:完成执行动作的构件8执行机构:完成执行动作的机构9执行机构系统:是机器的核心第二章机构的结构分析基本要求机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。
第1 页/共28 页1. 机构运动简图的绘制机构运动简图的绘制是本章的一个重点,也是一个难点。
初学者普通可按下列步骤举行。
①分析机械的实际工作情况,决定原动件(驱动力作用的构件)、机架、从动件系统(包括执行系统和传动系统)及其最后的执行构件。
②分析机械的运动情况,从原动件开始,循着运动传递路线,分析各构件间的相对运动性质,决定构件的总数、运动副的种类和数目。
③合理挑选投影面。
④测量构件尺寸,挑选适当比例尺,定出各运动副之间的相对位置,用表达构件和运动副的容易符号绘出机构运动简图。
在机架上加上阴影线,在原动件上标上箭头,按传动路线给各构件依次标上构件号1,2,3,…将各运动副标上字母A,B,C,…⑤为保证机构运动简图与实际机械有彻低相同的结构和运动特性,对绘制好的简图需进一步检查与核对。
2. 运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点。
运动链成为机构的条件是:运动链相对于机架的自由度大于零,且原动件数目等于运动链的自由度数目。
机构自由度的计算错误解导致对机构运动的可能性和决定性的错误判断,从而影响机械设计工作的正常举行。
机械原理基础重要知识点.docx
机械原理基础重要知识点机械原理基础重要知识点在现代社会中,机械原理是一门非常重要的工程学科。
它涉及到各种机械设备和系统的设计、分析和运行。
机械原理的基础知识点是构建这门学科的核心,在工程实践中起着至关重要的作用。
本文将介绍机械原理基础重要知识点,帮助读者更好地理解和应用机械原理。
一、静力学静力学是机械原理的基础,主要研究物体处于平衡状态下的力学性质。
在实际工程中,我们经常需要分析和计算各种结构和零件的受力情况。
掌握静力学的基本原理可以帮助我们确定力的大小、方向和作用点的位置,从而合理设计机械系统。
静力学的基本概念包括:力的合成与分解、力的平衡条件、力矩的概念和静力平衡方程等。
力的合成与分解可以将一个力拆分成多个力的合力,便于分析复杂系统的力学行为。
力的平衡条件指出物体处于平衡状态时,所有受力之和等于零。
力矩的概念用来描述力对物体产生旋转的趋势,静力平衡方程则是根据物体受力平衡的条件进行计算。
二、运动学运动学是机械原理研究的另一个重要方面,它关注物体运动的性质和规律。
在机械系统的设计和优化中,我们需要了解物体的速度、加速度和位移等动力学参数,以便对系统进行合理的设计和控制。
运动学的基本概念包括:位移、速度和加速度。
位移是物体在一定时间内移动的距离和方向。
速度是物体在单位时间内移动的位移,反映了物体的快慢和方向。
而加速度则是速度变化的速率,可以帮助我们了解物体加速或减速的情况。
三、动力学动力学是机械原理中最为复杂的一部分,它研究物体运动时所受的力和力的影响。
掌握动力学知识可以帮助我们预测和控制运动物体的行为,从而实现机械系统的性能优化和安全可靠运行。
动力学的基本概念包括:牛顿定律、惯性、质量与惯性力、动量和能量等。
牛顿定律是动力学的基石,包括了第一定律(惯性定律)、第二定律(动力定律)和第三定律(作用反作用定律)。
质量与惯性力是研究物体在运动中受到的力和加速度之间的关系,描述了物体对力的抗拒程度。
动量和能量是描述物体运动状态和能量转化的重要概念,可以帮助我们理解物体在运动过程中的特性和变化。
《机械原理》复习资料(主要)
《机械原理》复习资料(主要)《机械原理》复习资料第一部分课程重点内容1. 机械原理研究的对象和内容2. 机构的组成;★机构运动简图;★机构具有确定运动的条件;★平面机构的自度计算;★计算平面机构自度时应注意的事项;平面机构的组成原理、结构分类及结构分析。
3. ★利用速度瞬心对平面机构进行速度分析;平面机构运动分析的图解法。
4. 构件惯性力的确定;运动副中的摩擦:移动副中的摩擦;螺旋副中的摩擦;转动副中的摩擦;不考虑摩擦时机构的力分析。
5. 机械效率;机械的自锁。
6. 刚性转子的静平衡和动平衡的条件、平衡原理和方法。
7. 连杆机构的传动特点及其应用;★平面四杆机构的基本型式及其演化;★平面四杆机构的基本特性;★平面四杆机构的设计。
8. 凸轮机构的应用和分类;推杆常用的运动规律及其选择原则;★用作图法设计平面凸轮的轮廓曲线;平面凸轮的压力角、自锁及其基本尺寸的合理选择。
9. 齿轮机构的类型及特点;★齿轮的齿廓曲线;★渐开线标准直齿圆柱齿轮的基本参数及几何尺寸、啮合传动;渐开线标准齿轮的加工与变位齿轮;斜齿圆柱齿轮、直齿圆锥齿轮及蜗杆蜗轮的基本参数及几何尺寸、啮合传动10. 轮系的分类和应用;★定轴轮系、周转轮系和复合轮系传动比的计算方法。
11. 棘轮机构、槽轮机构、不完全齿轮机构、螺旋机构、万向联轴节、组合机构基本原理和应用。
注:★为课程的重点和难点《机械原理》第 1 页共 40 页第二部分分类练习题一.填空题1. 构件和零件不同,构件是,而零件是。
2. 两构件直接接触并能产生一定相对运动的连接称为,按照其接触特性,又可将它分为和。
3. 两构件通过面接触组成的运动副称为,在平面机构中又可将其分为和。
两构件通过点或直线接触组成的运动副称为。
4. 在平面机构中,若引入一个高副,将引入个约束,而引入一个低副将引入个约束。
5. 在运动链中,如果将其中某一构件加以固定而成为机架,则该运动链便成为。
6. 在机构中与其他约束重复而不起限制运动的约束称为。
机械原理总复习(12机本)
1、考虑摩擦的转动副,不论轴颈在加速、等速、减速不同状态 下运转,其总反力的作用线 切于摩擦圆。 A)都不可能; B)不全是; C)一定都。 2、在机械中驱动力与其作用点的速度方向 。 A〕一定同向; B〕可成任意角度; C〕相同或成锐角; D〕成钝角。
平面连杆机构
• 基本要求 • 了解平面连杆机构的应用及其演化。掌握有关四杆机构的基 本知识,如:曲柄存在条件、传动角、压力角、死点、极位 夹角、行程速比系数等。学会用图解法设计四杆机构。 • 基本概念题与答案 • l.平面四杆机构的基本类型有几种?是什么? • 2铰链四杆机构的演化方法有几种?是什么? • 3.铰链四杆机构曲柄存在的条件是什么? • 4.满足杆长条件的四杆机构,取不同构件为机架可以得到什么 样的机构? • 5.不满足杆长条件的四杆机构是什么机构? • 6.什么是极位夹角?有什么用处? • 7.什么是从动件急回,用什么系数来衡量其大小? • 8.什么是压力角和传动角,有什么作用? • 9.曲柄摇杆机构最小传动角出现在什么位置上?如何判定? • 10.什么是死点位置,在这个位置机构有什么特征?
3.如图所示为齿条型刀具加工渐开线齿轮示意图,指出刀具的分 度线、节线;被切齿轮分度圆的位置,并说明图示位置是标 准切削位置还是变位切削位置? 4、用齿条刀加工一正常齿制渐开线直齿圆柱齿轮。Z=12,m=4, 为避免根切,加工变位齿轮。说明图中a-a、b-b各是什么线? 它们之间的距离L至少为多少?
典型例题
• 例1 在偏置曲柄滑块机构中,已知滑块行程为H,当滑块处 于两个极限位置时,机构压力角各为α1和α2,试求: • (1)杆长lAB,lBC,及偏距e; • (2)该机构的行程速度变化系数K; • (3)该机构的最大压力角αmax;
• 例3 设计一曲柄摇杆机构,已知:曲柄为主动件,从动摇杆 处于两极限位置时,连杆的两铰链点的连线正好处于图示之 C1和C2位置,且连杆处于极限位置C1时机构的传动角为400。 若连杆与摇杆的铰接点取在C点(即图中之C1点或C2点), 试用图解法求曲柄AB和摇杆CD之长。
机械原理基本知识点
机械原理基本知识点2机器里每一个独立的运动单元体称为一个构件。
两个构件直接接触而构成的可动的连接称为运动副。
自由度:机构具有确定运动时所必须给定的独立运动参数的数目。
高副:点线接触,2自由度。
低副:面接触,1自由度。
机械运动简图和机构示意图。
机构自由度:F=3n-(2Pl+Ph-p撇)-F撇(虚约束:重复约束)(局部自由度:产生局部运动而不影响其他构件的运动)复合铰链有n-1个转动副。
低副:移动副,转动副.自由度为1机构具有确定运动条件:原动件数等于其所具有的自由度。
基本杆组:最后不能再拆的最简单的自由度为零的构件组(2构三低,四狗六地)速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点,即为两构件的速度瞬心。
(Pij)三心定理:三个作彼此平面平行运动的构件的三个瞬心必位于同一直线上。
科氏加速度----是动点的转动与动点相对运动相互耦合引起的加速度。
科氏加速度的方向垂直于角速度矢量和相对速度矢量。
4运动副中摩擦力的确定:ψ=arctanf.摩擦圆半径ρ=fv·r.运动副中法向反力和摩擦力的合力称为运动副中的总反力。
总反力方向:1总反力与法向反力偏斜一摩擦角ψ。
2总反力Fr21与法向反力偏斜的方向与构件1相对于构件2的相对速度V12的方向相反。
构件组的静定条件:3n=2Pl+Ph总反力方位的确定:1不计摩擦时确定总反力的方向2计摩擦力时总反力与摩擦圆相切3轴承2对轴颈1的总反力对轴颈中心之距离的方向必与轴颈1相对于轴承2的相对较速度w12的方向相反。
(可根据铰接处两者转向判断,摩擦力与之相反,或总反力看作推力,推动摩擦圆与铰接处转向相反。
)5效率=理想比实际。
串联等于相乘,并联分别计算功率,理论功率比实际功率。
运动副自锁条件:作用在轴颈上的驱动力为单力F,且作用于摩擦圆之内,即a<ρ.(力矩小于最大摩擦力矩)移动副自锁条件:作用于滑块的驱动力作用在其摩擦角之内。
6动平衡:惯性力与惯性力矩平衡。
机械原理基础知识复习资料
机械原理基础知识复习资料第⼆讲平⾯机构的运动分析⼀⽤速度瞬⼼法作机构的速度分析1 速度瞬⼼的定义:作平⾯相对运动两构件上任⼀瞬时其速度相等的点,称为这个瞬时的速度中⼼。
分类:相对瞬⼼-重合点绝对速度不为零绝对瞬⼼-重合点绝对速度为零2 瞬⼼数⽬ K=N(N-1)/23 机构瞬⼼位置的确定直接观察法:适⽤于求通过运动副直接相联的两构件瞬⼼位置。
1)两构件组成转动副时,转动副中⼼即是它们的瞬⼼。
2)若两构件组成移动副时,其瞬⼼位于移动⽅向的垂直⽆穷远处。
3)若两构件形成纯滚动的⾼副时,其⾼副接触点就是它们的瞬⼼。
4)若两构件组成滚动兼滑动的⾼副时,其瞬⼼应位于过接触点的公法线上。
不直接形成运动副的两构件利⽤三⼼定理来确定其具体位置。
三⼼定理:三个彼此作平⾯平⾏运动的构件共有三个瞬⼼,且它们位于同⼀条直线上。
此法特别适⽤于两构件不直接相联的场合。
4传动⽐的计算ωi /ωj=P1j P ij / P1i P ij两构件的⾓速度之⽐等于绝对瞬⼼⾄相对瞬⼼的距离之反⽐5.⾓速度⽅向的确定相对瞬⼼位于两绝对瞬⼼的同⼀侧,两构件转向相同相对瞬⼼位于两绝对瞬⼼之间,两构件转向相反。
常见题型:1.速度瞬⼼的求解、2利⽤速度瞬⼼求解速度。
⼆、⽤⽮量⽅程图解法作机构的速度和加速度分析 1.同⼀构件上两点之间速度,加速度的关系。
①由各速度⽮量构成的图形称为速度多边形(或速度图);由各加速度⽮量构成的图形称为加速度多边形(或加速度图)。
p ,'p 称为极点。
②在速度多边形中,由极点p 向外放射的⽮量,代表构件上相应点的绝对速度。
⽽连接两绝对速度⽮端的⽮量,则代表构件上相应两点间的相对速度,⽅向与⾓标相反,如代表CB v (C 点相对B 点的速度)。
③在加速度多边形中,由极点'p 向外放射的⽮量代表构件上相应点的绝对加速度。
⽽连接两绝对加速度⽮量端的⽮量代表构件上相应两点间的相对加速度,⽅向与⾓标相反。
相对加速度可⽤其法向加速度和切向加速度来表⽰。
机械原理复习要点
K V 2 C1C 2
V1
C1C 2
t2 t1
t1 t2
180 180
1、平面四杆机构有三种基本形式,即
机构, 机构
和
机构。
2、组成曲柄摇杆机构的条件是:最短杆与最长杆的长度之和
或
其他两杆的长度之和;最短杆的相邻构件为
,则最短杆为
。
3、在曲柄摇杆机构中,如果将
杆作为机架,则与机架
相连的两杆都可以作____
运动,即得到双曲柄机构。
4、在
机构中,如果将
杆对面的杆作为机
架时,则与此相连的两杆均为摇杆,即是双摇杆机构。
5.在
机构中,最短杆与最长杆的长度之和
其余两杆的长度之和时,则不论取哪个杆作为
,都可以
组成双摇杆机构。
6.导杆机构可看做是由改变曲柄滑块机构中的
C
B
A
D
θ 180°+θ
B2
作者: 潘存云教授
A B 180°-θ
1
D
第1章 绪论
1、 机构与机器的区别 2、 零件与构件的区别 3、 机器的分类 4、 工作机的组成
第2章 平面机构的结构分析
1、运动副(高副、低副) 2、约束及自由度 3、运动链 4.机构具有确定运动的条件
机构具有确定运动的条件是原动件数=自由度。
5、自由度的计算(虚约束、局部自由度、复合铰链)
6.机构分级
而演变来
的。
7、将曲柄滑块机构的
改作固定机架时,可以得到导杆
机构。
8、曲柄摇杆机构产生“死点”位置的条件是:摇杆为
件,曲柄为
件或者是把
运动转换成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论选择填空1、机构中的构件是由一个或多个零件所组成,这些零件间 B 产生任何相对运动。
A、可以B、不能2、构件是组成机器的 B 。
A、制造单位B、独立运动单元C、原动件D、从动件简答题1、什么是机构、机器和机械?机构:在运动链中,其中一个件为固定件(机架),一个或几个构件为原动件,其余构件具有确定的相对运动的运动链称为机构。
机器:能代替或减轻人类的体力劳动或转化机械能的机构的组合。
机械:机器和机构的总称。
2、机器有什么特征?(1)经过人们精心设计的实物组合体。
(2)各部分之间具有确定的相对运动。
(3)能代替或减轻人的体力劳动,转换机械能。
3、机构有什么特征?(1)经过人们精心设计的实物组合体。
(2)各部分之间具有确定的相对运动。
4、什么是构件和零件?构件:是运动的单元,它可以是一个零件也可以是几个零件的刚性组合。
零件:是制造的单元,加工制造不可再分的个体。
第二章平面机构的结构分析判断题1、具有局部自由度的机构,在计算机构的自由度时,应当首先除去局部自由度。
(√)2、具有虚约束的机构,在计算机构的自由度时,应当首先除去虚约束。
(√)3、虚约束对运动不起作用,也不能增加构件的刚性。
(×)4、六个构件组成同一回转轴线的转动副,则该处共有三个转动副。
(×)选择填空1、原动件的自由度应为 B 。
A、0B、1C、22、机构具有确定运动的条件是 B 。
A、自由度>0B、自由度=原动件数C、自由度>13、由K个构件汇交而成的复合铰链应具有 A 个转动副。
A、K-1B、KC、K+14、一个作平面运动的自由构件有 B 个自由度。
A、1B、3C、65、通过点、线接触构成的平面运动副称为 C 。
A、转动副B、移动副C、高副6、通过面接触构成的平面运动副称为 A 。
A、低副B、高副C、移动副7、平面运动副的最大约束数是 B 。
A、1B、2C、38、原动件数少于机构自由度时,机构将 B 。
A、具有确定的相对运动B、无规则地乱动C、遭到破坏。
填空题1、使两构件直接接触并能产生一定相对运动的联接称为运动副。
2、平面机构中的低副有移动副和回转副两种。
3、机构中的构件可分为三类:原动件、从动件和机架。
4、在平面机构中若引入一个高副将引入 1 个约束。
5、在平面机构中若引入一个低副将引入 2 个约束。
6、平面运动副按组成运动副两构件的接触特性,分为低副和高副两类。
其中两构件间为面接触的运动副称为低副;两构件间为点接触或线接触的运动副称为高副。
7、在平面机构中构件数、约束数与机构自由度的关系是 F=3n-2PL -Ph。
8、机构具有确定的相对运动条件是原动件数等于机构的自由度数。
简答题1、什么是平面机构?组成机构的所有构件都在同一平面或相互平行的平面上运动。
2、什么是运动副?平面运动副分几类,各类都有哪些运动副?其约束等于几个?运动副:两个构件直接接触而又能产生一定相对运动的联接叫运动副。
平面运动副分两类:(1)平面低副(面接触)包括:转动副、移动副,其约束为 2。
(2)平面高副(点、线接触)包括:滚子、凸轮、齿轮副等,约束为 1。
3、什么是运动链,分几种?若干个构件用运动副联接组成的系统。
分开式链和闭式链。
4、什么是机架、原动件和从动件?机架:支承活动构件运动的固定构件。
原动件:运动规律给定的构件。
从动件:随原动件运动,并且具有确定运动的构件。
5、机构具有确定运动的条件是什么?什么是机构自由度?条件:原动件的数目等于机构的自由度数。
机构自由度:机构具有确定运动时所需要的独立运动参数的数目。
6、平面机构自由度的计算式是怎样表达的?其中符号代表什么?F =3n- 2PL -PH其中:n----活动构件的数目,PL ----低副的数目,PH----高副的数目。
7、在应用平面机构自由度计算公式时应注意些什么?应注意复合铰链、局部自由度、虚约束。
8、什么是复合铰链、局部自由度和虚约束,在计算机构自由度时应如何处理?复合铰链:多个构件在同一轴线上组成转动副,计算时,转动副数目为m-1个。
局部自由度:与整个机构运动无关的自由度,计算时将滚子与其组成转动副的构件假想的焊在一起,预先排除局都自由度。
虚约束:不起独立限制作用的约束,计算时除去不计。
9、什么是机构运动简图,有什么用途?抛开构件的外形和断面尺寸,用简单的线条和运动副的符号,按比例尺画出构件的运动学尺寸,用来表达机构运动传递情况的图形。
用途:对机构进行结构分析、运动分析和力分析。
分析计算1. F、G处存在虚约束,C处存在复合铰链,B处存在局部自由度。
A处应当增加一个滑块。
错误!未找到引用源。
2.A处存在局部自由度错误!未找到引用源。
3.E、H处存在虚约束,F处存在局部自由度错误!未找到引用源。
4.5.6.错误!未找到引用源。
7.8.9.10.11.12.13.14.15.16.17.18.19.20.绘制机构的运动简图1. 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-1解:1)分析该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。
2)绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=5,P L=7, P H=0,F=3n-2P L-P H=3×5-2×7=1故该机构具有确定的运动。
2. 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-2解:1)分析该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。
2) 绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中 n=4,P L =5, P H =1F=3n-2P L -P H =3×4-2×5-1=1故该机构具有确定的运动。
3. 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。
试根据机构自由度分析该方案的合理性,并提出修改后的新方案。
题图2-3解:1)分析2)绘制其机构运动简图(图2-3 b)选定比例尺后绘制机构运动简图如图(b )所示。
3)计算机构自由度并分析其是否能实现设计意图由图b 可知,45200l h n p p p F ''===== 故3(2)34(2520)00l h F n p p p F ''=-+--=⨯-⨯+--=因此,此简易冲床根本不能运动,需增加机构的自由度。
4)提出两种修改方案为了使机构能运动,应增加机构的自由度。
方法可以是:在机构的适当位置,增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 图d 给出其中的两种方案。
新方案中:562l h n p p ===新方案的机构自由度:35(262)1F =⨯-⨯+=改进后的方案具有确定的运动。
4 如题图2-4所示为一小型压力机,试绘制其机构运动简图,并计算机构自由度。
(a ) (b )题图2-4解:1)分析该压力机由齿轮1、偏心轮1’、连杆2、导杆3、叉形连杆4、齿轮5、滚子6、滑块7、冲头8所组成,其中齿轮1与偏心轮1’固定连接组成一个构件,且为原动件,偏心轮1’与连杆2通过转动副联接,连杆通过铰链推动导杆移动,导杆的另外一端与连杆4构成转动副,连杆4的中部有一个滚子6,齿轮5的端面加工有一个凹槽,形成一个端面槽形凸轮,滚子6嵌入凸轮槽中,叉形连杆4另外一端与滑块7构成移动副,滑块7通过铰链与冲头联接,驱动冲头滑块作往复上下冲压运动。
2)作机构运动简图选定比例尺后绘制机构运动简图如图(b )所示。
3)计算该机构的自由度810201(D )l h n p p p F ''=====处滚子的转动3(2)38(21020)11l h F n p p p F ''=-+--=⨯-⨯+--=故该机构具有确定的运动。
5 如题图2-5所示为一人体义腿膝关节机构,若以胫骨1为机架,试绘制其机构运动简图,并计算机构自由度。
(a ) (b )题图2-5解:1)分析该机构所有构件均为杆状,且都是通过转动副相联接,2)绘制机构运动简图选定比例尺后绘制机构运动简图如图(b )所示。
3)计算自由度57000l h n p p p F ''=====3(2)35271l h F n p p p F ''=-+--=⨯-⨯= 故该机构具有确定的运动。
6 计算图2-6所示压榨机机的机构自由度。
(a ) (b )题图2-6解:该机构中存在结构对称部分,构件4、5、6和构件8、9、10。
如果去掉一个对称部分,机构仍能够正常工作,故可将构件8、9、10上转动副G 、H 、I 、D 处带来约束视为虚约束;构件7与构件11在左右两边同时形成导路平行的移动副,只有其中一个起作用,另一个是虚约束;构件4、5、6在E 点处形成复合铰链。
机构中没有局部自由度和高副。
去掉机构中的虚约束,则得到图(b)中实线所示的八杆机构,其中活动构件数为7=n ,机构中低副数10=l P ,于是求得机构的自由度为:11027323=⨯-⨯=--=h l P P n F故该机构具有确定的运动。
第三章 平面机构的运动分析1、平面机构运动分析的内容、目的和方法是什么?内容:确定构件的角位移、角速度、角加速度以及构件上点的轨迹、位移、速度、加速度。
目的:改造现有机械的性能,设计新机械。
方法:图解法、解析法、实验法。
第四章 平面机构的力分析判断题1、在机械中,因构件作变速运动而产生的惯性力一定是阻力。
( × )2、在车床刀架驱动机构中,丝杠的转动使与刀架固联的螺母作移动,则丝杠与螺母之间的摩擦力矩属于生产阻力。
(× )3、考虑摩擦的转动副,不论轴颈在加速、等速、减速不同状态下运转,其总反力的作用线一定都切于摩擦圆。
( ×)4、三角螺纹的摩擦大于矩形螺纹的摩擦,因此,前者多用于紧固联接。
( √ ) 选择填空题1、作变速运动的构件上的惯性力, B 。
A 、当构件加速运动时它是驱动力,当构件减速运动时它是阻力;B 、当构件加速运动时它是阻力,当构件减速运动时它是驱动力;C 、无论构件是加速运动还是减速运动时,它总是阻力;D 、无论构件是加速运动还是减速运动时,它总是驱动力。